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Highlights: 14 

- Plant communities in coastal wetlands are at risk due to the impacts of global change  15 

- Knowing the distribution of plant communities is essential for nature conservation 16 

- Communities distribution maps were produced using a UAV-based multispectral sensor  17 

- The Random Forest classifier yielded the highest classification accuracy 18 

- Species diversity and aboveground biomass affect the classification performance 19 

 20 

ABSTRACT 21 

Coastal meadows worldwide are subjected to habitat degradation due to abandonment, 22 
intensification and the impacts of global change.  In order to protect and restore these habitats and 23 
ensure the supply of valuable ecosystem services, it is necessary to know the extent and location of 24 
plant communities in coastal meadows. In this study, five plant communities were mapped at very high 25 
resolution in three different study sites in West Estonia. A fixed wing UAV was used to obtain 26 
multispectral images and derive a set of vegetation indices. Two different image classification 27 
techniques were used to cluster the vegetation indices maps and produce plant community 28 
distribution maps. The highest classification accuracy was obtained using a Random Forest classifier 29 
and 13 vegetation indices. Additionally, the spectral characteristics of the training samples were 30 
correlated with aboveground biomass and species diversity. Both biomass and species diversity were 31 
positively correlated with the spectral diversity of training samples and are thus likely to have an effect 32 
on the classification accuracy. The results of this study highlight the need to utilize a wide array of 33 
vegetation indices and assess the spectral characteristics of training samples in order to obtain high 34 
classification accuracies and understand the nature of misclassification errors. The resulting maps 35 
provide a solid foundation for global change impact assessment and habitat management and 36 
restoration in coastal meadows. 37 
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1. INTRODUCTION 41 

Biodiversity loss is a worldwide concern due to impacts from a variety of anthropogenic factors 42 
(Cardinale et al., 2012), and climate and land-use change are principal threats to vegetated coastal 43 
ecosystems and their supporting biodiversity (IPCC, 2013; Newbold et al. 2016). These threats include 44 
sea level rise, increasing storminess, changes in salinity (Ward et al. 2016b) and changes to 45 
management regimes, particularly for coastal plant communities (Clausen et al., 2013). In the Baltic 46 
Sea Region, Boreal Baltic coastal meadows are European priority habitats (EU Habitats Directive, 1992) 47 
resulting from continuous, low-intensity management, in the form of grazing and mowing (Paal, 1998). 48 
These grasslands support characteristic plant species and provide a habitat for a diversity of migratory 49 
and breeding bird species (Söderström et al. 2001) as well as a variety of plant species on the edge of 50 
their ranges (Paal, 1998). They also provide a wide range of ecosystem services including: fodder for 51 
cattle, carbon storage, habitat for pollinators, habitat for breeding and migratory birds, erosion 52 
control, and flood regulation (Leito et al., 2014; Villoslada et al., 2019) 53 

In spite of their ecological importance, coastal meadows have been subjected to habitat degradation 54 
in the form of agricultural intensification in many areas and abandonment in others (Henle et al., 2008) 55 
and will likely be impacted by global change (Ward et al., 2016b). Whilst efforts have been made in 56 
some regions to halt this trend there is limited data available as to the current location and extent of 57 
the plant communities in many areas, and as a result there is little underlying information to support 58 
nature protection, restoration and management strategies.   59 

In these coastal ecosystems, the provision of ecosystem services and resilience to environmental 60 
stressors including climate change are largely dependent on plant community type. In this regard, 61 
communities can be used as an indicator that can highlight environmental gradients (Ellenberg, 1979; 62 
Diekmann, 2003; Berg et al., 2012; Ward et al., 2013; 2016a) and can also be used to elucidate 63 
management status, disturbance or abandonment (Burnside et al., 2007; Brotherton & Joyce, 2015) 64 
and the impacts of management regimes and intensity (Joyce, 2014; Joyce et al., 2016). Plant 65 
community classification is a well-established tool in ecology (Tansley, 1920; Mueller-Dombois & 66 
Ellenberg, 1974; Crawley, 1997; Burnside et al., 2007) and plants are often used as indicators due to 67 
the fact that they are relatively simple to survey and can give a powerful overview of the ecosystem. 68 
Moreover, in the frame of ecosystem services (ES) science and practice, plant communities can be 69 
regarded as Service Providing Units (SPUs) , understood as spatially explicit units within which ES are 70 
provided (Burkhard & Maes, 2017). SPUs constitute an essential first step to obtain robust ecosystem 71 
service supply models because they reflect the underlying ecosystem functions and their spatially 72 
explicit nature (Crossman et al., 2013). In this respect, recent methodological developments for 73 
mapping and assessment of ecosystem functions and services require very detailed spatial and 74 
thematic scales to model the complex dynamics of ecosystem service supply (Zulian et al., 2018). 75 
However, data concerning the location and extent of plant communities over large scales is often costly 76 
and time consuming to acquire. This problem has been in part addressed through the increased use of 77 
GIS and remotely sensed data (Jensen, 2007).  78 

With the advent and rapid development of GIS software and the large amount of remotely sensed data 79 
available, these tools have been increasingly used for predictive plant community mapping (Burnside 80 
& Waite, 2011). Among the wide range of remote sensing techniques and platforms, there are many 81 
studies that use passive multispectral remotely sensed data to identify plant communities (Townsend 82 
& Walsh, 2001; Brown et al., 2006; Balzarolo et al., 2009; Berni et al., 2009; Hamada et al., 2011; Strong 83 
et al., 2017). These studies used a methodology based on identifying specific reflectance values in 84 
different wavelengths of distinct vegetation by performing some form of classification, either 85 
unsupervised or supervised (Jones & Vaughn, 2010).  86 



Satellite imagery has proven useful for automated or semi-automated vegetation mapping at a variety 87 
of scales, from regional level and low spatial resolution (Armitage et al., 2015) to community-level and 88 
high spatial resolution (Davidson et al., 2016). However, the sometimes coarse spatial resolution of 89 
these products render them impracticable for detailed plant community mapping, particularly within 90 
grasslands due to the fine scale pattern of communities (Rocchini et al., 2015). On the contrary, the 91 
availability and use of Unmanned Aerial Vehicles (UAVs) has undergone an exponential increase during 92 
the last decade (Baena et al., 2018). UAVs equipped with consumer grade digital cameras (Rasmussen 93 
et al., 2016), multispectral sensors (Candiago et al., 2015), hyperspectral sensors (Aasen et al., 2015) 94 
and thermal sensors (Turner et al., 2018) have been used in fields such as ecology, forestry, nature 95 
conservation and precision agriculture (Adão et al., 2017; Veettil et al., 2019), providing a much more 96 
detailed spatial resolution, in most cases down to the centimetre-scale. At the same time, the 97 
increasing amount of remotely sensed data produced with different satellite platforms and UAVs poses 98 
a challenge in terms of data processing and classification (Adão et al., 2017). Unsupervised and 99 
supervised classification algorithms are therefore a crucial tool to achieve interpretable results.  100 

Unsupervised classification techniques group pixels according to their similarity in feature distance 101 
using a variety of different algorithms. Unsupervised classification does not require information on the 102 
spectral signatures of the objects under study. Instead, unsupervised classification methods cluster 103 
multidimensional datasets into relatively homogeneous classes of similar spectral signatures (Duda & 104 
Canty, 2002). A wide array of unsupervised algorithms have been used in diverse applications, 105 
including automated mapping of tree species diversity (Schäfer et al, 2016), individual plant species 106 
mapping (Everitt et al, 2015) and environmental stratifications (Villoslada et al, 2016). However, a 107 
major drawback to this methodology is that the classes do not necessarily relate to different plant 108 
community classes on the ground, although the method does provide a good overview of spectral 109 
differences over the whole dataset (Jones & Vaughn, 2010).  110 

Supervised classification on the other hand, uses training sample areas to direct the classification 111 
process. Training sample areas can relate to plant communities or habitat data and are used to classify 112 
across the image (Hamada et al., 2011). These training pixels can be used to provide an accurate 113 
prediction of the location of different plant communities. A lot of attention has been directed towards 114 
the number of training samples and the size of training polygons (Chen & Stow, 2002). However, the 115 
spectral characteristics of training samples may also have an effect on the classification performance. 116 
According to the Spectral Variation Hypothesis, the spectral variability of remotely sensed images is 117 
defined as the spatial variability of the remotely sensed signal within a given area and directly related 118 
to plant community type and species diversity (Rochinni et al, 2004). Previous studies (Oldeland et al, 119 
2010; Rochinni et al., 2010b; Medina et al., 2013; Cavender-Bares et al., 2017), have assessed the 120 
relationship between ecological diversity at different scales and the spectral properties of the 121 
ecosystems under study. At the field/local scale, remote sensing has been proposed as a tool to 122 
estimate environmental heterogeneity and species diversity (Rochinni et al, 2010a). Grassland 123 
morphological characteristics, including biomass production, are also likely to affect spectral 124 
reflectance (Schweiger et al., 2018). Although spectral heterogeneity shows promising results in the 125 
fields of biodiversity monitoring and habitat management, it should also be accounted for in relation 126 
to the characteristics and quality of spectral training samples used in supervised algorithms. In order 127 
to adequately reveal the effects of species diversity on the spectral variability of the studied plant 128 
communities and its impact on classification, a pixel-based classification algorithm was preferred over 129 
an object-based image analysis classifier (OBIA). OBIA uses a set of features beyond pixel spectral 130 
information, namely shape, texture and context (Liu & Xia, 2010). Although OBIA is considered to be a 131 
superior classification technique (Blaschke, 2010), the effects of shape, texture and context on the 132 



classification performance may interfere with the spectral variability analysis and was therefore 133 
discarded. 134 

Among the wide spectrum of classifiers, the Random Forest machine learning classifier (Breiman, 2001) 135 
has been broadly used in recent years to extract information from multispectral, hyperspectral, radar, 136 
LiDAR and thermal imagery (Belgiu & Drăguţ, 2016) as a powerful and efficient classification technique. 137 
Random Forest (RF) is an ensemble learning technique that has higher accuracy and is less impacted 138 
by the effects of noise compared to other machine learning algorithms that use single classifiers 139 
(Dietterich, 2000). This machine learning technique presents many advantages for remote sensing as: 140 
it runs efficiently on large databases; it estimates what variables are important in the classification; 141 
and it can deal with the nonlinearity of variables (Breiman, 2001; Gislason et al., 2006). Random Forest 142 
is based on decision trees, which enable the simultaneous classification of features based on a set of 143 
training samples and determination of the best performing explanatory variables (a bagging approach) 144 
(Lu & He, 2017).   145 

Despite its great potential and recent progress, the use of UAVs and classification algorithms for 146 
mapping grassland plant communities has received little attention in the scientific literature. Some 147 
studies have utilized different sensors and statistical algorithms to automatically map grassland 148 
communities, from consumer grade cameras (Gonçalves et al., 2015; Lu & He, 2017) to multispectral 149 
sensors (Strong et al., 2017). In addition, UAVs have been used to estimate aboveground biomass 150 
production in grasslands (Wang et al., 2017).  151 

In order to address the lack of knowledge and data on the location, spatial configuration and extent of 152 
plant communities in coastal meadows, the aim of this study was to assess the potential of UAVs and 153 
multispectral cameras for classifying and fine scale mapping of plant communities in coastal meadows. 154 
The objectives were to: (1) derive a wide range of vegetation indices from multispectral images and 155 
assess their capacity to differentiate between five plant community types in coastal meadows; (2) 156 
assess the capacity of supervised and unsupervised classification methods to differentiate between 157 
five plant community types and compare the results in a spatially explicit manner; (3) assess the 158 
spectral characteristics of training samples in relation to plant community composition and 159 
aboveground biomass. 160 

 161 

2. MATERIALS AND METHODS 162 

2.1. STUDY SITES 163 

Estonia is located in the Baltic region between Latvia, Russia and Finland, in the border between the 164 
Boreal and Nemoral zones (Metzger et al., 2005). Despite its relatively small size (45228 km2) Estonia 165 
exhibits a high geological, morphological, and climatic diversity (Arold, 2005) and a long coastline of 166 
3794 km due to the abundant bays, peninsulas, islands and islets (Ward, 2012). 167 

Among the various coastal habitats in Estonia, coastal meadows (classified as Boreal Baltic coastal 168 
meadows according to Annex I of the Habitats Directive) occur in sheltered bays and coastlines and 169 
are characterised by low relief, often not exceeding a maximum elevation of 2m above mean sea level 170 
(Ward et al., 2016b). Baltic coastal meadow landscapes typically consist of coastal wet grasslands, with 171 
swamp vegetation on the seaward edge, and scrub vegetation on the landward side. Baltic coastal 172 
meadows are formed and maintained by isostatic uplift/sediment accretion (Ward et al., 2014) and 173 
regular management, usually in the form of low intensity grazing or mowing (Berg et al., 2012). This 174 
low intensity human intervention halts succession to coarser vegetation types such as scrub, woodland 175 



and reed swamp and promotes high species richness (Burnside et al., 2007). As a result of habitat 176 
degradation coastal meadows have undergone a considerable loss of area, from 28 750 ha of managed 177 
meadows in the 1950s (EFN & RDSFNC, 2001) to around 8 000 ha in the 2000s (Ingerpuu & Sarv, 2015).  178 

This study was undertaken in the Silma Nature Reserve in West Estonia. The reserve covers an area of 179 
4780 ha and encompasses around 560 ha of coastal meadow (Burnside et al., 2007). Landowners 180 
include both the state and private persons. Silma Nature Reserve was first designated as a protected 181 
area in 1998 due to its strategic location along European bird migratory routes (Ward, 2012). Within 182 
the Reserve, three coastal meadows were selected for the analysis: Tahu North, Tahu South and Kudani 183 
(Fig.1). The sites were chosen due to the representability of the plant communities they contain and 184 
the continuous management undertaken since the 1990s. The three sites are regularly grazed with 185 
densities of 0.4 – 1.3 Au/ ha according to the data registered by the Estonian Agricultural Registers and 186 
Information Board and the Silma Nature Protection Area Management Plan (Keskkonnaamet, 2017).   187 

 188 

 189 

Fig. 1. Location of the study sites within the Silma Nature Reserve in West Estonia: (1) Kudani, (2) Tahu 190 
North, (3) Tahu South. 191 

The vegetation at the study sites has been previously categorized into seven plant communities 192 
according the phytosociological classification developed by Burnside et al. (2007): Reed swamp (RS), 193 
Clubrush swamp (CS), lower shore meadow (LS), upper shore meadow (US), open pioneer (OP), tall 194 
grass (TG) and Scrub and developing Woodland (SW). Because of their peripheral occurrence in coastal 195 
meadows, the present study excludes CS and SW from the analysis. Table 1 contains a summary of the 196 
indicator species of the selected plant communities.      197 

Table 1: Indicator species of selected plant communities. Adapted from Ward et al. (2016b). 198 

Community Key Species 
Reed Swamp (RS) Phragmites australis 



Lower Shore (LS) Juncus gerardii, Plantago maritima 
Upper Shore (US) Festuca rubra, Leontodon autumnalis 
Open Pioneer (OP) Salicornia europaea, Suaeda maritima 
Tall Grass (TG) Elytrigia repens, Festuca arundinacea 
 199 

 200 

2.2. DATA COLLECTION 201 

2.2.1 Plant community field sampling 202 

Field sampling was undertaken in July 2018 over a 1 week period. Plant communities were identified 203 
based on the phytosociological key developed for Baltic coastal wetlands (Table 1; Burnside et al., 204 
2007).  205 

In total, 140 1m2 quadrats were located using a stratified random approach (ten quadrats per 206 
community type in three sites) (Ward et al., 2016b). Within the quadrats, plants with an area coverage 207 
of 5% or more were recorded (Rodwell, 1995), as well as the cover of bare ground and litter. In the 208 
Open Pioneer community all plants were recorded as a result of the low cover of all species and 209 
predominance of bare ground. 210 

X, Y and Z coordinates were recorded within all quadrats using a Sokkia GSR2700 ISX dGPS. Points were 211 
recorded in the corners and centre of all quadrats, five points per quadrat (Ward et al., 2013). 212 

At Kudani, Lower Shore, Upper Shore, Open Pioneer and Tall Grass, plant communities were recorded. 213 
At Tahu North, Reed Swamp, Lower Shore, Upper Shore and Open Pioneer were recorded. And at Tahu 214 
South, Reed Swamp, Lower Shore, Upper Shore and Open Pioneer were recorded (Fig. 2). These were 215 
selected based on the plant communities that occurred in each site. 216 

Additionally, aboveground biomass samples were collected at each study site in order correlate 217 
communities’ structure with the spectral characteristics of the sampling quadrats. A 30 x 30 cm 218 
biomass sampling plot was randomly placed within each vegetation quadrat after the species cover 219 
had been recorded. Grass was cut at ground level and samples were subsequently dried at 80°C for 220 
48h and weighed. Reed Swamp was excluded from the biomass analysis due to logistical constraints. 221 

 222 

 223 

 224 



Fig. 2. Location of the sampling quadrats within the three study sites: (a) Kudani, (b) Tahu North, (c) 225 
Tahu South. 226 

2.2.2 Image acquisition 227 

Multispectral images were collected using a senseFly Ebee fixed wing UAV, with real-time kinematic 228 
(RTK) correction. The images were captured at a flight height of 120 metres, with a 10 cm pixel 229 
resolution. A Parrot Sequoia 1.2 megapixel monochromatic multi-spectral sensor was used to collect 230 
four distinct spectral bands: Green (530–570 nm), red (640–680 nm), red edge (730–740 nm) and near 231 
infrared (770-810 nm). Prior to each flight, an Airinov radiometric calibration target was used to 232 
capture calibration images for subsequent radiometric correction of the multispectral images. The 233 
images were captured during a total of five separate flights over the three coastal meadow sites 234 
covering an overall flight area of 61.4 ha.  235 

Eleven ground control points (GCPs) were recorded using a Sokkia GSR2700 ISX dGPS for each flight in 236 
order to assess the geopositioning accuracy of the multispectral images (Strong et al. 2017).  237 

 238 

2.3. IMAGE PROCESSING AND ANALYSIS 239 

A total of 7615 images were pre-processed in eMotion 3®. RINEX observation and navigation files were 240 
obtained from the ESTPOS Estonian GNSS-RTK permanent stations network (Eesti Maa-amet) for the 241 
post-processed kinematic (PPK) corrections of the images in eMotion 3®. This process ensures a 242 
significant increase in the positional accuracy of the multispectral images (Tadrowski, 2014), from ca. 243 
5 m to under 7 cm in the present study.  244 

In order to obtain one multispectral orthomosaic per study site, the images were processed in Pix4D 245 
v.4.3.31®. The orthomosaics were subsequently clipped to the extent of the study sites in order to 246 
avoid the interference of the surrounding forest and scrub in the classification of the meadow 247 
vegetation.  248 

The accuracy of the PPK corrections was assessed through Root Mean Square Error (RMSE) and Mean 249 
Absolute Error (MAE) calculations. RMSE and MAE were used to estimate the differences between the 250 
GCPs location in the images and the independent GCPs locations measured with the dGPS (Strong et 251 
al., 2017).  252 

2.4. VEGETATION INDICES 253 

A number of vegetation indices have been selected in the present study in order to determine their 254 
ability to differentiate plant community types. Satellite-derived vegetation indices have been used 255 
since the 1970s to gather information on vegetation health status, forest biomass production, 256 
agricultural production and crop monitoring and biodiversity conservation among other applications. 257 
The most commonly used vegetation index is the Normalized Difference Vegetation Index (NDVI) 258 
(Rouse et al., 1974). Originally conceived as an index to identify vegetated areas and assess their 259 
photosynthetic activity, the use of NDVI has been extended to a wide range of fields such as precision 260 
agriculture (Houberg & McCabe, 2016), forestry (Robinson et al., 2017), fire damage assessment 261 
(Navarro et al., 2017) and habitat monitoring (Mafi-Gholami et al., 2019). Later, a wide variety of 262 
vegetation indices have been developed that partly overcome NDVI’s limitations (Gu et al., 2013; Xue 263 
& Su 2017). Among the indices selected for this study, some incorporate the red-edge region (680 – 264 
750nm) in their formulation, which is highly sensitive to leaf area index (LAI) and chlorophyll content 265 



and shows high potential for discerning vegetation characteristics and stress factors, as well as 266 
distinguishing plant community types (Delegido et al., 2013). 267 

Table 2 contains the 13 indices selected for the study and the corresponding references. The selection 268 
of indices was undertaken based on their specific application in vegetation studies, as each individual 269 
index targets different aspects of vegetation condition, phenology, primary production and vegetation 270 
structure among others.  271 

  272 

Table 2. List of vegetation indices selected in the present study. Vegetation indices were used to 273 
classify and map plant communities in the three coastal meadow sites.  274 

Vegetation index  Equation Reference 
Normalized Difference Vegetation Index (NDVI) (NIR-R)/(NIR+R) Rouse et al. (1974) 

Green Difference Vegetation Index (GDVI) NIR-G Sripada et al. (2006) 

Green Normalized Vegetation Index (GNDVI) (NIR-G)/(NIR+G) Gitelson et al. (1996) 

Green Ratio Vegetation Index (GRVI) NIR/G Sripada et al. (2006) 

Green Infrared Percentage Vegetation Index 
(GIPVI) 

NIR/(NIR+G) Crippen (1990) 

Simple Ratio (SR) NIR/R Jordan (1969) 

Green Difference Index (GDI) NIR-R+G Gianelle and Vescovo (2007) 

Green Red Difference Index (GRDI) (G-R)/(G+R) Gianelle and Vescovo (2007) 

Red edge normalized difference vegetation 
index (NDVIre) 

(NIR-
Rededge)/(NIR+Rededge) 

Gitelson and Merzlyak (1994) 

Red edge simple ratio (SRre) NIR/Rededge Gitelson and Merzlyak (1994) 

Red edge triangular vegetation index (core 
only) (RTVIcore) 

100(NIR-Rededge)-
10(NIR-G) 

Chen et al. (2010) 
 

MSRred edge (NIR/Rededge)-
1/√(NIR/Rededge)+1 

Wu et al. (2008) 
 

Datt4 R/G*Rededge Datt (1998) 

  275 

       276 

2.5 SUPERVISED PLANT COMMUNITY CLASSIFICATION 277 

In order to automatically classify and map plant communities in coastal meadows, a supervised 278 
classifier algorithm was used to generate plant community maps for the study sites. The classification 279 
of plant communities was performed in R (v3.5.1) using a Random Forest machine learning classifier.  280 

R packages used to perform RF were: 281 



• rgdal package: provides bindings to the Geospatial Data Abstraction Library (GDAL) to be 282 
imported into R (Bivand et al., 2015) 283 

• raster package: enabling to read, manipulate, analyze and model the gridded spatial data 284 
(Hijmans & van Etten, 2012). 285 

• caret package: contains functions to streamline the model training process for complex 286 
regression and classification problems, and estimate model performance from a training dataset 287 
(Kuhn, 2012). 288 

• randomForest package: for classification and regression based on a forest of decision trees 289 
using random inputs (Liaw & Wiener, 2002). 290 

• e1071 package: contains functions for latent class analysis and shortest path computation 291 
(Dimitriadou et al., 2006) 292 

The Random Forest classifier was run with all the vegetation indices calculated in the previous step. All 293 
pixels falling within each of the 140 sampling quadrats were assigned to the corresponding plant 294 
community identified in the field and utilized as the training dataset. Additionally, plant community 295 
type was recorded in a supplementary batch of 140 quadrats as a validation dataset.  296 

 297 

2.5 UNSUPERVISED PLANT COMMUNITY CLASSIFICATION 298 

In order to explore the capabilities of different image classification techniques, the original dataset 299 
composed of 13 vegetation indices in 3 study sites was also subjected to an unsupervised classification 300 
algorithm.  301 

The ISODATA clustering algorithm was chosen due to its ability to split large diffuse clusters and to 302 
merge small clusters whose centres are closer than a certain threshold (Memarsadeghi et al, 2007). 303 
The ISODATA clustering routine processes data in an iterative manner, based on minimum Euclidean 304 
distances between each pixel and the closest cluster in the multidimensional feature space of the 305 
selected spectral bands. Throughout the clustering process, each iteration recalculates clusters’ means 306 
and reassigns pixels to the cluster with the closest mean value.  307 

All study sites were clustered simultaneously to account for variations in light and atmospheric 308 
conditions and the number of clusters was set to five, in agreement with the five plant communities 309 
under study: Reed Swamp (RS), Lower Shore (LS), Upper Shore (US), Tall Grass (TG) and Open Pioneer 310 
(OP). Prior to the clustering process, a Principal Component Analysis (PCA) was run on the input 311 
variables. PCA has been widely use to extract uncorrelated variables from high dimensional 312 
multispectral data (Zabalza et al, 2014). The variables or components extracted in a PCA convey most 313 
of the spectral variability of the features under study and discard redundant information. Three 314 
combinations of input data were tested in ISODATA: (1) PCA on individual spectral bands, (2) PCA on 315 
the vegetation indices and (3) PCA on the vegetation indices and the spectral bands together. The first 316 
three components were used in all cases as input variables. Analyses were performed in ArcGIS 10.3.  317 

 318 

2.6 VALIDATION, CLASSIFICATION ACCURACY ASSESSMENT AND COMPARISONS BETWEEN MAPS 319 

A Fleiss Kappa statistic was used to assess the overall mapping accuracy of the different classification 320 
techniques (Ward et al., 2013). Based on the kappa statistic, the best performing algorithm was 321 
selected for in-depth analysis. Although kappa statistics reveal clustering and classification 322 



performances, additional tests are needed to explore in-depth classification accuracies for specific 323 
plant communities. Community-specific classification accuracies may reveal differences in spectral 324 
variability related to plant community composition and heterogeneity. An out-of-bag (OOB) estimate 325 
of error was thus used to assess the prediction error of the RF algorithm for individual plant 326 
communities (Gislason et al., 2006). In studies characterized by very high dimensionality, it is crucial to 327 
estimate the importance of each predictive variable in classifying the data in order to determine the 328 
variables performance. In order to detect the predictive power of the input variables within the RF 329 
algorithm, the Mean Decrease in Accuracy (MDA) and Mean Decreased Gini (MDG) for individual 330 
vegetation indices across all RF trees was analysed (Han et al., 2016). The Gini index is a measure of 331 
the homogeneity and purity of nodes and leaves.  Each time a variable is used to split a node in the RF 332 
algorithm, the Gini index estimates the probability of a randomly chosen variable being wrongly 333 
classified. By excluding one variable from the classification process, RF estimates the MDG. A higher 334 
MDG indicates a higher variable importance in correctly splitting data in nodes across all trees 335 
(Rodriguez-Galiano et al., 2012). RF also calculates the MDA by randomly permuting the values of a 336 
certain variable in the OOB samples and subsequently recalculating the overall classification accuracy 337 
of the model (Rodriguez-Galiano et al., 2012). 338 

Beyond simple kappa-based comparisons, spatial comparisons between land cover maps have been 339 
suggested as a tool to locate and quantify areas of land cover allocation disagreement (Gómez & 340 
Montero, 2011). Detecting the spatial patterns of areas of disagreement may help identify 341 
classification uncertainties associated with spectrally complex areas or transitional plant communities. 342 
A spatial overlay was performed between the RF map and the map resulting from the best performing 343 
ISODATA cluster. In addition, the statistics Klocation (Pontius, 2000; Pontius, 2002) and Khisto (Hagen, 344 
2002) were computed in order to provide an in-depth assessment of differences in the location and 345 
the histogram shape of plant communities in all three locations. Khisto accounts for the 346 
similarity/dissimilarity in the quantity of pixels belonging to the same category in two maps by 347 
comparing the frequency of categories in both maps. When the frequency of categories in two maps 348 
is equal, Khisto = 1. Klocation compares the location of categories at the pixel level between two maps. 349 
When two categories lie at identical locations, Klocation = 1. The overall Kappa is computed as the product 350 
of Klocation and Khisto. 351 

The kappa comparisons between the selected maps were performed in Map Comparison Kit (Visser 352 
and De Nijs, 2006).   353 

 354 

2.7 RELATIONSHIP BETWEEN SPECIES COMPOSITION, ABOVEGROUND BIOMASS AND SPECTRAL 355 
SIGNATURE. 356 

The methodology developed for this study characterizes within-sample spectral heterogeneity in 357 
relation to species diversity and biomass in order to assess the impact on the classification accuracy of 358 
the RF algorithm. In order to reduce the dimensionality of the spectral dataset, the spectral 359 
heterogeneity was calculated as the standard deviation (SD) of the first principal component of the 360 
individual bands. Species diversity was assessed using the Shannon index (H’) for species abundance: 361 

𝐻𝐻′ = −∑ 𝑝𝑝𝑖𝑖𝑆𝑆
𝑖𝑖=1 ln (𝑝𝑝𝑖𝑖) 362 

Where 363 

S = total number of species in the sampling plot 364 

I = the ith species 365 



P = proportion of individuals of one particular species divided by the total number of individuals in the 366 
sampling plot.  367 

The Shannon index highlights the functional characteristics of the most abundant species (Rochinni et 368 
al, 2010a) and is likely to be less affected by the presence of rare species than species richness. This 369 
represents an adequate proxy for plant species composition in relation to spectral diversity.  370 

A loess procedure (Cleveland et al., 1988) was applied to assess relationships between spectral 371 
diversity and species diversity and aboveground biomass. Loess is a locally weighted regression model 372 
that fits a function of the independent variable locally and in a moving fashion through a smoothing 373 
process. The purpose of this analysis was to explore the spectral nature of training samples rather than 374 
building a predictive model for species diversity and biomass. In this regard, loess offers a suitable 375 
visualization procedure. Loess analysis was executed in R.  376 

   377 

3. RESULTS 378 
3.1 Comparison of classification models 379 

The Fleiss’ kappa classification accuracy for each method is shown in table 3 and the maps obtained 380 
from different classification methods are shown in fig. 3. The overall classification accuracy was highest 381 
for the Random Forest algorithm with 13 vegetation indices as input variables, with a Fleiss kappa 382 
coefficient of 0.89. The PCA on the 13 vegetation indices plus the four individual bands improved the 383 
classification accuracy of the unsupervised ISODATA algorithm from 0.31 (PCA on spectral bands) and 384 
0.43 (PCA on vegetation indices) to 0.58.  385 

Table 3: Classification accuracy results for four different classification methods. A Fleiss’ kappa 386 
coefficient was used to determine the level of agreement between expected and observed plant 387 
community types. 388 

Classification method  Fleiss’ kappa 
Random Forest with vegetation indices 0.89 

ISODATA clustering with PCA on spectral bands 0.31 

ISODATA clustering with PCA on vegetation indices 0.43 

ISODATA clustering with PCA on vegetation indices and spectral bands 0.58 

 389 

 390 

 391 



 392 

Fig. 3.  Classification results for Random Forest with vegetation indices in Kudani (a), Tahu N (b), Tahu 393 
S (c) and for ISODATA clustering with PCA on vegetation indices and spectral bands in Kudani (d), Tahu 394 
N (e) and Tahu S (f). US: Upper Shore, LS: Lower Shore, OP: Open Pioneer, RS: Reed Swamp, TG: Tall 395 
Grass. 396 

 397 

The comparison between the RF algorithm map and ISODATA clustering (PCA on vegetation indices 398 
and spectral bands) map yielded low levels of agreement (table 4). Tahu N shows the lowest values for 399 
overall Kappa (0.21) and Klocation (0.31), whereas Kudani shows the lowest levels of Khisto (0.57).  400 

Table 4. Overall kappa, Klocation and Khisto results for the comparison between Random Forest and 401 
ISODATA maps. Kappa comparisons were performed individually for each study site.  402 

Community Kudani Tahu N Tahu S 
Kappa 0.29 0.21 0.29 
KLocation 0.51 0.31 0.39 
KHisto 0.57 0.67 0.75 

 403 

Fig. 4 provides a visual interpretation of areas of agreement and disagreement between both 404 
classifications and an overview of classification disagreements per community type. The highest levels 405 
of agreement reflected by overall kappa and Klocation and Khisto are reached in OP and LS respectively. RS 406 
and US show very low values of Klocation and moderate values of Khisto in Tahu N, indicating a certain 407 
degree of swapped classification between both communities, which can also be observed in fig 3.  408 



 409 

Fig 4. Areas of classification disagreement between RF and ISODATA and overall Kappa, Klocation and Khisto 410 
values disaggregated per study site and community type. 411 

3.2 Random Forests accuracy assessment 412 

The performance of the RF classifier was further assessed with two statistical tests for classification 413 
accuracy. The out-of-bag (OOB) estimate of error highlighted the prediction error of RF for each plant 414 
community (table 5). The best classification accuracy corresponds to OP, with an OOB of 0.2%. RS and 415 
TG show the highest classification errors, with an OOB of and 13% and 18% respectively.  416 

Table 5. OOB estimate of error of the RF classifier for each community type  417 

Community Class error 
Reed Swamp (RS) 13% 
Lower Shore (LS) 2% 
Upper Shore (US) 10% 
Open Pioneer (OP) 0.2% 
Tall Grass (TG) 18% 

 418 

The importance of the contribution of each predictor variable on the classification performance of RF 419 
was assessed by means of the Mean Decreased Accuracy (MDA) and Mean Decreased Gini (MDG) tests. 420 
According to the Gini index (fig. 5), the indices with the highest contribution to the RF model are GDI 421 
and DATT4, followed by GRDI and SR. The smallest contribution to the model’s classification 422 
performance are SRRE, NDVIre and MSRRE. Regarding the Mean Decrease in Accuracy, the 423 
contribution of GRDI is the highest with a value of 95%. The contributions of GDI and NDVIre are also 424 
important with values of 65% and 63%. According to the MDA, NDVI and SR have the lowest 425 
importance, with values of 52% and 50% respectively.  426 

 427 



 428 

Fig. 5. Mean Decreased Accuracy (MDA) and Mean Decreased Gini (MDG) values for all vegetation 429 
indices used as input variables in the RF classifier. Higher MDA and MDG values indicate a higher 430 
importance of the input variable in the classification process.   431 

3.3 PCA for spectral dimension reduction 432 

The best performing combination of input variables in the ISODATA algorithm was the three 433 
components of the PCA performed on the vegetation indices and spectral bands. The first three 434 
components explain 97% of the total variance in the multidimensional space (table 6). The first 435 
component is highly correlated with ratio-based vegetation indices incorporating the NIR band (NDVI, 436 
GNDVI and GIPVI) and a Red-Edge based index (DATT4). The second component is mainly correlated 437 
with the individual reflectance bands and two difference-based indices (GDVI and GDI). The third 438 
component relates to GRDI and SR. 439 

 440 

Table 6. Eigenvectors of the vegetation indices and spectral bands and variance explained by each 441 
principal component  442 

Vegetation 
indices/reflectance 
bands 

1st component (82.4% 
variance explained) 

2nd component (8.6% 
variance explained) 

3rd component (5.9% 
variance explained) 

NDVI 0.55   
GIPVI 0.46   
GNDVI 0.46   
DATT4 -0.22   
RED-EDGE  -0.48  
NIR  -0.43  
GDI  -0.42  
GDVI  -0.34  
GREEN  -0.26  
RED  -0.25  
GRDI   0.79 
SR   0.24 

 443 

3.4 Relation between species composition, aboveground biomass and spectral signature 444 



A graphical comparison of the relationships between spectral diversity and species diversity and 445 
biomass is provided in Fig. 6. Spectral diversity is more sensitive to biomass than to species diversity. 446 
Although the relationship between spectral diversity and species diversity is initially positive, it 447 
smoothly turns to negative after reaching the highest values of species diversity. It is worth noting that 448 
all the plotted points around the negative section of the loess fitted curve (b) correspond to Reed 449 
Swamp sampling plots.    450 

 451 

 452 

Fig. 6. Relationships between aboveground biomass (a) and Shannon’s index (b) vs. spectral diversity. 453 
The fitted curves were obtained with a loess smoothing non-linear regression.   454 

 455 

3. DISCUSSION 456 

The rapid development of UAVs and lightweight sensors in recent years has widened the range of 457 
remote sensing applications and solutions (Pajares, 2015). Simultaneously, an unprecedented volume 458 
of very high spatial resolution remotely sensed data is being generated, posing a challenge in terms of 459 
modelling and interpretation of results (Chi et al., 2016). While the availability of different modelling 460 
techniques facilitates the processing of large amounts of remotely sensed data, it is still necessary to 461 
understand the modelling capabilities and limitations in order to provide robust results. In this study, 462 
a UAV was used to retrieve high-resolution multispectral images of three coastal meadows in West 463 
Estonia. Subsequently, a RF model and an ISODATA algorithm were used to map plant communities at 464 
the study sites.  465 

The results show that the RF outperforms the ISODATA unsupervised classification algorithm (Table 3). 466 
Specifically, the RF algorithm achieved very low per-class OOB errors for Open Pioneer and Lower 467 
Shore (0.2% and 2% respectively) and increasingly higher for Upper Shore, Reed Swamp and Tall Grass 468 
(10%, 13% and 18%). These differences in the classification error between communities can be 469 
explained by the spectral characteristics of the vegetation and the training samples. The results of the 470 
spectral signature analysis show that in the communities under study, species diversity is slightly 471 
correlated with spectral diversity (r = 0.23) whereas aboveground biomass is moderately correlated 472 
with spectral diversity (r = 0.43). This, in turn, has an effect on the characteristics of the training 473 
samples and ultimately on the accuracy of the RF algorithm. For instance, low biomass communities 474 
such as Lower Shore and communities with a very high proportion of bare ground such as Open Pioneer 475 
present a very homogeneous spectral signature. Building upon homogeneous training samples, RF is 476 
able to discriminate communities with a high level of precision. On the other hand, a higher 477 
aboveground biomass and species diversity results in higher spectral diversity within the training 478 



samples. This can be observed in the higher classification errors in Upper Shore (higher biomass and 479 
diversity than Lower Shore and Open Pioneer), Reed Swamp (highest biomass) and Tall Grass (highest 480 
diversity and high biomass).  481 

Plant functional traits and morphological characteristics such as leaf size, branching structure, leaf 482 
angle, etc. affect spectral reflectance (Schweiger et al., 2018). In this regard, the spectral diversity 483 
hypothesis indicates that species within a community occupy spectral spaces defined by their 484 
morphological characteristics (Rocchini et al., 2010a). Consequently, spectral diversity can be used as 485 
a proxy for estimating the variability of plant traits within a certain area unit. Similarly, grassland 486 
aboveground biomass may have an effect on the spectral variability of remotely sensed images, 487 
especially at very high spatial resolutions. Recently grazed grassland patches may show a 488 
homogeneous sward structure, especially in terms of sward height and biomass distribution. On the 489 
other hand, swards undergoing a period of regrowth are commonly characterized by a complex 490 
structure and a higher  heterogeneity in both vertical and horizontal dimensions due to individual 491 
plants differing in size, growth rates and biomass allocation (Marriott and Carrère, 1998, Wang et al., 492 
2018). Higher biomass swards are therefore expected to show a higher spectral variability.  The 493 
relationship between species diversity and spectral diversity has been previously studied in the context 494 
of biodiversity monitoring, estimation and prediction (Rochinni et al., 2010) and has been tested across 495 
a wide variety of habitats and spatial scales, including Mediterranean forests (Rocchini & Cade, 2008), 496 
Amazonian tropical forests (Tuomisto et al., 2003) and African savannas (Rochinni et al., 2010b). In 497 
contrast, while many studies focus on the use of multispectral imagery for biomass estimations 498 
(Magiera et al., 2017; Punalekar et al., 2018; Naidoo et al., 2019), very few address the relationship 499 
between biomass and spectral diversity. The results obtained in this study show that biomass and 500 
species diversity have an influence on the characteristics and quality of the training samples. The loess 501 
curve shown in Fig. 6a confirms the positive relationship between biomass and spectral diversity 502 
described above. However, the relationship between species diversity and spectral diversity shown in 503 
Fig. 6b suggests a more complex interaction. Increasing levels of species diversity correspond to 504 
increased spectral diversity, as has been shown in previous studies. However, after reaching the 505 
maximum level of species diversity, the curve turns negative indicating an increase in spectral diversity 506 
as Shannon’s diversity index decreases. This variation in the relationship can be attributed to two 507 
phenomena. On one hand, the sensitivity of spectral diversity to biomass (Fig. 6a) could mask the effect 508 
of species diversity. This is indicated by the fact that all the plotted points around the negative section 509 
of the loess fitted curve in Fig. 6b correspond to Reed Swamp, which is characterized by a high biomass 510 
and a relatively low level of species diversity. On the other hand, the very high spatial resolution 511 
imagery provided by sensors mounted on UAVs may lead to artefacts. For instance, in communities 512 
characterized by tall vegetation such as Reed Swamp, some pixels may fall in areas with direct sunlight 513 
while others may fall in shaded areas or gaps between individual plants (Nagendra et al., 2010), 514 
therefore increasing the spectral variability of the sample. These results highlight the need to account 515 
for the nature and characteristics of spectral diversity when designing and adapting sampling strategies 516 
for training plant community classification algorithms.       517 

Regarding the variables importance in the classification accuracy of the RF algorithm, Green Red 518 
Difference Index (GRDI) was shown to be the considerably more important than all other indices in 519 
classifying plant communities according to the Mean Decreased Accuracy (MDA). The critical role of 520 
GRDI in classifying grassland communities is likely to be related to its ability in predicting the 521 
percentage of green herbage (Gianelle and Vescovo, 2007). GRDI has also been shown to be sensitive 522 
to small changes in leaf colour and leaf density in grasslands (Motohka et al., 2010). Changes in green 523 
reflectance captured by GRDI are likely to represent changes in pigment composition between plant 524 
species in different communities.  525 



Based on the classification purity metrics (Mean Decreased Gini), Green Difference Index (GDI) and 526 
DATT4 were the most important predictor variables regarding increased data purity after each decision 527 
tree node split. These results indicate that GDI and DATT4 show a superior performance to other 528 
vegetation indices in terms of obtaining pure classes at the end of the classification process. Similarly 529 
to GRDI, GDI may capture changes in green reflectance better than some other indices (e.g. NDVI). 530 
DATT4 is a red-edge-based index proposed by Datt (1998) as an alternative to NDVI and GNDVI to 531 
maximize the sensitivity to changes in pigment concentration in leaves. A sharp change of reflectance 532 
occurs in the red-edge region, related to the transition from chlorophyll absorption to leaf scattering 533 
(Delegido et al., 2013). Consequently, the red-edge band has been proven to be very sensitive to 534 
variations in chlorophyll a, b and carotenoids (Adamczyk, 2015) and therefore its use in vegetation 535 
indices reduces the saturation effect known to affect e.g. NDVI (Clevers and Gitelson, 2013). This 536 
explains the key role of DATT4 in the correct classification of plant communities in coastal meadows. 537 

On the other hand, NDVI shows a very low contribution to MDA, which highlights its marginal role in 538 
the overall performance of the model. Previous studies suggest NDVI is a poor indicator of forest 539 
phenology due to its low sensitivity to leaf colour change (Motohka et al., 2010). In addition, using 540 
NDVI can present some limitations due to its sensitivity to the effects of soil brightness, soil colour, 541 
atmosphere and leaf canopy shadow (Xue & Su, 2017) and shows saturation in high density vegetation 542 
(Gu et al., 2013). NDVI is therefore likely to also exhibit a low sensitivity to different rates of leaf 543 
senescence and proportions of chlorophyll and other pigments in grasslands.   544 

Within this study, an unsupervised classification method was tested in order to compare its 545 
performance with the RF algorithm. The ISODATA clustering algorithm reduces costs associated with 546 
the training sample collection process. However, the classification accuracy obtained with the different 547 
combinations of input variables in ISODATA was considerably lower than RF. The best results were 548 
obtained by combining all vegetation indices and individual spectral bands in a PCA (Table 3) and 549 
subsequently using the first three components as input variables in the ISODATA clustering algorithm. 550 
Mixing individual spectral bands with vegetation indices in the PCA generated a component entirely 551 
correlated with the spectral bands (PC2). On the other hand, PC1 incorporated three NIR ratio-based 552 
vegetation indices (NDVI, GNDVI and GIPVI) and a Red-Edge based index (DATT4). The highest 553 
contribution to PC2 is the red-edge band, which highlights the key role of this band in discerning 554 
vegetation types. The clear separation between indices and bands in different components is likely due 555 
to the fact that non-normalized spectral bands tend to be correlated among themselves. In fact, the 556 
only vegetation indices included in PC2 are non-normalized and also likely correlated with the spectral 557 
bands. In previous studies, PCA has been used to compute synthetic bands that are subsequently 558 
utilized as input variables in supervised classification algorithms (Yesilnacar & Süzen, 2006; Novelli et 559 
al., 2016) with high classification accuracies. The results in this study highlight that the classes obtained 560 
in unsupervised classification do not necessarily correspond to different plant communities on the 561 
ground. Nevertheless, these methods provide a good overview of spectral differences over the whole 562 
dataset. 563 

Fleiss kappa comparisons between plant community classification techniques offer a quick and simple 564 
way to assess classification accuracy (Landis & Koch, 1977; Chmura Kraemer, 1980). However, Fleiss 565 
kappa fails to provide information on the spatial nature of the agreement and disagreement between 566 
classification techniques (Gómez & Montero, 2011). This information is essential, as it helps identify 567 
communities characterized by very high spectral heterogeneity due to factors such as disturbance or 568 
communities located within or adjacent to ecotones. An assessment of classification disagreement was 569 
performed by overlying the RF map with the ISODATA (PCA on bands plus indices) map. The results 570 
show that at the study sites, some areas of disagreement correspond to disturbed communities such 571 



as a recently restored patch of grassland in the western section of Tahu N or certain sections in Kudani 572 
over-trampled by cattle. Similarly, transition areas between Reed Swamp, Tall Grass and Upper Shore 573 
show disagreement in the three study sites, perhaps due to structural differences in these ecotones. 574 
In addition to the visual interpretation, a kappa map comparison analysis was performed in order to 575 
gain a deeper understanding of the characteristics of disagreement between classifications. Generally, 576 
the most productive communities (Reed Swamp, Tall Grass and Upper Shore) show the lowest degree 577 
of agreement in all three sites, with very low values of Klocation, especially at Tahu N. Although values of 578 
Khisto are moderate for these communities, low Klocation indicates incorrectly predicted community 579 
locations from the ISODATA algorithm. This is most likely due to the presence of large sections of 580 
disturbed and transitional communities and the spectral heterogeneity of communities characterized 581 
by higher biomass production such as Tall Grass and Reed Swamp.  582 

This study demonstrates the feasibility of using vegetation indices derived from UAV imagery for the 583 
classification of plant communities in coastal meadows. The RF model accurately predicted the 584 
occurrence of plant communities with a very high kappa value. Previous studies have used similar 585 
approaches to discern and map spectrally distant land cover classes such as forest and meadows (Feng 586 
et al., 2015; Ahmed et al., 2017) or distinguish crop types (Lottes et al., 2017; Böhler et al., 2018). 587 
However, few studies have attempted to map spectrally similar landscape patches at the plant 588 
community scale (Strong et al., 2017, Rapinel et al., 2019).The results obtained in this study highlight 589 
the need to consider a wide range of vegetation indices in order to achieve the best differentiation 590 
between plant communities. Moreover, few studies have attempted to assess the spectral nature of 591 
training samples in relation to community structure and composition (Goodwin et al., 2005). Beyond 592 
the number of training samples, training polygon size and image resolution, the spectral heterogeneity 593 
within the training samples has an impact on the accuracy of the classifications obtained from 594 
supervised algorithms. Training datasets with a higher spectral diversity may reduce the ability of 595 
machine learning algorithms to discriminate between different plant communities. This study 596 
demonstrates the need to assess the spectral characteristics of training samples in order to gain a full 597 
understanding of the performance of classification algorithms.  598 

 599 

5. CONCLUSIONS 600 
 601 
Multispectral UAV imagery was successfully used to classify five plant community types in high 602 
biodiversity value coastal meadows in West Estonia. The results demonstrate that an appropriate 603 
sampling strategy and choice of vegetation indices yield accurate plant community maps. While UAV 604 
multispectral imagery in combination with classification algorithms constitute a valuable tool in habitat 605 
management and nature conservation contexts, there are several important areas that require 606 
attention. Species diversity and biomass heavily influence the spectral characteristics and quality of 607 
training samples at different plant communities. This should be accounted for in the design phase of 608 
the sample collection process in order to achieve the best classification accuracies. Moreover, it is 609 
crucial to utilize a wide array of vegetation indices in order to avoid poor results associated with less 610 
sensitive indices such as NDVI. In this regard, the use of the red-edge band delivers good results due 611 
to its sensitivity to chlorophylls, carotenoids and other pigments. This study has provided a novel 612 
method for mapping grasslands at a plant community level using plant species and biomass data 613 
together with random forest modelling utilising a range of different vegetation indices. Future research 614 
should further address the optimization of training sample acquisition, modelling algorithms and 615 
sample spectral characteristics. 616 
 617 
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