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Abstract. Some new approaches to the solution of complex problems, focused on spray 
modelling, using relatively simple mathematical tools are briefly summarised. The 
following problems are considered: modelling of spray drying with pharmaceutical 
applications, modelling of heating and evaporation of suspended droplets with 
applications to water sprays for fire suppression, modelling of micro-explosions with 
automotive applications, and parameterisations of slow invariant manifolds with 
applications to spray ignition modelling. The modelling of spray drying is based on the 
assumption that the array of small suspended solid particles inside droplets can be 
treated as a non-evaporating liquid component. The modelling of the effect of a support 
rod on droplet heating and evaporation is based on the assumption that this heat is 
homogeneously distributed inside the whole volume of a droplet. In the modelling of a 
puffing/micro-explosion it is assumed that a water sub-droplet is located exactly at the 
centre of a fuel droplet and the temperature at the surface of the fuel droplet is fixed. In 
the presentation of slow invariant manifolds in parametric form these manifolds are 
found using asymptotic expansions.

1. Introduction
Modelling of sprays is known to be a very complex problem, including the hydrodynamic
interaction of droplets between themselves and ambient gas, heating and evaporation of
interacting droplets, and possible ignition and combustion of a fuel vapour/air mixture in the
case of fuel sprays [1]. This makes simplification of the models unavoidable. This simplification,
however, might lead to the modelling of structures which have little in common with realistic
sprays observed and/or used in engineering, pharmaceutical and environmental applications.
Thus, it is necesssry to find a reasonable compromise that simplifies the model and produces
accurate predictions. One of the ways to achieve this is to make sure that the accuracies of all
sub-models on which the spray model is based are similar.

The results of the development of the models of spray formation/dynamics, droplet heating
and evaporation, and ignition of fuel vapour air mixture, focused on ensuring a reasonable
compromise between the simplicity of the models and their accuracy, have been summarised in
[2, 3, 4, 5]. This paper is essentially complementary to the above-mentioned book and reviews
and is focused on the most recent developments not described in [2, 3, 4, 5]. All results presented
in this paper have been previously published in leading international refereed journals in this and
related fields. These journals, however, are rather specialised and are not well known to the wider 
community of researchers involved in mathematical modelling. Hence, the rationale for preparing this 
review.



ITNT 2019

Journal of Physics: Conference Series 1368 (2019) 042059

IOP Publishing

doi:10.1088/1742-6596/1368/4/042059

2

Figure 1. A typical micrograph for spray-dried chitosan particles. Reprinted from International 
Journal of Heat and Mass Transfer, Volume 122, Sazhin et al., A new model for a drying droplet, 

Pages 451-458, Copyright Elsevier (2018).

In Section 2 the results of the development of a new model for droplet drying are summarised. 
Section 3 is focused on the analysis of our new approach to taking into account the effects of 
support on heating and evaporation of water droplets. A simplified model for micro-explosions of 
fuel droplets with water sub-droplets in them is presented and discussed in Section 4. Section 5 is 
focused on the new approaches to parameterisations of slow invariant manifolds.

2. Modelling of droplet drying
The importance of modelling droplet drying in various pharmaceutical and engineering
applications has been discussed in many papers including [6, 7, 8, 9]. Several models for this
process have been suggested [9]. A number of simplifying assumptions have been used in these
models, including ignoring the temperature gradient inside droplets, the applicability of which
is not at first obvious. In contrast to previously suggested models, the model described in [10]
not only takes into account most effects ignored in the previous models but also appears to be
much simpler than those suggested earlier. The main ideas of this model are described below,
following [10].

In the model described in [10], small solid particles in an ambient evaporating liquid, or a
non-evaporating substance in this liquid, are considered as a non-evaporating liquid component.
Analytical solutions to the species diffusion and heat transfer equations inside droplets in this
model are used at each time step. These solutions are exactly the same as described in [2], but

Figure 2. Droplet radius versus time for input parameters described in the text of the paper. Reprinted 
from International Journal of Heat and Mass Transfer, Volume 122, Sazhin et al., A new model for a 

drying droplet, Pages 451-458, Copyright Elsevier (2018).
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for the boundary conditions it was assumed that the relative mass fraction of solid particles in 
the vapour phase is zero. Partial pressure of vapour at the droplet’s surface was estimated from 
Raoult’s law.

The model was developed to describe the process of spray drying leading to the production of 
chitosan particles, shown in Figure 1. The following input parameters were used for numerical 
simulations based on the above-mentioned model. The density of chitosan was assumed equal to 
1300 kg/m3 (similar to cellulose acetate) and not dependent on temperature. Also, the density of 
water was assumed constant and equal to 945.2 kg/m3. The specific heat capacity of chitosan was 
taken equal to 1.6747 kJ/(kg K). Data presented in [11] were used to estimate the specific heat 
capacity of water. Droplets were prepared from a solution of 0.2 g polymer in 50 g water [12]. Thus 
the initial mass fractions of the polymer and water in the droplets were 0.004 and 0.996, 
respectively.

The plot of the time evolution of the droplet radius is shown in Figure 2. As one can see from 
this figure, the droplet evaporation process can be seen until approximately t = 0.127 s. Then, the 
evaporation stops and the droplet becomes a solid polymer ball with radius 1.51 µm. This radius is 
approximately 6% larger than the one inferred from the initial mass of chitosan. The reason for 
this is not fully understood. Note that the problems associated with accurate calculation of 
droplet radii at the final stages of droplet evaporation are well known [2].

3. Modelling of suspended droplets
In most experiments focused on investigation of droplet heating and evaporation processes, 
including those performed for optimising water spray fire extinguishers, the droplets under 
consideration are suspended on a supporting rod (support) rather than free moving. An example 
of such a suspended droplet, taken from [13], is shown in Figure 3.

Figure 3. A general view and schematics of a droplet supported by a hollow metal rod. 
Reprinted from International Journal of Heat and Mass Transfer, Volume 127, Stryzhak et al., 
Heating and evaporation of suspended water droplets: Experimental studies and modelling, 

Pages 92-106, Copyright Elsevier (2018).

The presence of a suspension rod makes the problem of modelling droplet heating and 
evaporation much more complex compared with the case of free moving droplets as in this case we 
cannot assume that the problem is spherically symmetric (as for droplets suspended in 
microgravity conditions) and cannot use the Effective Thermal Conductivity/Effective 
Diffusivity models as in the case of moving droplets [2]. The traditional approach in such 
circumstances is based on the application of 2D or even 3D models (e.g. [14]). The problem with 
using this approach to modelling lies not only in its complexity, but also in the fact that this 
complexity does not lead to improved accuracy and reliability of the model in the general case. For 
example in these models it is typically assumed that the droplets are spherical and the area of 
contact between the droplet and the support can be accurately determined. The accuracy of these 
assumptions is far from obvious and they typically introduce uncontrollable errors into the model 
predictions despite the complexity of the model.

The main idea behind the model suggested in [13] is to reduce the 3D problem of modelling the 
effect of support on droplet heating and evaporation to a 1D problem with minimal loss of 
accuracy in the model predictions.
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∂T

∂t
= κ

(
∂2T

∂R2
+

2

R

∂T

∂R

)
+ P (R), (1)

where
κ = keff/(clρl) (2)

is the effective thermal diffusivity, cl is specific liquid heat capacity, ρl is liquid density, R is the 
distance from the centre of the droplet, t is time, and the source term P (R) takes into account the 
effects of the supporting rod to be discussed later (in the models described in [2] this term took into 
account droplet heating by external thermal radiation).

The new model for droplet heating in the presence of a support is based on the assumption that 
droplets are spherical and their surfaces are heated by convection, while the effect of the support is 
described using a heating source term, similar to that describing the effect of thermal radiation. 
This source term is assumed to be spherically symmetric; the error introduced by this assumption 
is expected to be comparable to that caused by the assumption that the droplet is spherical. The 
effect of gas motion around the droplet is described in terms of the Effective Thermal 
Conductivity model [2].

These assumptions allow us to write the equation for temperature inside droplets (T ) as

Figure 4. Temperatures inside the droplets versus the distance from the droplet centre at four 
time instants and ambient gas temperature 500◦C; the droplet initial radius is Rd = 1.53 mm. 
Reprinted from International Journal of Heat and Mass Transfer, Volume 127, Stryzhak et al., 

Heating and evaporation of suspended water droplets: Experimental studies and modelling, Pages 
92-106, Copyright Elsevier (2018).

Figure 5. The location of a water sub-droplet of radius Rw inside a fuel droplet of radius Rd. Tw 
and Ts are the temperatures at the interface between water and fuel and at the droplet surface, 

respectively. Reprinted from International Journal of Heat and Mass Transfer, Volume 131, 
Sazhin et al., A simple model for puffing/micro-explosions in water-fuel emulsion droplets, Pages 

815-821, Copyright Elsevier (2019).
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This equation was solved subject to the standard initial and Robin boundary conditions [2], 
assuming that the convection heat transfer coefficient h is constant [2]:

T (R, t) =
Rd
R

∞∑
n=1

{
pn
κRλ2

n

+ exp
[
−κRλ2

nt
] (
qn −

pn
κRλ2

n

)
− sinλn
|| vn ||2 λ2

n

µ0(0) exp
[
−κRλ2

nt
]

− sinλn
|| vn ||2 λ2

n

∫ t

0

dµ0(τ)

dτ
exp

[
−κRλ2

n(t− τ)
]
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}
sin

[
λn

(
R

Rd

)]
+ Ta(t), (3)

where:

pn =
1

R2
d || vn ||2

∫ Rd

0
(RP (R)) sin (λnR/Rd) dR,

λn are solutions to the equation:

λ cosλ+ h0 sinλ = 0, (4)
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1

2

(
1− sin 2λn

2λn

)
=

1

2

(
1 +
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h2
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n

)
,

qn =
1

Rd || vn ||2
∫ Rd

0
T̃0(R) sin

[
λn

(
R

Rd

)]
dR, κR =

keff

clρlR
2
d

, µ0(t) =
hTg(t)Rd
keff

,

h0 = (hRd/keff)− 1, T̃0(R) = RTd0(R)/Rd. The solution to Equation (4) gives a set of positive

eigenvalues λn (numbered in ascending order, n = 1, 2, ...). The term proportional to dµ0(τ)
dτ in

(3) is small; it was ignored in our calculations.
Solution (3) was applied to modelling droplet heating during a short time step ∆t. The effect

of evaporation in (3) was taken into account by replacing air temperature Ta with:

Teff = Ta +
ρlLṘde
h

, (5)

where L is the latent heat of evaporation, and the value of the change in droplet radius due to
evaporation Ṙde was estimated from the droplet evaporation rate during the previous time step.
The droplet radius Rd and the convection heat transfer coefficient h were assumed constant, but
were updated at the end of the time step. The conventional Abramzon and Sirignano model (see
[2]) was used to describe droplet evaporation. The effects of swelling were taken into account as
in [2].

The rate of heat supplied via the support to the droplet was estimated as:

q =
kw(Tsup − Tc)

Rd
Sc, (6)

where kw is the thermal conductivity of water (at the average droplet temperature), Tc is the
temperature at the centre of the droplet, Tsup is the surface temperature of the support, Sc is
an estimation of the contact area between the droplet and support (assumed to be constant).
All input parameters in (6) were time dependent; this equation was applied during short time
steps. The value of Tc was taken from the results of calculations based on Solution (3).

It was assumed that heat supplied to droplets through the support is homogeneously
distributed throughout the droplet volume. Thus, heat supplied per unit droplet volume was
estimated as:

qv =
3kw(Tsup − Tc)

4πR4
d

Sc. (7)
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Table 1. Support temperatures (in ◦C) at four time instants and four gas temperatures taken 
from [13].

t(s) Ta = 100◦C Ta = 300◦C Ta = 500◦C Ta = 800◦C

0 30 30 30 30
5 57 99 164 267
15 61 122 205
30 63 138 229

Table 2. The initial temperatures of droplets at four gas temperatures.

Ta= 100◦C Ta= 300◦C Ta=500◦C Ta= 800◦C

T0 19◦C 25◦C 32◦C 39◦C

This allows us to consider the additional effect of heating droplets via the support in terms of a
source term in Equations (1) and (3) assuming that

P (R) =
3kw(Tsup − Tc)

4πclρlR
4
d

Sc. (8)

This expression was used in (3) for prediction of the distribution of temperature inside the
droplets as a function of time.

The time evolution of the temperature of the support in the experiments performed in [13]
for four gas temperatures is presented in Table 1. The initial droplet temperatures at these gas
temperatures are shown in Table 2.

The predicted and observed distributions of temperatures inside the droplets versus the
distance from the droplet centre at four time instants (0 s, 4 s, 8 s and 12 s) are shown in Figure
4 for ambient gas temperature equal to 500◦C. Symbols show experimental results obtained in
two perpendicular directions; solid and dashed curves show model predictions assuming that
ambient gas temperature is equal to 400◦C, ignoring and taking into account the effect of the
support, respectively. The reduced gas temperature used in the modelling took into account gas
cooling during droplet heating and evaporation (this was a fitting parameter in our model).

In all cases the predicted droplet temperatures increase with time in agreement with
experimental data. Also, the predicted increase in temperatures inside the droplets with
increasing distance from the droplet centre is consistent with the results of experimental
observations. Similar results were obtained for gas temperatures 100◦C, 300◦C and 800◦C.

4. Modelling of micro-explosions
It is widely believed that fuel mixing and internal combustion engine efficiency can be improved
if puffing and micro-explosion in fuel droplets containing water sub-droplets takes place [15].
These are able to promote the secondary atomization process via a rapid break-up of the parent
droplets due to the difference in volatility of the fuel and water. Puffing is the partial ejection
of the dispersed water vapour out of an emulsion droplet, while micro-explosion refers to the
complete break-up of the parent droplet [16, 17, 18]. The roles of these phenomena in internal
combustion engines have been widely discussed in the literature (see [19] for the details).
     A number of models for puffing/micro-explosions, starting with simple ones [20, 21] and ending with 
the most advanced ones [16, 17, 18], have been suggested. Nobody questions the usefulness of the 
models described in [16, 17, 18] for understanding the physical processes which take place during 
puffing/micro-explosions. However, their usefulness for engineering applications is not obvious. 
Engineers working with puffing and micro-explosions in droplets are mainly interested in such 
characteristics as the delays in puffing/micro-explosion, rather than in the processes which take place 
inside the deforming/exploding droplet. This was addressed in a relatively simple model of these 
processes suggested in [19]. In what follows the main ideas of this model are briefly summarised.
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In the model suggested in [19] a small spherical water sub-droplet was placed in the centre of a
larger fuel (n-dodecane) droplet (see Figure 5). The droplet was stationary; penetration of heat
from the surface to the interior of the droplet was described by a one-dimensional transient heat
conduction equation. This equation was solved analytically inside this composite droplet with the
Dirichlet boundary condition at its surface. If Ts was greater than the initial homogeneous 
temperature inside the droplet, then the temperature between the centre of the droplet and its
surface increased. If Ts was greater than the boiling temperature of water, Tw was expected to 
reach this boiling temperature at a certain time instant. This instant was identified as the start of
the puffing/micro-explosion process (time to puffing or micro-explosion delay time). The maximal
value of Ts was taken equal to the boiling temperature of n-dodecane.

The time evolution of the temperature inside the composite droplet is described by the heat
conduction equation in the form [19]:

∂T

∂t
= κ

(
∂2T

∂R2
+

2

R

∂T

∂R

)
+ P (t, R), (9)

where

κ =

{
κw = kw/(cwρw) when R ≤ Rw
κf = kf/(cfρf ) when Rw < R ≤ Rd,

(10)

κw(f) is the water (fuel) thermal diffusivity, kw(f) is the water (fuel) thermal conductivity, cw(f)

is the water (fuel) specific heat capacity, ρw(f) is the water (fuel) density; the meaning of other
parameters is the same as in (1). The source term P (t, R) takes into account volumetric droplet
heating (e.g. heating due to thermal radiation). This was taken into account in the solution but
was not used in the analysis presented in [19].

Equation (9) was solved analytically subject to the initial condition, boundary conditions at
the interface between water and fuel, and the Dirichlet boundary condition at the surface of the
droplet:

T |t=0 =

{
Tw0(R) when R ≤ Rw
Tf0(R) when Rw < R ≤ Rd,

(11)

T |R=R−
w

= T |R=R+
w
, kw

∂T

∂R

∣∣∣∣
R=R−

w

= kf
∂T

∂R

∣∣∣∣
R=R+

w

, (12)

T (Rd) ≡ Ts. (13)

The solution to this mathematical problem was obtained using the following additional
assumptions:

Figure 6. Time to puffing/micro-explosions, predicted by the model and inferred from 
experiments, versus the initial droplet diameters. Reprinted from International Journal of Heat 
and Mass Transfer, Volume 131, Sazhin et al., A simple model for puffing/micro-explosions in 

water-fuel emulsion droplets, Pages 815-821, Copyright Elsevier (2019).
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Table 3. Droplet/gas initial conditions and properties.
Parameter Value
Parent droplet radii (Rd) [µm] 25; 50; 100
Droplet initial composition [vol] 0.15 water + 0.85 n-dodecane
n-dodecane density (ρf ) [kg/m3] 825
Gas composition air
Droplet surface temperatures (Ts) [K] 489.47 (boiling temperature), 470, 450
Initial droplet temperature (Td0) [K] 343 and 363
Gas (air) pressure [MPa] 0.1

4. All thermodynamic and transport properties were taken at the initial droplet temperature.

These assumptions allowed the authors of [19] to derive the following analytical solution to
Equation (9), subject to initial and boundary conditions (11), (12) and (13):

T (R, t) = Ts +
1

R

∞∑
n=1

[
exp

(
−λ2

nt
)

(Θn1 + Θn2) +

∫ t

0
exp

(
−λ2

n (t− τ)
)
pn(τ)dτ

]
vn(R), (14)

where

Θn1 =
T0cwρw

||vn||2 (λnaw)2 [λnawRw cot (λnawRw)− 1] , (15)

Θn2 =
T0cfρf

||vn||2 (λnaf )2

[
λnafRw cot (λnaf (Rd −Rw))− λnafRd

sin (λnaf (Rd −Rw))
+ 1

]
, (16)

T0 = Ts − Tw0 = Ts − Tf0 (17)

vn(R) =

 ±
sin(λnawR)

sin(λnawRw) when R < Rw

± sin(λnaf (R−Rd))
sin(λnaf (Rw−Rd)) when Rw ≤ R ≤ Rd,

(18)

||vn||2 =
cwρwRw

2 sin2(λnawRw)
+

cfρf (Rd −Rw)

2 sin2(λnaf (Rw −Rd))
− kw − kf

2Rwλ2
n

,

pn(t) =
cwρw
||vn||2

∫ Rw

0
RP (t, R)vn(R)dR.

A set of positive eigenvalues λn was found from the solution to the equation:√
kwcwρw cot(λawRw)−

√
kfcfρf cot(λaf (Rw −Rd)) =

kw − kf
Rwλ

, (19)

0 < λ1 < λ2 < .... . aw =
√

cwρw
kw

, af =
√

cfρf
kf

.

Sign ‘−’ was chosen in Expression (18) to obtain a physically meaningful solution when
T ≤ Ts. This solution was used for the analysis of puffing/micro-explosions observed during the
experiments with the initial conditions shown in Table 3.

Using Solution (14), for all cases shown in Table 3, the values of time to puffing/micro-
explosions were obtained [19]. These are shown in Figure 6 as functions of droplet diameters for
various initial and surface droplet temperatures. In the same figure the experimentally observed
times for various droplet diameters are shown.

1. The temperature of the droplet surface was constant during the whole period of its heating.
2. The effects of droplet evaporation and swelling can be ignored.
3. Both Tw0 and Tf0 did not depend on R.
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As follows from Figure 6, the predicted times to puffing/micro-explosions for droplet surface 
temperature equal to the boiling temperature of n-dodecane are always less than those observed 
experimentally. In most cases, the orders of magnitude of the predicted and observed times for 
other values of droplet surface temperature are the same. The predicted increase in these times 
with the increase in the initial droplet diameters is consistent with experimental observations. 
The decrease in the surface temperature leads to an increase in this time, as expected. These 
results led the authors of [19] to conclude that the model which they suggested, despite its 
simplicity, is able to describe the processes leading to puffing/micro-explosions, not only 
qualitatively but also in some cases quantitatively.

5. Parameterisations of slow invariant manifolds
Some recent results, referring to slow invariant manifolds and their applications to modelling of
sprays, originally published in [22], were discussed in our previous review [5]. In what follows,
the new results referring to this topic, originally published in [23] and not included in [5], are
briefly summarised.

In [23], some new effective techniques for investigation of singularly perturbed differential
systems were described. These were based on the application of the invariant manifolds theory
[24]. It was shown that the slow invariant manifold can sometimes be found in parametric form
as a result of asymptotic expansions. If this was not possible, one needed to use an implicit
presentation of the slow surface and obtain asymptotic representations for the slow invariant
manifold in an implicit form. The results of the development of the mathematical theory of
these approaches and the application of this theory to the analysis of the system of equations
describing heating, evaporation, ignition and combustion of fuel sprays were presented. It was
shown that the application of this new technique can allow one to reduce the number of equations
describing these processes and eliminate the stiffness of the original system of equations.
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