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Abstract 

There is a family of proteins from parasitic worms which combine N-terminal EF-hand domains 

with C-terminal dynein light chain-like domains.  Data are accumulating on the biochemistry and 

cell biology of these proteins.  However, little is known about their functions in vivo.  Schistosoma 

mansoni expresses 13 family members (SmTAL1-SmTAL13).  Three of these (SmTAL1, SmTAL2 

and SmTAL3) have been subjected to biochemical analysis which demonstrated that they have 

different molecular properties.  Although their overall folds are predicted to be similar, small 

changes in the EF-hand domains result in differences in their ion binding properties.  While 

SmTAL1 and SmTAL2 are able to bind calcium (and some other) ions, SmTAL3 appears to be 

unable to bind any divalent cations.  Similar biochemical diversity has been seen in the CaBP 

proteins from Fasciola hepatica.  Four family members are known (FhCaBP1-4).  All of these bind 

to calcium ions.  However, FhCaBP4 dimerises in the presence of calcium ions, FhCaBP3 dimerises 

in the absence of calcium ions and FhCaBP2 dimerises regardless of the prevailing calcium ion 

concentration.  In both the SmTAL and FhCaBP families, the proteins also differ in their ability to 

bind calmodulin antagonists and related drugs.  Interestingly, SmTAL1 interacts with praziquantel 

(the drug of choice for treating schistosomiasis).  The pharmacological significance (if any) of this 

finding is unknown. 



Introduction:  calcium signalling in cells 

Changes in the cellular calcium ion concentration acts as a signal in a wide range of organisms from 

throughout the tree of life [1].  Calcium ions are well-suited to this task since, of the commonly 

occurring inorganic ions in living systems, solvating water molecules have the highest association 

and dissociation rates [2, 3].  This means that these water molecules are rapidly exchanged between 

the ion and the water.  Since interaction proteins generally requires the removal of some, or all, of 

these water molecules binding to proteins can also be rapid.  By the same argument, removal of 

calcium ions from proteins and their return to aqueous solution can also be rapid.  Thus, calcium 

binding and unbinding enables the rapid detection and termination of signals. 

 

Signalling by calcium ions necessarily requires that the ions are recognised by proteins which then 

respond, normally through conformational changes which alter interactions with other proteins [4, 

5].  Many cells express a variety of these calcium sensors, and the best characterised is calmodulin.  

This protein has two globular domains linked by an extended alpha-helical segment [6, 7].  Each of 

the two globular domains contains two EF-hand motifs which are capable of binding calcium and 

other divalent ions [5, 8].  The EF-hand motif folds into a tight turn which, through a combination 

of side chain and backbone functional groups, is able to coordinate a calcium ion.  Considerable 

work has been done to define the consensus residues required for calcium ion binding [4].  These 

residues include ones with carboxylate or hydroxyl side chains involved in the coordination of the 

ion and also glycines to enable the tight turns required to fold around the ion [4].  In response to 

calcium binding, calmodulin undergoes a conformational change in which the protein's surface 

becomes more hydrophobic [9, 10].  This change in surface properties alters how the protein 

interacts with other molecules.  In many cases, this change enables the binding to partner proteins, 

but there are also cases where it reduces the affinity.  Calmodulin is implicated in regulating a wide 

variety of cellular processes including muscle contraction, calcium homeostasis and cytokinesis 

[11-13]. 

 

Calcium sensors such as calmodulin have attracted interest as drug targets.  A number of neuro-

active compounds have been shown to act, at least in part, through the antagonism of calmodulin's 

signalling to other proteins.  These drugs include trifluoperazine (TFP) and chlorpromazine (CPZ); 

these are both used in the treatment of schizophrenia and other psychiatric diseases [14-17].  There 

has also been some interest in exploiting the antagonism of calmodulin in the development of novel 

anti-cancer treatments [18].  These compounds act by binding to hydrophobic patches and crevices 

on the surface of the calcium-calmodulin complex, blocking the protein's interactions with other 

biomolecules [10, 19]. 

 

An unusual family of calcium-binding proteins in parasitic worms 

Parasitic worms cause a significant disease burden on humanity [20].  This is most keenly felt in the 

developing world.  There is also a substantial effect on global agriculture and food security with 

losses of livestock production due to worm infections estimated at billions of dollars per annum.  

While there are a number of safe and effective drugs for the treatment of parasitic worm infections, 

resistance to these is emerging and likely to become more prevalent as selective pressures drive 

evolution [21].  There is limited research into alternative treatments for parasitic worm infections 

and there is also a lack of knowledge about the fundamental biochemistry of these organisms.  

Consequently, there is a need to understand systems such as calcium signalling in these organisms 

in order to build up the knowledge base that may, one day, be used in novel drug discovery. 



 

Many species of parasitic worms, especially those in the class Trematoda (flukes) express members 

of a family of unusual calcium-binding proteins.  These proteins combine an N-terminal domain 

with two EF-hand motifs and a C-terminal domain which has high similarity to dynein light chains 

(DLC-like domain).  Dynein light chains are accessory subunits of the microtubule motor dynein 

[22, 23].  They are typically small proteins (~8-10 kDa) which have the capacity to homodimerise 

[24].  Structurally, they consist of a largely β-sheet structure [24-26].  Dynein light chains interact 

with a wide range of diverse proteins which may include some “cargo” molecules to be carried by 

the dynein motor [26, 27].  The two domains are joined by a flexible linker sequence (Figure 1).  No 

similar proteins have been identified in any other group of organisms.  This combination of their 

uniqueness to parasitic worms and their likely involvement in calcium signalling make them 

attractive targets for further investigation as potential drug targets. 

 

Interestingly, trematodes appear to express a relatively large number of these proteins (Table 1).  

The common liver fluke (Fasciola hepatica) is known to express at least four isoforms [28-31], and 

preliminary analysis of the draft genome suggests that the total is more than ten [32] (CMT, 

unpublished data).  The blood fluke Schistosoma mansoni expresses 13 isoforms [33] and it seems 

likely that other species from the same genus express similar numbers [34].  Examples from other 

trematode species have also been identified (Table 1).  However, there have not been systematic 

surveys of isoform diversity in these species to date. 

 

Biochemical analysis of these proteins has revealed differences in their properties.  Four isoforms 

from F. hepatica have been characterised to date.  FH22 (FhCaBP1), FhCaBP2, FhCaBP3 and 

FhCaBP4 all bind to calcium ions [28-31].  In the case of FhCaBP4, this interaction promotes 

dimerisation of the protein [30].  In contrast, dimerisation is favoured in the calcium-free state of 

FhCaBP3 [29] and FhCaBP2 dimerisation appears to be unaffected by the presence or absence of 

calcium ions [28].  All four proteins are predicted to have similar structures by molecular modelling 

[28-30] (DJT unpublished data) (Figure 1).  To date, no experimental structures have been released.  

The ion binding properties of FhCaBP1 have not been investigated in detail.  FhCaBP2, FhCaBP3 

and FhCaBP4 show different properties.  While all three bind calcium and manganese ions, they 

differ in the other divalent ions which can be recognised (Table 1) [28-30].  They also can be 

distinguished pharmacologically with FhCaBP2 and FhCaBP3 binding to a range of calmodulin 

antagonists inclusing trifluopreazine, chlorpromazine and N-(6-aminohexyl)-5-chloro-1-

naphthalenesulfonamide (W7) [28, 29].  In contrast FhCaBP4 binds to W7 but not trifluoperazine 

[30]. 

 

A more detailed study of FhCaBP2 confirmed that calcium ion binding occurs through the N-

terminal domain (which contains the two EF-hands) [28].  Of these two EF-hands the second is 

more important in binding to the ion:  mutation of a key aspartate residue (Asp-58) in this motif 

abolished calcium ion binding.  Both the isolated N- and C-terminal domains are capable of 

dimerising, strongly suggesting that dimers of the intact proteins dimerise along their long axis 

involving contacts from both domains [28].  In some isoforms it has been demonstrated that 

calcium-ion binding increases the surface hydrophobicity of the molecule (analogously to 

calmiodulin) [28, 30].  However, it is currently unclear if (and how) calcium ion binding by the EF-

hand can affect the DLC-like domain. 

 



Biochemical analysis of members of the protein family from S. mansoni (known in this species as 

tegumental allergen-like proteins, TALs due to their ability to induce IgE-mediated immune 

responses [35]) have also revealed differences.  Once again, the predicted structures are similar [36] 

(DJT, unpublished data).  The crystallisation of one isoform (Sm21.7 or SmTAL2) has been 

reported, but the structure is not yet available.  Interestingly this protein spontaneously degraded 

under the conditions of crystallisation such that only the DLC-like domain remained [37].  Ion 

binding properties of these TAL proteins varies widely.  SmTAL1 interacts with calcium, 

manganese strontium and nickel (II) ions, whereas SmTAL2 only interacts with calcium and 

manganese only [36].  However, there is no evidence that SmTAL3 binds to calcium or any other 

divalent cation [36, 38].  These experimental findings are consistent with the predicted structure of 

the second EF-hand in SmTAL3 which deviates from the consensus sequence in several places [4, 

36].  All three of these proteins are capable of dimerising and calcium ions have no effect of the 

detected extent of dimerisation [36].  To date, no detailed biochemical studies on the remaining 

family members have been reported.  SmTAL1, SmTAL2 and SmTAL3 can be distinguished 

pharmacologically:  each has distinct drug binding properties [36].  Interestingly, SmTAL1 interacts 

with praziquantel, the current drug of choice for the treatment and prevention of infection with 

schistosomes [36, 39].  It is not clear if this interaction is pharmacologically important.  However, it 

is well-established that praziquantel acts through the dysregulation of calcium homeostasis, 

resulting in rapid influx of calcium ions.  This uncontrolled rise in the intracellular calcium ion 

concentrations causes the disruption of a variety of processes most importantly resulting in the 

muscle contraction and paralysis of the worm [40].  The precise, molecular mechanism of action of 

praziquantel remains unknown.  It is tantalising to suggest that its interaction with SmTAL1 may be 

important in this mechanism.  However, there is currently no evidence to support this postulate. 

 

Mysteries associated with this protein family 

There remain many mysteries about this protein family.  Not all biochemical questions have been 

resolved.  While many differences in ion binding and oligomerisation properties have been 

discovered, the underlying structural causes of these are not yet defined.  The dimerization 

interfaces have not been mapped and further studies on the flexibility of the linker which joins the 

two domains would also be desirable. 

 

The subtle differences in biochemical properties suggest that they perform discrete cellular roles.  

However, it is not clear why so many isoforms are required by parasitic worms.  It is possible that 

there is some overlap or redundancy in function or that some proteins are only used in specific life-

cycle stages.  (It should be noted that the conditions of the life cycle stages vary considerably.  For 

example, mature flukes exist largely inside mammals at the controlled temperatures prevailing 

there.  In contrast, free living stages are subject to greater temperature fluctuations and typically 

lower temperatures than those found inside mammalian bodies.)  The role of manganese binding is 

also unclear.  To date, no isoform has been identified which binds calcium ions, but not manganese 

ions.  This may be an experimental artefact or may have potential physiological significance.  There 

are few examples of manganese ion based signalling but the possibility remains that it may be 

occurring in these systems. 

 

The biggest mystery surrounding this protein family is their roles and functions.  The different 

biochemical properties suggest that they play a variety of roles in the parasite [41].  However, there 

are currently no clear indications what these roles may be.  An early study on SmTAL3 (Sm20.8) 



demonstrated that the protein can be isolated in a large, multi-protein complex which contained 

dynein [42].  The presence of DLC-like domains may mean that members of this proteins family 

can interact directly with dynein.  However, it should be noted that breakage of cells and extraction 

of proteins would necessarily result in the mixing of proteins and so there remains the possibility 

that SmTAL3's presence in this complex resulted from a non-physiological association of the DLC-

like domain with dynein.  Localisation studies on family members from a variety of species have 

demonstrated that the proteins are often found in the tegument [43-45].  This syncytium is located 

on the surface of the worm and is intimately involved in host-parasite recognition.  It is a highly 

dynamic and metabolically active structure and it seems likely that it has a strong requirement for a 

variety of tightly regulated processes, including those mediated by dynein, for example vesicular 

transport [46].  Therefore, there may be a role for family members in either directly regulating these 

cytoskeletal processes or in the maintenance of calcium homeostasis in the tegument.  Mapping the 

signalling pathways that this group of proteins participate in would also be likely to provide 

important functional data. 

 

There is a clear need to learn more about the roles of these proteins.  Greater understanding of these 

would result from the identification of protein (or other biomacromolecule) binding partners.  The 

current lack of good cell culture models for many parasitic worms combined with difficulties in 

maintaining many life cycle stages in the laboratory hinder in vivo studies.  In this context it may be 

useful to establish simple “model systems” in which key components are expressed in simple, more 

genetically tractable organisms such as the budding yeast Saccharomyces cerevisiae.  It may also be 

possible to study the effects of “knocking down” the expression of selected family members using 

RNAi.  This technique is now well-established in many parasitic worms (see, for example [47-51]).  

In the case of these protein families, issues may arise due to the highly similar nature of their 

sequences and the possibility that some of the proteins may have long cellular half-lives (and, thus, 

knock-down of mRNA levels may take some time to feed through to protein levels).  Nevertheless, 

the recent successful use of mRNA to knock down (at the mRNA and protein levels), selectively 

calmodulin isoforms in F. hepatica suggests that this approach may be possible [52].  If so, careful 

identification of likely phenotypic read-outs will be important to maximise the utility of the 

experiments. 

 

This protein family are interesting at the biochemical level.  Despite their overall sequence and 

predicted structural similarity, they demonstrate biochemical differences which are likely to be 

reflected in functional differences.  They can be differentiated pharmacologically suggesting that it 

would be possible to design compounds which recognise one isoform or a closely related group of 

isoforms.  Thus, if it is subsequently shown that this mysterious group of proteins are involved in 

vital processes in parasitic worms, they may become a very attractive target for the design of drug-

like molecules which target the pathogen but have no likely binding partner in the host.  In order to 

get to this point, many more biochemical, genetic and physiological studies will be required. 
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Figure legend 

Figure 1:  Predicted structure of a typical member of this protein family.  A schematic diagram 

of the three regions of the protein (top) with the residues in each region shown for representative 

family members.  (Note that FhCaBP3 has an extended, unstructured region at the N-terminus.)  

Domain boundaries were estimated by eye using previously published molecular models.  The 

modelled structure of FhCaBP4 [30] shown (bottom) in the same colour scheme.  This protein is 

shown bound to one calcium ion in the second EF-hand. 



Table 

Table 1:  A summary of the known properties of family members 

 

Species Protein Alternative 

name 

Ion bindinga Drug 

bindinga,b 

Dimerization Localisation Reference(s) 

Fasciola 

hepatica 

FhCaBP1 FH22 Ca2+ ??c ?? Excretory-

secretory extract 

[31] 

 FhCaBP2 

 

 Ca2+, Mn2+ TFP, CPZ, W7, 

ThA 

Yes +/-Ca2+ ?? [28] 

 FhCaBP3  Ca2+, Mn2+ TFP, CPZ, PZQ Yes -Ca2+ ?? [29] 

 FhCaBP4  Ca2+, Mn2+, 

Ba2+, Sn2+ 

W7 Yes +Ca2+ ?? [30] 

Fasciola 

gigantica 

FgCaBP1  Ca2+ ?? ?? Tegument [43, 44] 

 FgCaBP2  Ca2+ d ?? ?? ?? [43] 

 FgCaBP3  Ca2+ ?? ?? Tegument [43] 

 FgCaBP4  Ca2+ ?? ?? Tegument; lining 

of the seminal 

vesicle 

[43] 

Schistosoma 

mansoni 

SmTAL1 Sm22.6 Ca2+, Mn2+, 

Ni2+, Sn2+ 

PZQ, CPZ, W7, 

TFP 

Yes +/-Ca2+ Tegument [36, 53] 

 SmTAL2 Sm21.7 Ca2+, Mn2+, 

Cd2+, Mg2+ 

W7 Yes +/-Ca2+ ?? [36, 54] 

 SmTAL3 Sm20.8 None TFP, ThA Yes +/-Ca2+ Tegument [36, 38] 

 SmTAL4  ?? ?? ?? Tegument of the 

cercarial tail 

[33] 

Schistosoma 

japonicum 

SjTP22.4  Ca2+ ?? ?? Tegument [55] 

 Sj22.6  ?? ?? ?? Apical cytoplasm [56-58] 



of the tegument 

 Sj20.8  Ca2+ ?? ?? Tegument [59] 

Clonorchis 

sinensis 

CsTegu21.6  ?? ?? ?? Tegument [60] 

 CsTP31.8e  ?? ?? ?? Tegument [61] 

Opisthorchis 

viverrini 

OvCaBP  Ca2+ ?? ?? Gut epithelium, 

miracidia in eggs 

[45] 

 
a Not all ions and drugs have been tested with all proteins.  Listed here are those for which experimental evidence in favour of binding has been 

obtained.  Therefore, absence from the list does not, necessarily, mean that the protein does not bind a particular ion or drug. 
b  TPZ, trifluoperazine; CPZ, chlorpromazine; ThA, thiamylal; PZQ, praziquantel 
c  ?? indicates something which is not currently known 
d  Inferred from sequence alignment 
e  The protein is approximately 10 kDa larger than other family members and must, therefore, have additional domains/regions compared to the 

structure illustrated in Figure 1. 
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