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Abstract—Near Field Communication (NFC) has enabled mo-
bile phones to emulate contactless smart cards. Similar to
contactless smart cards, they are also susceptible to relay
attacks. To counter these, a number of methods have been
proposed that rely primarily on ambient sensors as a proximity
detection mechanism (also known as an anti-relay mechanism).
In this paper, we empirically evaluate a comprehensive set of
ambient sensors for their effectiveness as a proximity detection
mechanism for NFC contactless-based applications like bank-
ing, transport and high-security access controls. We selected
17 sensors available via the Google Android platform. Each
sensor, where feasible, was used to record the measurements
of 1,000 contactless transactions at four different physical
locations. A total of 252 users, a random sample from the
university student population, were involved during the field
trials. After careful analysis, we conclude that no single evalu-
ated mobile ambient sensor is suitable for proximity detection
in NFC-based contactless applications in realistic deployment
scenarios. Lastly, we identify a number of potential avenues
that may improve their effectiveness.

1. Introduction

Contactless smart cards are susceptible to relay attacks
[1]–[3], as are NFC-enabled mobile phones [4]–[7]. A relay
attack is a passive man-in-the-middle attack in which an
attacker extends the distance between a genuine payment
terminal (point-of-service) and genuine contactless smart
card (or NFC-enabled mobile device). This attack can enable
a malicious user to access services for which the genuine
user is eligible, such as paying for goods or accessing a
building with physical access controls.

Quantifying the number of fraudulent activities where
relay attacks are employed (on both smart card and NFC
mobile phones) is a challenging task. Evidence exists,
however, that academic work regarding attacks on smart
cards has been adopted by real-world criminals [8]. In the
domain of contactless smart cards, a potentially effective
countermeasure has been distance bounding protocols [9,
10]. For NFC-enabled phones, anti-relay mechanisms – at

least in academic literature – have comprised largely of
ambient sensing (Section 2). In this paper, we investigate the
ambient sensors available through the Android platform and
construct a test-bed environment (Section 3) to evaluate their
effectiveness as proximity detection mechanism for NFC-
based contactless transactions (Section 4). The aim of this
work is to provide empirical evidence of each ambient sen-
sor’s suitability as a proximity detection mechanism (Section
4.2).

1.1. Operational Environment

In this paper, we focus solely on NFC based contactless
applications that emulate traditional contactless smart cards,
particularly in the banking and transport sectors. In such
domains, the evaluation of ambient sensors must adhere to
the operational environment stipulated by industry standards
and specifications. We list the salient ones as follows:

1) Proximity: Two devices are considered to be in
proximity of each other if they are physically
present within a distance of 3-5cm [11]–[13].

2) Transaction Duration: The transaction must com-
plete within 500ms. In accordance with the EMV
specifications, the maximum permitted time in
which a contactless payment transaction should
complete is 500ms [14]–[17]. From the banking
sector’s point of view, this time limit will be re-
duced gradually to 400ms from 2016 onward [14,
17, 18]. For transport-related transactions, the per-
formance requirements are stricter, where transac-
tion times should not exceed 300ms [18, 19].

1.2. Evaluation Scope

The suitability of a proximity detection mechanism for
critical applications, such as banking, transport and (high-
security) access control – the main focus of this paper –
is based on its ability to uniquely pair measurements taken
from a payment terminal and a payment instrument (in this
case, a mobile handset) for a maximum duration of 500ms.



This is to establish confidence that the two devices are truly
in close proximity (≈ 3-5cm) to each other. This measure-
ment pair should be unique in a manner such that no other
measurements can be paired successfully with the terminal’s
or payment instrument’s measurements. The uniqueness of
each measurement pair provides the effectiveness of an
ambient sensor-based proximity detection.

In this paper, we continue to refer to contactless mo-
bile payments due to the associated financial repercussions,
and the attention this may attract from malicious actors.
However, the discussion in this paper is equally relevant
towards the deployment of NFC based contactless mobile
solutions in other industry sectors, such as transport and
access control.

There are three primary contributions of this paper:

1) A test-bed architecture and implementation used to
evaluate various sensors on Android devices.

2) A data analysis framework and methodology for
evaluating ambient sensor measurements under in-
dustry specifications.

3) An empirical evaluation of the effectiveness of am-
bient sensors as a proximity detection mechanism.
This evaluation provides a foundation towards de-
ciding which sensors to deploy in a target environ-
ment.

The implementation of the test-bed, data
analysis and collected data sets are made available
at: https://github.com/AmbientSensorsEvaluation/
Ambient-Sensors-Proximity-Evaluation.git

2. Ambient Sensing in Mobile Payments

In this section, we briefly describe mobile phone-based
contactless payments, relay attacks and a generic architec-
ture for deploying ambient sensing as a proximity detection
mechanism for countering relay attacks.

2.1. Contactless Mobile Devices and Relay Attacks

In NFC-based mobile contactless transactions, a mobile
handset is brought into the radio frequency range (<3-
5cm) of a payment terminal through which it can initiate
a dialogue. During this, physical contact is not necessary
and, in many cases, a second factor of authentication, e.g.
biometrics or Personal Identification Number (PIN), is not
required [12]. This renders it difficult to ascertain whether
the genuine or relay device is in close proximity of the
terminal. It should be noted, however, that even the use of
a PIN or biometric may not thwart relay attacks effectively
(notably the Mafia fraud attack [20]).

In a relay attack [5, 21, 22], shown in Figure 1, an
attacker must present a malicious payment terminal to a
genuine user and a masquerading payment instrument (mo-
bile phone) to a genuine payment terminal. The goal of the
malicious actor is to extend the physical distance of the
communication channel between the victim’s mobile phone

Figure 1: Overview of a Relay Attack

and the payment terminal. The attacker has the potential
to gain access to services using the victim’s account if
it successfully relays messages without detection. Existing
literature, discussed in Section 2.3, argues that ambient
sensor based proximity detection is an effective counter-
measure to relay attacks. In this paper, we only evaluate
the effectiveness of ambient sensors when used to detect
the proximity of two devices – in the absence of a relay
attack.

2.2. Ambient Sensors for Proximity Detection

An ambient sensor measures a physical attribute of its
surroundings, such as temperature, light and sound. Modern
smartphones and tablets are equipped with one or more
of these sensors. The physical environment surrounding a
smartphone (or a payment terminal) can potentially provide
a rich set of attributes that might be unique to that location
– the sound and lighting of a quiet, brightly-lit room,
for example – and such information might be useful for
proximity detection.

Figure 2: Generic Deployments of Ambient Sensors as
Proximity Detection Mechanism

Three ways exist in which a sensing-based proximity
detection mechanism could be potentially deployed; Figure
2 illustrates the entities involved.

1) Independent Reporting. Both the smartphone and
payment terminal collect sensor measurements in-
dependently and transmit these to a trusted au-
thority (depicted as solid lines in Figure 2). The
authority compares the sensor measurements, based
on some predefined comparison algorithm with a
set margin of error (threshold), and decides whether
the devices are within sufficient proximity.
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2) Payment Terminal Dependent Reporting. The
smartphone encrypts its sensor measurements with
a shared key between itself and the trusted au-
thority, and transmits the encrypted measurements
to the payment terminal. Next, the terminal sends
the smartphone’s measurements and its own to
the trusted authority for comparison (shown as a
double-dot-dash line in Figure 2).

3) Payment Terminal (Localised) Evaluation. The
smartphone transmits its own measurement to the
payment terminal, which then compares it with its
own measurements to decide whether the smart-
phone is in proximity.

The overall deployment architecture falls under one of
the above scenarios irrespective of how the user interacts
with the payment terminal.

2.3. Related Work

Drimer et al. [23] and Ma et al. [24] showed how
location-related data, namely using GPS (Global Positioning
System), can be used to determine the proximity of two
NFC mobile phones. Ma et al. use a ten second window
with location information collected every second, which was
subsequently compared across various devices. The authors
report a high success rate in identifying devices within close
proximity.

Halevi et al. [25] demonstrated the suitability of ambient
sound and light for proximity detection. Here, the authors
analyse measurements collected for 2 and 30 seconds du-
ration for light and audio respectively using a range of
similarity comparison algorithms. Although the scenarios
are identical, the transaction duration does not conform
to industry requirements for NFC-based contactless mobile
transactions (Section 1.1). While the authors do not specify
the number of transactions recorded at each location, the
experiments show a high success rate of detecting co-located
devices in various environments.

Varshavsky et al. [26] based their proximity detection
mechanism on the shared radio environment of devices –
the presence of WiFi access points and associated signal
strengths – using the application of secure device pairing.
This approach produced low error rates, recommending it as
a proximity detection mechanism. While their paper did not
focus on NFC-based mobile transactions, their techniques
and methodology may still be applicable.

Urien et al. [27] use ambient temperature with an
RFID/NFC authentication protocol for proximity detection.
Using this method, they establish a secure channel by com-
bining the timing channels in RFID, traditionally used in
distance bounding protocols, in conjunction with ambient
temperature. Their proposal, however, was not implemented
and so there is no experimental evidence to evaluate its
efficacy.

Mehrnezhad et al. [28] proposed the use of an ac-
celerometer to provide assurance that the mobile phone is
within proximity of the payment terminal. Their proposal

requires the user to tap the payment terminal twice in
succession, after which the sensor streams of the device
and the payment terminal are compared for similarity. It
is difficult to deduce the total time it took to complete
one transaction in its entirety, but the authors use recording
durations of 0.6–1.5 seconds.

TABLE 1: Related Sensing-based Anti-relay Mechanisms

Paper Sensor Sample Contactless
Used Duration Suitability

Ma et al. [24] GPS 10 sec Unlikely
Halevi et al. [25] Audio 30 sec Unlikely

Light 2 sec More Likely
Varshavsky et al. [26] WiFi (Radio Waves) 1 sec More Likely
Urien et al. [27] Temperature N/A -
Mehrnezhad et al. [28] Accelerometer 0.6 to 1.5 sec More Likely
Truong et al. [29] GPS Raw Data 120 sec Unlikely

Wifi 30 sec Unlikely
Ambient Audio 10 sec Unlikely

Bluetooth 12 sec Unlikely
Shrestha et al. [30] Temperature (T) NA Unlikely

Precision Gas (G) NA Unlikely
Humidity (H) NA Unlikely
Altitude (A) NA Unlikely

HA NA Unlikely
HGA NA Unlikely

THGA NA Unlikely

Truong et al. [29] evaluated four different sensors across
recording durations of 10-120 seconds. Although the re-
sults were positive, such a long recording duration renders
them unsuitable for realistic NFC-based mobile transactions.
Moreover, the data collection set-up did not emulate a con-
tactless transaction, either in the context of banking, trans-
port or access control. However, the authors did discuss the
impact of transaction duration on the real-world applicability
of the results. For usability, transaction durations should
be minimised – in the range of 5-15 seconds. They also
concluded that measurements recorded beyond 10 seconds
did not improve effectiveness.

Shrestha et al. [30] used bespoke hardware known as
Sensordrone, with a number of ambient sensors, but did
not evaluate the commodity ambient sensors available on
commercial handsets, did not provide the sample duration,
and only mentioned that data from each sensor was collected
for a few seconds. It is difficult to evaluate the proposed
technique in the context of NFC contactless mobile transac-
tions in the banking and transport sector under their specified
requirements. The results related to barometric air pressure
were similar to what we have calculated. Sensors like Pre-
cision Gas and Altitude are not available on commodity off
the shelf Android smart phones.

Karapanos et al. [31] employed the use of sound as a
supporting mechanism for two-factor authentication, using a
recording duration of 5 seconds. Given that this deployment
is not related to NFC-based mobile transactions, such a long
duration can be justified.

We summarise the related work in Table 1, and use
sensor sampling durations to determine whether a given
approach is suitable for mobile contactless transactions.
‘Unlikely’ are those proposals whose sample duration is so
large that they may not be adequate for mobile services
that replace contactless cards. Those whose durations are

3



considered more reasonable are labelled as ‘More Likely’
in Table 1. Note, however, that even schemes denoted as
‘More Likely’ may not be suitable for time-critical domains,
where strict time limits are imposed in which the transaction
must be completed (see Section 1.1). In such domains, the
goal is to serve people as quickly as possible to maximise
customer throughput, in addition to determining whether
a transaction is successful and, indeed, permitted. Here,
optimal transaction durations are in milliseconds, rather than
seconds.

In this paper, we do not repeat the experiment as the
existing literature suggests, as their set-up does not conform
to the industry requirements – especially the transaction
duration (500ms). The only common aspect is that we
have evaluated the ambient sensors for the same domain
– proximity detection in contactless transactions.

3. Framework for Evaluating Ambient Sensors

In this section, we describe the test-bed that was devel-
oped to test, analyse and evaluate the effectiveness of using
mobile sensors as a proximity detection mechanism. The
results of the evaluation are presented in Section 4.

3.1. Test-bed Architecture

To empirically evaluate each sensor, we developed a
experimentation test-bed – the details of which are discussed
in this section. Two applications were implemented and
installed on a pair of Android devices: one emulating a
payment terminal (PT) and the other acting as the payment
instrument (PI), a mobile phone. When the devices come
sufficiently close, an NFC connection is established and both
begin recording data using a specified sensor. After collect-
ing measurements for 500ms, in line with the requirements
specified in Section 1.1, each device stores the recorded data
in a local database. During field trials, one mobile phone was
fixed as a terminal and the second mobile phone was free
of any restriction.

Figure 3 shows this in more detail. Bringing the two
devices together (< 3cm) causes the PT application to send
the first message to the PI over NFC, stating which sensor
it uses in the transaction and a unique transaction ID. After
this message is received by the PI, both applications initiate
the process to record a sensor for 500ms.

After collecting the measurements, the PI validates the
data it received from the terminal – whether the transaction
ID and chosen sensor match that of the terminal (shown
in message one in Figure 3) – and returns an acceptance
or rejection message accordingly. This validation process
ensures that both devices were recording data from the same
sensor. Finally, PT performs the same process, ensuring that
both devices used the same transaction ID and recorded from
the same sensor. The measurement is rejected in the event
that devices recorded data for differing transaction IDs or
sensors. Upon validation, the devices save the measurements
in their local databases. The database is designed to hold

PT PI

1) sensor—transaction ID

recordSensor() recordSensor()

validateReceivedData()

2) sensor—transaction ID

saveMeasurement()validateReceivedData()

saveMeasurement()

Figure 3: Measurement Recording Overview

measurements for each transaction, which are used in the
off-line analysis of each sensor.

3.2. Data Collection Framework

We test each sensor in four different locations around
the university – the lab, cafeteria, dining hall and library
– to account for the influence of different physical loca-
tions on sensor measurements. A field trial was conducted
in each location with 252 participants that carried out a
varying number of transactions. Each participant used the
PI provided by us and was given free reign with how they
interacted with the PT for each transaction, i.e. they could
tap it once, hold it extremely close without touching, or
tap and hold it to the device. This is to closely replicate the
conditions in which they would conduct a regular contactless
transaction. The data collection at each of the locations was
collected over an eight hours period (0900-1700hours) with
irregular gaps between transactions over the course of four
days.

Four devices were used in the experiments, forming two
PT–PI pairs. The first pair consisted of two Nexus 9 tablets,
while the second pair comprised two Android smartphones:
a Nexus 5, assuming the role of the payment terminal, and
a Samsung Galaxy S5 mini (SGS5 mini), which acted as
the payment instrument. The availability of the sensors on
each device is listed in Table 2.

Some sensors, such as Bluetooth, GPS, Rotation Vector
and WiFi – although present on the devices – returned no
or very few data points within the 500ms timeframe (>99%
sensor failure1). Two sensors, for humidity and temperature,
are relatively uncommon among Android devices and none
of our tested devices contained them. For completeness, we
used two Samsung Galaxy S4 (SGS4) smartphones contain-
ing these to include in our evaluation. However, for these
sensors, measurements were recorded for less than 6% of the
transactions when recorded for 500ms. Consequently, having

1. Detailed in Section 4.1.2 and Table 4
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TABLE 2: Sensor Availability

Sensors Nexus 9 (1) Nexus 9 (2) Nexus 5 SGS5 mini

PI-PT Pair: Nexus 9 (1) → Nexus 9 (2)
Accelerometer 3 3 3 3
Bluetooth ∗ ∗ ∗ ∗
GRV† 3 3 ∗ 3
GPS ∗ ∗ ∗ ∗
Gyroscope 3 3 3 3
Magnetic Field 3 3 3 3
Network Location 3 3 3 3
Pressure 3 3 3 7
Rotation Vector ∗ ∗ ∗ ∗
Sound 3 3 3 ∗
WiFi ∗ ∗ ∗ ∗

PI-PT Pair: SGS5 mini → Nexus 5
Gravity ◦ ◦ 3 3
Light ∗ ∗ 3 3
Linear Acceleration ◦ ◦ 3 3
Proximity 7 7 3 3

Unsupported
Relative Humidity ‡ ‡ ‡ ‡
Ambient Temperature ‡ ‡ ‡ ‡

3: Working properly. 7: Not present on device. ∗: Technical limitations.
‡: Evaluated using Samsung Galaxy S4. ◦: Returned only zero-values.
† Geomagnetic Rotation Vector.

failed to record any data points in such a large number of
cases, we omitted these sensors from subsequent analysis.
A minimum of 1,000 transactions were recorded for each
sensor – comprising measurement pairs for which both PT
and PI have valid sensor data.

The Android operating system (OS) returns data cap-
tured by a sensor in time intervals set by the application.
To prevent unnecessary power consumption, however, the
OS returns sensor values to the application only when the
values have changed from the past measurement. Note that
the sound sensor (microphone) captures data in a continu-
ous, uninterrupted stream; in this instance, the applications
converted the recorded amplitudes into sound pressure levels
(in decibels) before storing the values in their respective
databases. For Bluetooth, the OS returns data every time a
new Bluetooth device is discovered nearby; with WiFi, this
is after the device has scanned and detected the presence of
nearby access points.

The recorded sensor measurements were stored in XML
form in each database. A new child element was created
containing the sequence ID of the measurement, the times-
tamp (initialised to zero at the start of the transaction), along
with the data for each returned measurement. The sequence
ID consisted of the date and time the transaction occurred,
the location in which it was captured, and a transaction ID.
The transaction ID is a random, 7-byte string generated by
the terminal used to link the measurements of each device
to produce a PT–PI pair. Occasionally, the NFC connection
was disrupted, primarily when the devices were moved apart
before the transaction was completed. To address this, the
transaction ID was used in conjunction with the sequence ID
to detect and exclude these measurements prior to analysis.

4. Ambient Sensor Evaluation

In this section, we describe our analysis and evaluation
methodology based on two methods. The first evaluates

sensor data using threshold-based similarity metrics used
in existing literature, while the second employs the use of
machine learning. The evaluation mechanisms discussed in
this section are based on those used in existing literature
(see Section 2.3) where they have been shown to effectively
detect the proximity of two devices. Finally, we present the
results of our individual sensor analysis.

After retrieving the databases from PT and PI, the set
of all transactions, T , was produced using the shared IDs
generated during data collection. Each transaction can be
represented as a set of PT and PI values, PTi and PIi,
with the same shared ID, i.e. Ti = (PTi, P Ii). Note that
each device measures each sensor at potentially different
time intervals (accounting for clock variances), which may
produce an unknown total number of measurements for each
device per transaction. That is, the number of measurements
in PTi is not necessarily that of PIi.

4.1. Method 1: Similarity Analysis and Evaluation
Criteria

A Python application was developed for analysing the
transaction measurements from the application databases,
using the SciPy library [32] for numerical computation.

2r arcsin

(√
sin2

φ2 − φ1
2

+ cosφ1 cosφ2 sin
2 λ2 − λ1

2

)
(1)

MAE(PTi, P Ii) =
1

N

N∑
j=0

|PTi,j − PIi,j | (2)

corr(PTi, P Ii) =
covariance(PTi, P Ii)

σPTi
· σPIi

(3)

M =
√
x2 + y2 + z2 (4)

To compare (PTi, P Ii), we measure the similarity of
or distance between the two. This is measured differently
according to sensor type due to the differences in coordinate
systems and dimensions used across sensors. Measurements
are recorded in three dimensions for the accelerometer, for
example, while location returns a longitude-latitude pair on
Earth. Due to this, we devised three methods of dealing with
the diversity of reported measurements.

For network location, we used the Haversine formula
(Eq. 1), which measures the geographic distance between
two latitude and longitude pairs, {(φ1, λ1), (φ2, λ2)}. In Eq.
1, ‘r’ represents the radius of Earth.

For the remaining sensors, distance and similarity re-
spectively were measured using the Mean Absolute Error
(MAE, Eq. 2) and Correlation Coefficient (Eq. 3), as used
in [28], between the signals of PTi and PIi. This was
performed after linear interpolation to mitigate the effects of
inconsistent clocks between devices (Figure 4). Furthermore,
certain sensors – the accelerometer, gyroscope, magnetic
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Figure 4: Linear Interpolation to Mitigate the Effect of Missing and Inconsistent Sampling Rate – An Example from
Accelerometer-based Transactions

field, rotation vector and GRV sensors – produce a vector of
values comprising x, y and z components. In these instances,
the vector magnitude (Eq. 4) was used as a general-purpose
method for producing a single, combined value prior to
computing the MAE and correlation coefficient. Next, MAE
was computed by applying Eq. 2 directly, while for corre-
lation, this was found after measuring the covariance and
computing the standard deviations, σPTi

and σPIi , of the
data points in PTi and PIi.

4.1.1. Calculating the FPR, FNR and EER. We com-
pute the MAE(PTi, P Ii) and corr(PTi, P Ii) for each
successful transaction. Next, we calculate the False Positive
Rate (FPR), False Negative Rate (FNR) and Equal Error
Rate (EER) of each sensor by the testing MAE and corr
values of genuine pairs2, (PTi, P Ii), against the MAE
and corr values of unauthorised pairs (PTi, P Ij) with a
threshold, t. An ideal similarity metric, V , would produce
V (PTi, P Ii) < t and V (PTi, P Ij) > t for all possible
pairs. We constructed these unauthorised pairs by exhaus-
tively matching each PTi with every PIj measurement
belonging to another transaction (i 6= j). The FPR and
FNR are calculated using Equation 5, where FP, FN, TP
and TN represent the total number of False Positives, False
Negatives, True Positives and True Negatives respectively
for a given threshold.

FPR =
FP

FP + TN
FNR =

FN

FN + TP
(5)

4.1.2. Individual Sensor Results. The aim of our evalua-
tion is to investigate to what extent legitimate and illegit-
imate transactions can be identified using these similarity
metrics. For a transaction between two co-located devices,
MAE(PTi, P Ii) ≈ 0 and corr(PTi, P Ii) ≈ 1, while for a
PT and a PI device in differing locations, i.e. (PTi, P Ij),
the distance and correlation should be sufficiently large.
What is considered ‘sufficient’ is determined through find-
ing a suitable threshold, t, which permits all legitimate

2. Those collected during field trials.

transactions while denying those which are illegitimate, i.e.
Vi(PTi, P Ii) < t and Vij(PTi, P Ij) > t, as mentioned
previously. For each individual sensor, we aim to find an
optimal value of t, its error rate and reliability, e.g., whether
it collected measurements consistently and correctly across
1,000 transactions.

TABLE 3: Optimum Thresholds and Associated EERs

Sensors Optimum
EERMAE

Optimum
EERcorrThresholdMAE Thresholdcorr

Accelerometer 0.784 0.434 0.596 0.458
Ambient Temperature – – – –
Bluetooth – – – –
GRV 0.499 0.384 0.556 0.486
GPS – – – –
Gyroscope 0.614 0.443 0.636 0.441
Magnetic Field 76.12 0.323 0.495 0.384
Network Location 8.532 0.369 N/A∗ N/A
Pressure 2.787 0.270 0.329 0.492
Rotation Vector 1.281 0.498 0.011 0.466
Relative Humidity – – – –
Sound 8.22 0.417 -0.022 0.488
WiFi – – – –
Gravity 9.93e-3 0.429 0.596 0.424
Light 182.1 0.488 0.020 0.496
Linear Acceleration 1.361 0.496 -0.020 0.426
Proximity N/A† N/A N/A N/A
∗Insufficient data to calculate correlation
†All transactions contained the same value for both devices.

We generate FPR and FNR curves for MAE and corr
for every sensor for which we were able to collect data. The
point of intersection for these curves provides an optimal
threshold for MAE and corr based on its associated EER,
i.e., the rate at which the acceptance and rejection errors are
equal.

Practically speaking, in a wide-scale deployment of an
ambient sensing proximity detection mechanism, a single
threshold should be defined. The terminal (or third party)
would store this threshold (Section 2.2), and if the similarity
of the terminal’s and device’s sensor readings was within
this, then the transaction would be assumed to be legitimate,
i.e., both devices in close proximity. However, setting a
threshold of this nature invariably incurs some rate of false
positives and false negatives. The intersection of FPR and
FNR provides us with the proportion of potentially invalid
transactions which might pass as genuine (false positives)
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TABLE 4: Usability and Reliability Analysis

Sensors Total Transaction Sensor
Transactions Failures Failures

Accelerometer 1025 13 (1.26%) 0 (0%)
Bluetooth 101 1 (0.99%) 99 (99%)
GRV 1019 8 (0.78%) 0 (0%)
GPS 101 1 (0.99%) 100 (100%)
Gyroscope 1022 11 (1.07%) 0 (0%)
Magnetic Field 1027 17 (1.65%) 0 (0%)
Network Location 1053 15 (1.42%) 960 (96%)
Pressure 1018 10 (0.98%) 0 (0%)
Rotation Vector 1023 14 (1.36%) 0 (0%)
Sound 1047 4 (0.38%) 0 (0%)
WiFi 100 0 (0%) 100 (100%)
Gravity 1165 143 (12.27%) 0 (0%)
Light 1057 37 (3.50%) 0 (0%)
Linear Acceleration 1175 159 (13.53%) 3 (0.3%)
Proximity 1071 58 (5.41%) 0 (0%)
Ambient Temperature 50 0 (0%) 47 (94%)
Relative Humidity 50 0 (0%) 47 (94%)

and the proportion of genuine transactions being rejected
(false negatives). The goal of a malicious entity would be
to carry out relay attacks such that the sensor measurements
at the terminal and mobile phone remained within the pre-
defined threshold. A threshold with a higher FPR provides
a large working space to the attacker, whereas a higher
FNR will reduce the usability of the scheme, potentially
frustrating consumers by rejecting legitimate transactions.
Table 3 lists the optimum thresholds and associated EERs
for each tested sensor.

Besides investigating the EERs of sensors and the effect
this has on their suitability for NFC mobile services, we
evaluate the reliability and potential usability of the selected
sensors. Table 4 presents our findings regarding the propor-
tion of failed transactions and sensor failures. To collect
1,000 transactions for each sensor, as explained in Section
3.2, we requested 252 users to present the PI to the PT
as many times as they preferred. We established walk-in
counters at four different locations of the university campus;
students walking nearby were invited to assist us in the trial.
Demographic data about the students was not collected, as
sensors are not used for user identification, but simply to
assure that two devices were in close proximity to each other
during a transaction. At times, transactions were not regis-
tered during this process, usually due to the user moving
the handset away too quickly, and was the primary cause
of transaction failures3 (no shared measurements between
the PT and PI) represented in Table 4. The rate of sensor
failures, in the same table, represents the situation when
the transaction was successfully completed on both the PT
and PI, but where one or both devices failed to record any
data in the 500ms timeframe. The percentage of transaction
failures relates to the total transactions, while sensor failures
are measured with respect to the number of successful trans-
actions. The transaction failure rates represent the difficulty
in using the sensors by the user, while the sensor failure

3. These failed transactions were not included in the data analysis and
results represented in Table 4, which is based on the successful 1000
transactions.

rates reflects their reliability.

4.2. Method 2: Machine Learning Analysis

The MAE(PTi, P II) distance measure in Equation 2
and the corr(PTi, P Ii) similarity measure in Equation 3
give each pair of individual measurements PTi,j and PIi,j
the same weight when PTi and PII are compared. However,
it is conceivable that not all time slots PTi,j and PIi,j are
equally important when the task is to discriminate between
genuine and unauthorised transaction pairs. Moreover, it is
possible that discrimination becomes possible by modelling
complex non-linear interactions between the individual dif-
ferences |PTi,j − PIi,j |—interactions that cannot be cap-
tured by simple similarity measures.

To investigate this, we applied a collection of supervised
machine learning algorithms to the problem, including al-
gorithms that are able to model (in an approximate manner)
arbitrary non-linear interactions given enough training data.
The data for learning was created by treating each pair
(PTi, P Ii) for a particular sensor as a labeled observation
(~x, y), where the label y is either genuine or unauthorised
and the feature vector ~x consists of the individual differences
|PTi,j − PIi,j | for the pair (PTi, P Ii).

When applying machine learning to a classification prob-
lem such as this one, it is important to test the discriminative
ability of the model inferred by the learning algorithm to a
set of observations that have not been used for learning the
model; the labelled data must be separated into a so-called
training set and a test set. The learning algorithm is applied
to the training set to build a model, while the test data is
used to measure the model’s discriminative performance.
We use equal error rate to measure performance, using the
confidence scores associated with the model’s classifications
to rank observations according to their estimated likelihood
of being genuine transactions.

Given the number of observations available in our
datasets, a single train-test experiment is not sufficient to
establish a reliable estimate of equal error rate. A standard
procedure in machine learning is to perform 10-fold strat-
ified cross-validation, where the data is shuffled and split
into 10 disjoint test sets each containing the same number of
observations. The data is also stratified so that the proportion
of genuine and unauthorised transactions is the same in each
set. Then the algorithm is run 10 times, once for each test
set, where the observations not in the corresponding test set
are used for training the model, and the observations in the
test set are used to measure its equal error rate. This yields
10 estimates of equal error rate, which are averaged to obtain
the final performance estimate. To reduce the variance of the
performance estimate even further, we repeat 10-fold cross-
validation 10 times, each time shuffling the data before it
is split into 10 test sets. This yields 100 estimates of equal
error rate and we report the mean and standard deviation
of these estimates for each learning algorithm and sensor in
Table 5.

Table 5 shows results for the six learning algorithms
we evaluated, including both parametric and non-parametric
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TABLE 5: Estimated EER for machine learning algorithms, obtained by repeating stratified 10-fold cross-validation 10 times

Dataset Random Naive Logistic Decision Support Multilayer
Forest Bayes Regression Tree Vector Machine Perceptron

Accelerometer 62.6±2.4 50.9± 2.6 52.6± 2.3 50.0± 0.0 49.8± 2.5 55.1± 2.5
GeomagneticRotationVector 43.5±2.1 44.7± 2.4 47.4± 3.1 50.0± 0.0 48.9± 3.6 45.0± 2.6
Gravity 87.4±1.8 57.9± 2.0 57.9± 2.4 50.0± 0.0 50.0± 2.6 74.6±11.2
Gyroscope 68.3±2.7 49.9± 2.4 54.3± 2.4 50.0± 0.0 51.1± 2.5 51.4± 2.5
Light 57.6±2.6 51.5± 2.4 53.3± 2.5 50.0± 0.0 50.8± 2.4 51.3± 2.8
LinearAcceleration 60.3±2.5 50.7± 2.7 54.3± 2.3 50.0± 0.0 50.0± 2.1 55.4± 2.8
MagneticField 29.2±2.1 31.9± 2.0 32.2± 2.0 41.5± 1.5 39.8± 4.6 32.9± 2.6
Pressure 10.3±1.0 10.7± 1.0 28.7± 1.3 9.2± 5.4 31.9± 4.5 11.4± 1.9
Proximity 49.9±3.1 53.7± 6.9 47.6±18.8 50.0± 0.0 54.3± 25.4 50.8±19.7
RotationVector 27.6±4.6 56.3±24.3 59.6±23.3 50.0± 0.0 51.3± 24.3 48.8±24.5
Sound 28.8±1.9 31.4± 2.2 31.0± 2.1 34.7±13.6 41.1± 4.1 30.6± 2.0

approaches, as implemented in the WEKA machine learning
software [33]. We used default parameter settings for the
learning algorithms unless otherwise specified. The random
forest method [34] learns an ensemble classifier consisting
of 100 semi-random decision trees from bootstrap replicates
of the training data. This classification method is able to
model arbitrarily complex interactions and is known to be
a general-purpose approach that performs well without pa-
rameter tuning. The naive Bayes classifier fits a multivariate
Gaussian distribution with a diagonal covariance matrix to
the data for each classification (genuine vs. unauthorised),
thus assuming conditional independence of the features in
the data, and uses Bayes’ rule to obtain class probabil-
ity estimates. Logistic regression fits a linear model using
maximum conditional likelihood. The well-known C4.5 [35]
algorithm is used to grow decision tree classifiers. We also
include linear classification using support vector machines,
which are trained using the SMO [36] algorithm. A logistic
regression model is fit to the output of the support vector ma-
chine to obtain class probability estimates. The last learning
method in our collection is a multilayer perceptron, a type of
artificial neural network, with one hidden layer containing
10 units, which is trained using the MLPClassifier method
in WEKA.

The results in Table 5 are largely in line with those
observed earlier; the lowest equal error rate for each sensor
is shown in bold. No useful discriminative signal appears to
be present in the accelerometer, geometric rotation vector,
gyroscope, light, linear acceleration, gravity, and proximity
data. Decision-tree-based methods give the best results for
the remaining sensors. Magnetic field, rotation vector, and
sound data provide some discriminative ability, but the
equal error rate remains close to 30%. The best result is
obtained on the pressure data, with an equal error rate of
approximately 10%. Pressure was also the most informative
sensor in the earlier experiments, with 27% equal error rate
for the MAE distance metric. Although the result obtained
using tree-based machine learning is substantially better,
discrimination is still significantly too inaccurate to be used
for authentication in practice.

5. Outcome and Future Directions

As discussed previously, the higher the EER, the greater
the likelihood that an attack passes undetected and that a

genuine transaction is rejected. Based on our analysis, it
is difficult to recommend any of the sensors individually
for a high security deployment application, such as banking
and transport. These sensors, however, might be appropriate
for low-security access control, but we recommend that a
thorough analysis of the sensors and their performance in
the chosen domain is performed prior to deployment.

One potential reason that related research in this domain
has achieved different results is due to the larger transaction
durations and limited field trials in other work. The sample
duration limit imposed during our experiments was in line
with the performance requirements of an EMV application
as discussed in Section 1.1, i.e. 500 milliseconds. Addition-
ally, transportation is one of the biggest application areas of
contactless smart cards, along with banking; in this domain,
the recommended duration for a transaction is far lower, in
the range of 300–400 milliseconds. Imposing a limit of 500
millisecond in our experiments is, therefore, an upper-bound
of the operational requirements for two major areas where
mobile-based contactless transactions may be applied.

One potential method of improving performance is to in-
crease recording duration. This is indicated in related work,
which yields more promising results, but uses recording
durations far longer than the industry limits used in this
study. This would be possible if users initiated recording in
advance of the actual transaction, and we consider this as
one of our future research directions. We do have reserva-
tions about this proposal, however. Firstly, it requires users
to pre-empt transactions, which, in realistic situations, may
require an additional task to be performed in advance before
they can use their mobile device. Secondly, a user may have
to initiate recording at a distance from the PT to potentially
give PI more time to measure a larger sample. Both of the
reservations involve an additional step to be performed by
the user that would detract from usability, in a way the whole
purpose of contactless transactions. This, however, does not
provide a measurement of proximity as defined by banking
and transport specifications. Furthermore, we do not agree
with the argument that proximity detection is unnecessary
because a PIN or biometric is required to use a payment
application. In the relay attack variant known as a Mafia
Attack [37], a malicious terminal is deployed by an attacker
to trick genuine users to use their smartphones with it. In
this scenario, a PIN or biometric cannot protect against relay
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attacks.
During our experiments, we realised that sensors and

their associated platforms may not have the maturity re-
quired for a wide-scale deployment as a proximity detection
mechanism for NFC-enabled phones. Variations in sensor
availability, the sensor measurements themselves, whether
the platform’s sensing architecture is affected by other appli-
cations running simultaneously, and differences in minimum
sampling rates, may vary across device manufacturers. We
contend that mobile sensors have a considerable way to go
before achieving the necessary interoperability, standardis-
ation and performance requirements to enable an effective
sensing-based proximity detection mechanism.

From the work carried out and the results presented in
this paper, we can claim with a high degree of confidence
that mobile sensors, at least in their current state on Google
Android devices, are not suitable for use as an anti-relay
mechanism. This is especially pertinent in the case of ap-
plications with high security requirements, such as banking,
transport and access-control at highly sensitive sites. It may
be argued that these sensors might be suitable for low-risk
application that do not have stringent transaction time limits
and distance bounding assurance requirements. However, the
developer ought to consider the risks highlighted in this
paper, i.e., EER and reliability rates. To this end, we provide
EER tables (Table 3 and 5) that indicates the effectiveness
of the respective sensor and its associated risk if it were
deployed.

After carrying out the experimentation with selected
handsets in this paper, we extended the test-bed to include
additional handsets like the Samsung Galaxy S4 (Model:
GT-I9505) with additional sensors. In these tests the out-
come was similar to the initial test, providing further evi-
dence for our results.

As part of our future research, we are currently experi-
menting with:

• Collecting and evaluation a large data set of actual
relay attacks using these sensors, and investigating
if and how a relay attack in the field is reflected in
its sensor measurements.

• Combining sensor measurements with time slicing
and sensor fusion: only one sensor is measured
at a time, but over the duration of the transaction
multiple sensors could be used.

6. Conclusion

The aim of the paper was to evaluate and analyse a
range of sensors present in modern day mobile devices,
and determining which sensors, if any, would be suitable
as a proximity detection mechanism in the domain of NFC
smartphone transactions. We listed 17 sensors accessible
through the Android platform, before limiting it to those
which are widely-available. In existing literature, only five
sensors have been proposed as an effective proximity de-
tection mechanism (listed in Table 1). In this paper, we
extend this with ten additional sensors by evaluating their

effectiveness as a proximity detection mechanism on NFC-
enabled mobile devices. In total, we implemented and evalu-
ated 17 sensors, but WiFi, Bluetooth, Ambient Temperature,
Relative Humidity and GPS were dropped after exhibiting
high failure rates in initial tests. The scope of our anal-
ysis focuses on NFC-enabled mobile devices that emulate
traditional smart card services, such as transportation and
banking. Any analysis or recommendation in this paper
regarding these sensors is restricted to mobile contactless
transactions that aim to substitute for the contactless smart
card transactions in such high security applications.

The field of ambient sensors for proximity detection in
NFC-based mobile services is expanding, as illustrated by
the number of recent proposals. In this paper, we extend the
discussion to a large set of ambient sensors. We evaluate
the suitability of sensors proposed currently and investigate a
range of sensors not yet explored as an anti-relay mechanism
in related work. Table 2 shows that we have undertaken a
comprehensive evaluation of ambient sensors for proximity
detection (seventeen in total). In existing literature, only
a subset of these sensors are proposed and evaluated as
proximity detection mechanism (Table 1). Most of this
existing literature has shown that the ambient sensors are
effective. However, in our empirical evaluation with a real
world operational environment for banking, transport and
access control has shown to the contrary that these sensors
do not provide an effective proximity detection mechanism.

It is neither evaluated nor claimed that similar results
will be produced in other deployment scenarios where
distance bounding and transaction time limits are not as
stringent. It should be considered that the transaction time
limit and operating distance are not set arbitrarily, but
rather in compliance with industry-wide requirements, as
stipulated by EMV and transport specification bodies. The
experimentation and analysis carried out as part of this paper
showed that none of the sensors were individually suitable to
be deployed as a proximity detection mechanism for NFC-
based mobile transactions. Finally, we release the source
code of our test-bed publicly available, along with our
collected data sets, for open scrutiny and further analysis.
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