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Abstract 

The recuperated split cycle engine (RSCE) is a split cycle engine with quasi-

isothermal compression and exhaust recuperation. This novel concept allows the 

decoupling of efficiency and peak combustion temperature. In this work a 

methodology for evaluating the efficiency limits brought on by emissions limitations 

of thermal engine is demonstrated, before focussing on modelling and experimental 

work on the expander/combustor of a RSCE. 

When evaluating the RSCE expander in isolation of the other systems, thermal and 

brake efficiency metrics can be skewed by the free Rankine work of the simulated 

recuperator. Metrics are proposed in this work which discount this effect to enable 

evaluation of the efficiency of the expander. A 0D model of the single cylinder 

combustion research engine (SCCRE), representing the RSCE expander, is 

presented. With studies and analysis of responses to key variables effecting 

performance, engine setup, and expander design analysed and discussed. 

Experimental results and analysis produced from the SCCRE test bed demonstrated 

35.6% efficiency. However, this was limited by low combustion efficiencies of 60-

70%. If combustion efficiency (CE) can be increased, 50.6% efficiency in the 

expander is demonstrated to achievable, before consideration of additional work 

reductions and heat recuperation from quasi-isothermal compression and exhaust 

recuperation in a full RSCE system. 

High FSN (> 1) results combined with lowering CE at the higher pressures tested 

(>3.5MPa) demonstrated low combustion system optimisation at high inlet 

pressures and therefore high load conditions. With these factors in mind, the best 

BSNOx achieved from the parameter swings was 2.16g/kWh. With nitrogen dilution 

to 18% oxygen by volume, this drops to 0.58g/kWh. Emissions data from the 

expander cylinder suggested a lower plateauing of FSN and increasing NOx 

response to diesel rail pressure than that of a conventional ICE.  

Hypotheses of mixing methods and conditions affected by high pressure air injection 

at that could be occurring in the SCCRE and RSCE are proposed, due to the unique 

inlet dynamics in a RSCE expander at intake valve opening. Schlieren optical data 

from a high pressure flow rig, replicating the SCCRE cylinder head, is presented 
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which starts to investigate these hypotheses. The initial results confirm that 

significant shockwaves are created in cylinder by the intake valve and high pressure 

upstream conditions. This is unique to split cycle engines, has not been reported in 

the literature, and, as hypothesised, is likely contributing to responses seen. 

To fully capitalise on the potential of the RSCE, a combustion, fuel, and air injection 

system needs to be designed and developed from the ground up with the 

understanding of unique operation and conditions. A well designed RSCE could in 

theory provide an on demand premix style of combustion with high combustion 

efficiency and low emissions. A few potential methods and concepts to achieve this 

are proposed and discussed. 
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Chapter 1 Introduction 

1.1 The Recuperated Split Cycle Engine 

The recuperated split cycle engine (RSCE) has been touted as a potential 

alternative internal combustion engine (ICE) that could achieve both high efficiency 

and low toxic emissions. The potential benefit put forward by the RSCE, compared 

to other ICEs, is the ability to control and lower start of combustion temperature, 

implementation of a type of homogenous charge compression ignition (HCCI), and 

a novel thermodynamic cycle. With the thermodynamic cycle achieve higher 

efficiency through quasi-isothermal compression and heat recuperation. 

The RSCE utilises a split cycle engine (SCE) architecture where the conventional 

four stroke cycle is split into two chambers/cylinders. One cylinder performs the 

induction and compression strokes and the other performing combustion/expansion 

and exhaust strokes. The RSCE innovation compared to other SCE concepts is the 

injection of coolant during the compression strokes, to achieve quasi-isothermal 

compression, and addition of a recuperator to recuperate otherwise wasted heat 

from the exhaust into the combustion cylinder intake air. A schematic diagram of an 

early RSCE concept known as the isoengine is shown in Figure 1.1. More detail on 

the RSCE, other ICE concepts, and novel technologies will be discussed in Chapter 

2. 

 

Figure 1.1 Schematic diagram of the isoengine [1]. 

Since 2015 the Advanced Engineering Centre at the University of Brighton have 

been running experiments on a single cylinder combustion research engine 
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(SCCRE) replicating the combustion/expansion cylinder of the RSCE. Initially 

Ricardo PLC were the industrial partner on the project until the intellectual property 

was spun out into a new company in 2017, Dolphin N2 Ltd, who then replaced 

Ricardo as the industrial partner. 

Past theoretical research on the thermodynamics demonstrated the potential for 

60% efficiency [2] and experimental research on the SCCRE demonstrated 50% 

efficiency  [3]. However, the experimental research on the SCCRE had poor 

repeatability and a limited operating range. The ñblack boxò approach had little 

consideration of the fundamentals affecting the combustion to achieve both high 

efficiency, low emissions, and general operation. In-cylinder conditions were also 

not considered. 

1.2 The Research 

1.2.1 Introduction 

The validity of continuing combustion engine research has been called into question 

due to the climate crisis and the rise of new technology. However, there has been 

limited analysis of the theoretical limits of a nontoxic ICE, even in basic terms. 

This research aims to better understand the theoretical and practical limitations of 

the current SCCRE, how the in-cylinder processes and general operation can be 

engineered, and therefore if a clean and high efficiency RSCE expander can be 

realised and potentially improved upon from the SCCRE.  

The research will seek to answer the problem of ICE emissions and efficiency by 

taking an emissionsô driven approach to combustion, to understand the upper 

efficiency limit considering emissions limitations, and undertake a detailed 

evaluation and discussion of one potential ICE candidate that has shown promise 

in previous initial research, i.e., the SCCRE at the University of Brighton 

representing the expansion cylinder of a RSCE. As the focus of the work is on 

emissions, the research will focus on the combustion/expansion cylinder but there 

will be discussion on the considerations and implications of the combustor 

responses on the wider RSCE system. The research will focus on improving 

emissions reductions in a reciprocating ICE and will not consider social or usage 

changes as part of the research.  The research will not discuss the sustainability of 
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manufacturing an engine, purely the in-use emissions which typically make up most 

of the emissions from an ICE. For the same reasons, the manufacturing of a 

sustainable fuel will not be analysed. Emissions directly from the combustion 

chamber will primarily be assessed and discussed, possible reductions with after 

treatment will not be discussed in detail but will be mentioned. 

1.2.2 Research Question, Aim, & Objectives 

Primary research question: 

Is the RSCE expander a combustion system that has the potential to 

realistically deliver both ultra-high efficiency and low emissions? 

Through answering the primary research question, the research aims to explore the 

limits of what an ICE can theoretically achieve in terms of efficiency with the 

limitation of producing low or negligible toxic emissions. This will be achieved 

through research and theoretical work, as well as through a focused experimental 

programme that explores the phenomena affecting the mixing and combustion 

processes in the specific novel SCE under research at the University of Brighton, 

the RSCE.  

An inductive reasoning approach was taken for the research through theoretical 

thinking from current knowns with experimentation, to prove or disprove the 

inductive reasoning. For example, the combustion system in the RSCE has atypical 

upstream fluid conditions compared to conventional engines due to the high 

upstream pressures of the combustor. Past research has demonstrated the RSCE 

produces rapid combustion and low NOx emissions [3]. Therefore, changes in the 

fluid flow conditions are hypothesised to contribute to rapid combustion and low NOx 

emissions.  

Through specific experimental studies the conditions inside the RSCE aim to be 

explored. With the aim of understanding the fundamental physics that govern the 

combustion system and the current performance of an unoptimised RSCE 

combustor. To build a better understanding of the responses for future development 

and engineering of new hardware, to fully capitalise on the phenomena taking place 

and improve the combustion system. 
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The primary research question and aim can be further split into 6 questions, with the 

objective to answer these questions through the research. The questions 

encompass two areas: a broad look at the efficiency limits of reciprocating ICEs 

brought on by toxic emissions limitations, and detailed evaluation of the RSCE 

expander. The refined questions and their respective areas are shown below. 

Efficiency limits brought on by emissions limitations in an ICE: 

1. Can an ICE achieve both high efficiency and ultra-low emission combustion? 

2. Can conventional Otto or Diesel ICE cycles and combustion methods meet 

both ultra-low emissions and high efficiency targets? 

Detailed evaluation of the RSCE expander: 

3. What does the ideal RSCE expander thermodynamic cycle look like? 

4. Does the RSCE expander respond to stimuli in line with conventional ICEs 

and combustion methods? 

5. What are the potential fundamental physical processes governing induction, 

and therefore combustion, processes in the RSCE expander that are different 

to conventional ICEs? 

6. Could the RSCE expander achieve ultra-high efficiency and low emission 

combustion? 

Questions 3-6 are the main detailed focus of this work and will be covered in Chapter 

4 through to Chapter 6. Chapter 3 will address questions 1-2. 

Through answering the refined research questions, the research seeks to provide 

the below as a contribution to knowledge: 

¶ A simple methodology for assessing the upper limit or efficiency for a 

low/zero emission combustion engine. 

¶ Analysis of thermodynamic cycles to achieve the upper limit of a low/zero 

emission combustion engine. 
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¶ Requirements of a future ICE to achieve zero/low emissions. 

¶ Performance and emissions of a RSCE combustor from a single cylinder 

research engine. 

¶ Evaluation of the ideal RSCE expander cycle and itôs responses to main 

variables. 

¶ Similarities between RSCE and conventional ICEs. 

¶ The unique responses of the RSCE. 

¶ Hypotheses for the enhanced atomisation observed in the RSCE. 

¶ Optical images of the unique inlet conditions in the RSCE, exhibiting 

shockwaves. 

¶ Recommendations, methods, and potential pathways to optimise the RSCE 

expander and combustion system. 
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Chapter 2 Literature Review 

2.1 Introduction 

A fundamental approach must be taken to understand the efficiency and emissions 

limits of what can be achieved with an ICE. Combustion phenomena, novel 

thermodynamic cycles, and ICE technologies need to be assessed to understand 

their limitations in achieving a high efficiency and low emissions system. A range of 

research topics and applicable ICE phenomena will therefore be presented and 

discussed in this chapter. With a particular focus on the ability of research topics to 

meet future sustainable needs.  

2.1 Motivation & Background 

2.1.1 Health & Sustainability 

2.1.1.1 Introduction 

Toxic emissions are hazardous to human health and greenhouse gases (GHG) are 

hazardous to global sustainability. These are the fundamental motivations for 

ñcleanerò ICE, combustion systems and other propulsion systems now and in the 

future. However, there is a balance to be struck with other areas of society that could 

be impacted by rapid change or unforeseen consequences. The global population 

will not except a stagnation or declining trend in life expectancy and/or standard of 

life. The transition to a sustainable society should aim to not impact or add pressures 

to other areas of concern, for example funding for healthcare or global food 

pressures. 

The Dieselgate scandal brought the issues of toxic emissions firmly into the public 

eye, pointing a spotlight on not just the issues of automotive manufacturers cheating 

emissions regulations but what the emissions regulations and accompanying tests 

are, and if they are applicable or just in the world today. 

The World Health Organisation (WHO) and other researchers, such as Vohra et al, 

predict anthropogenic air pollution causes between 4.2 and 8.7 million premature 

global deaths every year [4], [5]. A Public Health England (PHE) review stated that 

human-made air pollution is the biggest environmental threat to health in the UK, 
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with 28,000 to 36,000 deaths a year attributed to long term exposure to toxic 

emissions [6]. Five of the most damaging pollutants are outlined as fine particulate 

matter (PM2.5), ammonia, nitrogen oxides (NOx), sulphur dioxide, and non-methane 

volatile organic compounds [6]. Particulate matter (PM) is responsible for most air 

pollution deaths [5]. With coarse PM with a diameter of 10ɛm (PM10) or less able to 

penetrate the lungs and fine PM with a diameter of 2.5ɛm (PM2.5) or less able to 

pass through the lung barrier into the blood stream [6].  

Since the decline of coal in the world at the end of the 20th century, transport has 

become a significant anthropogenic source of toxic PM and NOx emissions. With the 

majority of PM in the atmosphere of urban areas, such as London, attributed to 

combustion of diesel for transportation [7]. In 2013 the European Environmental 

Agency (EEA) attributed 40% of NOx emissions to road transport and 40% of PM2.5 

to transport [8]. Emissions legislation is starting to have an effect on in reducing PM 

and NOx emissions. In 2020 99% of Londoners still lived in areas which exceed the 

WHO guidance for PM2.5 exposure [9]. More recent data from the EEA on emissions 

from transport in 2019, shown in Figure 2.1, reports transport to account for 21% of 

CO, 55% of NOx, 13% of PM10, and 20% of PM2.5 emissions, with road transport 

exhaust emissions reportedly accounting for significant amounts of these emissions. 

 

Figure 2.1 Contribution of the transport sector to total emissions of the main air pollutants [10]. 

The effect of these toxic emissions impact built up areas the most, where road 

transport is highly prevalent, as well as areas where vehicles accelerate from a 
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standstill, such as road junctions. Policy makers have therefore sought to remove 

the highest polluters from built up areas. Leading to the implementation of higher 

minimum standards. One example being the Ultra-Low Emissions Zone in London, 

creating a financial disincentive to driving legacy emissions standard vehicles in 

these areas, which is starting to have an effect [9]. With many cities and towns 

throughout the world regularly exceeding the WHO daily and annual mean air quality 

guidelines, the implementation of similar low emissions zones is increasing, and will 

likely need to increase further to ensure areas in cities and towns meet air pollution 

limits to protect the health of the local population. 

Maritime transport currently has much looser emissions legislation than that of the 

automotive sector. The CO2 per kg cargo transported of the marine shipping industry 

is typically lower than that of road transport, due to the size and efficiency of modern 

ships [11]. However, NOx and other emissions, such as SO2 are usually higher. 

Though these emissions can have a lower effect on health, due to emission 

deposition usually not being located near built up populous areas. As shipping 

emissions have a low effect on public health compared to road transport, shipping 

will not be further expanded upon in this piece of work. However, the technologies 

that are discussed in this work can be applied to the maritime transport industry. 

With the emergence of new propulsion technology and emissions concerns, the 

validity of continuing ICE research has rightly been called into question, due to these 

pressing issues of climate change and toxic emissions. However, there has been 

little questioning or steps back from where the modern ubiquitous Otto and Diesel 

cycle ICEs of today are in terms of technology, and what is theoretically achievable 

with an ICE in terms of emissions and sustainability when delimited from 

conventional approaches.  

Changes in vehicle propulsion will be complemented by advances in other areas of 

mobility, such as smart cities, inter-vehicle connectivity and accessibility solutions. 

These technology solutions aim to both reduce the demand and energy consumed 

by the remaining transportation services. Delivering the right vehicle for the right 

journey instead of a ubiquitous vehicle for all duty cycles and a suboptimal duty 

cycle. These methods and others will help reduce emissions in g/km, such as 

aerodynamics, weight, and logistics, but will not be approached in this work. 
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2.1.1.2 Emissions Regulations 

Regulations are the major driving force in the automotive sector to bring about 

change and investment in propulsion systems and their associated emissions. 

European Commission (EC) and United States Environmental Protection Agency 

(EPA) emissions regulations are the dominant emissions standards in the world, 

having been adopted in various countries outside of the European Union (EU) and 

the United States. In this section, only the EC emissions regulations affecting vehicle 

in use will be assessed and discussed in detail. 

In major European cities, passenger and light commercial vehicles (PLCV) make up 

the vast majority of toxic emissions, with a prediction of 42% (Budapest) and 92% 

(London) of all cars needing to shift to zero tailpipe/exhaust emission vehicles (ZEV) 

to attain emission at or below European average guidelines [12]. 

Past regulations have led to a general public understanding and blame on the ICE 

for CO2 emissions. Implying the ICE creates carbon emissions rather than the fuel, 

as is the case with most vehicle emissions regulations by the EU and EPA, such as 

past road tax on CO2 emissions in the UK. Comparing metrics such as g/km of CO2 

are really metrics of efficiency of the overall vehicle, analogous to fuel consumption, 

rather than CO2 emissions due to the combustor. While regulation of efficiency and 

toxic emissions through taxation is warranted, the comparison of CO2 emissions has 

shifted the focus to the vehicle manufacturers and away from fuel companies up 

until recently. 

Fuel efficiency for the consumer and regulations govern industry producing lower 

CO2 output from conventionally fuelled ICEs. However, insufficient regulation and/or 

forward thinking led to increase uptake in the EU and UK, such as the ñdash for 

dieselò, of diesel vehicles at the end of the 20th century. This enabled the UK and 

other countries to deliver vehicles with low CO2 emissions per km to meet the 1997 

Kyoto Protocol to reduce CO2 emissions. However, this had the effect of increasing 

NOx and PM, due to poor regulation and rapid uptake of diesel vehicles. Which had 

higher combustion temperatures and limited aftertreatment systems at the time. This 

has partially led to a relatively rapid reduction in non CO2 emissions over the last 

two decades. Future legislation must ensure that these types of unintended 

consequences are learned from and not repeated. 
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Sustainable fuels are gaining wider publicity, understanding, and are increasing in 

research focus, but analysis of fundamentals to address whether it is theoretically 

possible to achieve high efficiency and low emissions with a sustainable fuel are still 

necessitated. If the carbon is from a sustainable fuel the focus of the combustor 

must be on the toxic emissions produced, followed by efficiency to reduce energy 

consumption, and cost.  

The past, current, and proposed EC tailpipe emissions regulations for PLCVs under 

1,305kg are shown in Table 2.1. While the specific emissions limits did not change 

in the separate regulations with for Euro 6 (Euro 6b, 6c, etc), the method under 

which the type approval were tested changed. Worldwide harmonised test 

procedure and the Real Driving Emissions (RDE) tests were introduced partially in 

response to ñcycle beatingò exposed in the Dieselgate scandal and criticism of 

emissions laboratory tests not being representative of real on road emissions [13]. 

RDE tests were introduced in 2015 to test emissions of vehicles on the road with 

realistic conditions. The RDE testing is of note, as this required vehicles to be tested 

on the road with portable emissions measurement systems from 2016 in the EU. 

The RDE tests have had an impact in combatting the difference between test cycle 

emissions and real-world emissions, resulting in an improvement in the Euro 6 and 

Euro VI emissions on the road. However, there continue to be issues with Euro VI 

trucks not meeting regulations once they are on the road [14]. Conformity factors 

are playing a role and will need to be tackled in the future with tighter regulation. 

Table 2.1 European emissions standards for PLCVs under 1,305kg. 

Type 

Approval 

First 

Registration 

Date 

Fuel 
CO  

(g/km) 

HC + 

NOx 

(g/km) 

NOx 

(mg/km) 

HC 

(g/km) 

PM 

(mg/km) 

NMHC 

(mg/km) 

NH3 

(g/km) 

Euro 1 01/1993 
Diesel 

2.72 0.97 

- 
- 

140 

- 

- 

Petrol - 

Euro 2 01/1997 
Diesel 1.0 0.7 80 

Petrol 2.2 0.50 - 

Euro 3 01/2001 
Diesel 0.66 0.56 500 50 

Petrol 2.3 - 150 0.2 - 

Euro 4 01/2006 
Diesel 0.5 0.30 250 - 25 

Petrol 1.0 - 80 0.1 - 

Euro 5a 01/2011 
Diesel 0.5 0.23 180 - 

5 
Petrol 1.0 - 60 0.1 68 

Euro 5b 01/2013 
Diesel 0.5 0.23 180 - 

4.5 
- 

Petrol 1.0 - 60 0.1 68 

Euro 6 

Current 
09/2015 

Diesel 0.5 0.17 80 - 
4.5 

- 

Petrol 1.0 - 60 0.1 68 



11 

 

Euro 7 

Proposed 
07/2025 All 0.5 60 0.1 4.5 68 0.2 

There were significant reductions of carbon monoxide (CO) levels of ~50% each 

type approval from Euro 1 to Euro 4, before a stagnation until the proposal for Euro 

7. Specific NOx regulations only came into effect in 2001 in the Euro 3 emissions 

standard for PLCVs. Since then, NOx regulations have become more stringent with 

the current Euro 6d regulation representing a minimum 84% and 60% reduction in 

NOx production for diesel (500 mg/km to 80 mg/km) and petrol (150 mg/km to 60 

mg/km) respectively. 

The Euro 7 proposal harmonises emissions limits across fuels to the lowest level for 

the specific emission from the past diesel and petrol type approvals. The 

measurement of hydrocarbons (HC) and NOx is removed and instead utilises the 

approach that has been used for petrol vehicles since Euro 3, in which HC and NOx 

limits are separately measured. This results in a 25% reduction in NOx emissions 

for diesel fuelled vehicles and a 50% reduction in CO for petrol vehicles. Notably 

past emission limits are otherwise unchanged. However, there is the introduction of 

new limits on ammonia (NH3) due to the prevalence of urea based selective catalytic 

reductions in modern ICE vehicles to reduce NOx emissions. Euro 7 has proposed 

the introduction of measurement of brake and tyre wear. With a proposed limit of 

7mg/km from 2025, before a further reduction to 3mg/km by 2035 for brake abrasion 

emissions. At the time of writing there is no indication on the limits for microplastics 

emitted from tyre wear. Details on the procedure under which the emissions from 

brake and tyre wear will be measured have not yet been published. 

Research has shown that freight transport may only make up to 20% of the distance 

travelled but account for 50% of the total energy consumption of road transport in 

Europe [15]. Heavy duty vehicles (HDV), such as trucks and buses, account for 2% 

of the vehicles on the road but are responsible for 28% of CO2 emissions from road 

transport in the EU [16]. They are estimated to make up 20 to 36% of transport NOx 

emissions in Europeôs biggest cities [12].  

The emissions standards for HDVs follow a similar pattern to that of PLCVôs, but 

they are based on a mass per energy (g/kWh) basis rather than mass per distance 
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(g/km). Below in Table 2.2 is the EC Euro emission type approvals for heavy duty 

trucks at the tailpipe. 

Table 2.2 European emission standards for heavy duty trucks. All limits are g/kWh unless stated 

otherwise. 

Type 

Approval 
Year Test Cycle CO HC NOx PM NH3 CH4 HCHO N2O 

Euro I 
1992, <85 kW 

ECE R49 

4.5 

1.1 

8.0 
0.612 

- 

- - - 

1992, >85 kW 0.36 

Euro II 
1995 

4.0 7.0 
0.25 

1997 0.15 

Euro III 2000 

ESC & ELR 

2.1 0.66 5.0 0.10 

Euro IV 2005 

1.5 
0.46 

3.5 
0.02 

Euro V 2008 2.0 

Euro VI 

Current 
2012 

WHSC 0.13 0.4 
0.01 

10 

ppm/kWh WHTC 4.0 0.16 0.46 

Euro VII 

Proposal 
2027 

WHTC cold 3.5 0.2 0.35 0.012 65 

mg/kWh 

0.5 
0.03 

0.16 

WHTC hot 0.2 0.05 0.09 0.008 0.35 0.1 

There has consistently been a prominent reduction in at least one of CO, HC, NOx, 

and PM in each new Euro emissions standards for heavy duty trucks. With a 58% 

reduction in PM from Euro I to II, 47% reduction in CO from II to III, 80% reduction 

in PM from III to IV, 43% reduction in NOx from IV to V, 80% reduction in NOx from 

V to VI, and 87% reduction in CO from VI to VII. Notably in the proposal for Euro 

VII, there are also reductions of 61% for HC, 77% for NOx, and 20% for PM, 

compared to Euro VI limits. Euro VI brought in new limits on NH3, and Euro VII has 

proposed new limits for methane (CH4), formaldehyde (HCHO), and nitrous oxide 

(N2O) at the tailpipe. As well as proposing emissions legislation for brake and tyre 

wear, in line with PLCVs Euro 7. At the time of writing there are no specifics on the 

limits and testing. 

Europe has the some of the most stringent tailpipe emissions regulations (Stage V) 

for non-road mobile machinery (NRMM) in the world. Legislation is more diverse 

and specific due the broad categories and uses of vehicles which the NRMM 

emissions legislation covers. With different limits for emissions for nonroad, 

waterways, rail, and engine power. Legislation on NRMM will not be discussed in 

detail due to the lower emissions legislation requirements than that of on road HDVs. 

Historically the regulations have been looser or lag behind than that of road 

transport. However, the recent 2020 Stage V regulations for NRMM engines of 56 
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to 560kW net power are similar that of Euro VI for HDVs. Suggesting they could 

coalesce in the future. 

As well as Euro type approval, CO2 average fleet emissions regulations play a role 

in regulating both PLCVs and HDVs tailpipe emissions. For PLCV manufacturers, 

fleet average CO2 emissions can be drastically impacted by implementing a new 

battery electric vehicle (BEV) or hydrogen fuelled models into their fleet with zero 

tailpipe CO2 emissions. However, this presents a greater challenge for HDVs. The 

total amount of CO2 from the road heavy duty transport sector has stagnated and is 

predicted to increase in the EU, as shown in Figure 2.2.  

 

Figure 2.2 Reported and projected CO2 emissions from HDV for the EU-28 from the European 

Environment Agency in 2018 [17]. 

While CO2 emissions per vehicle have been falling, the increase in number of HDV 

fleet sizes in EU is increasing [17]. Leading to an increase in overall HDV CO2 

emissions as well as an increasing percentage of transport CO2 emissions being 

contributed by HDVs in the EU. 

In 2019 the EC implemented its first regulation of average HDVs CO2 emissions to 

curb the increasing emissions from the road freight sector [18]. The 2019 emission 

standard set targets for reducing the average emissions from new lorries for the next 

decade. The regulation legislated vehicle manufactures to reduce CO2 average 
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emissions 15% by 2025 and 30% by 2030, compared to levels in 2019. With heavy 

penalties for manufactures missing the CO2 targets. 

In January 2023 the EC proposed new stronger CO2 regulations applicable to a 

broader range of HDVs to continue reducing CO2 emissions from the sector and 

reduce dependency on imported fuels. New requirements of reducing CO2 

emissions 45% by 2030, 65% by 2035, and 90% by 2040 compared to 2019 levels 

were proposed [19]. A 90% reduction from 2040 is approximately equivalent to < 5g 

CO2/tonne-km, effectively making carbon based fuels unviable form 2040 onwards. 

2.1.1.3 Looking Ahead 

Beyond the next set of regulations, a more effective looking method for the future 

would have to examine what would be classed and defined as zero emissions. First 

what health and sustainability means in this context must be further defined. It can 

be thought of as either an issue of what is acceptable to breathe for health or what 

the natural background nonanthropogenic air quality would be, which can vary 

depending upon the natural local environment without anthropogenic interference. 

WHO guidelines for NO2 exposure are to not exceed mean exposure of 400µg/m3 

(0.21ppm) over 1 hour and 150µg/m3 (0.08ppm) over 24 hours, with no repeats of 

exposure within 8 hours [20]. This suggests that emissions control beyond the 

current Euro VI and VII limits could still be expected for heavy duty road transport in 

Europe (about 60ppm at the tailpipe) in areas of high sensitivity, such as towns and 

cities, in the future if this is used as a measure. Future legislation will likely 

increasingly include a wider range of compounds. 

For sustainability, another wider view is that sustainability is the capacity for the 

biosphere and human civilisation to coexist. The Brundtland report defined 

sustainable development as development which ñmeets the needs of the present 

without compromising the ability of future generations to meet their own meanò [21]. 

Regarded more specifically within engineering, sustainability is generally defined as 

products, processes, and services which do not result in products that cannot be 

reused, recycled, or repurposed during manufacture, use, and end of life. This 

conceptual framework and methodology of analysis is commonly referred to as 

cradle to grave analysis, life cycle assessment, or life cycle analysis. In these 
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analyses, the environmental or biosphere impact is assessed at each stage of the 

productôs life. 

To date the focus of legislators has been on vehicle tailpipe emissions but in the 

future consideration of the full lifecycle impact of the manufacture, use and disposal 

of transportation vehicles, infrastructure and services will be necessary to assess 

and achieve net zero targets and beyond, to ensure there are not unintended 

consequences of emissions production in the lifecycle of the vehicle. This has been 

raised in the calls for the Euro 7 and VII legislation proposals, leading to the inclusion 

of emissions from brake and tyre wear, as well as the longevity of vehicle useable 

life. However, the proposal suggests this will not be addressed by Euro standards, 

instead it will be addressed by reviews of the End-of-Life Vehicle Directive and part 

of the European Green Deal and the Circular Economy Action Plan in 2023 [22]. 

Human civilisation and the biosphere will always require energy to exist. However, 

ideally sustainability should incorporate low energy consumption, so that less 

energy production is required upstream of any process. This impacts the 

sustainability upstream of the process and influences cost, which can inhibit uptake 

in the concerning product or technology and increase the adoption timeframe of the 

efficient and/or clean technology. 

This piece of work will focus on toxic emissions and sustainability of a heat engine 

during use, i.e., in use propulsion emissions. Embedded and end of life emissions 

will not be discussed in detail, as they are not main the subject focus of this work. 

However, it should be noted and assessed in future specific works due to their 

impact on full life cycle emissions. 

2.1.2 The Right Tool for the Job 

2.1.2.1 Introduction 

Power technology has been dominated by electrochemical batteries on the micro-

scale (10s W), ICEs on the medium-scale (kW-MW), and gas turbines at the large 

scales (10-100s MW) for over seventy years. With transportation and mobility 

dominated by the fossil fuelled ICE over the past century. 
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The climate emergency has promoted a rapid and dramatic shift to alternative 

propulsion technologies powered by renewable ógreenô energy vectors. This 

pressing need to transition the worldôs primary energy source away from fossil fuels 

requires a huge technological shift. Advances in technology over the last several 

decades have started to challenge this status quo, with electrochemical batteries 

transitioning into kW capacities for transportation and low MW for stationary energy 

storage. With conventional ICEs being largely displaced by electrochemical 

batteries in personal transportation and gas turbines by renewable technologies in 

power generation. However, in high energy mobile and remote applications, such 

as shipping, road freight, and distributed back up power, the fundamental low energy 

density of electrochemical battery technology means this is currently an unviable 

solution to decarbonise these areas. 

The ICE is destined to be less ubiquitously used than it currently is due to competing 

technologies emerging and developing. However, there are circumstances where 

the ICE will be hard to outcompete, and continued advances will therefore be 

needed for an ICE to produce lower toxic and GHG emissions in these areas. It is 

recognised that there is ñno silver bulletò technology that can replace all of the 

applications of the ICE, a portfolio of technologies will be required across the 

transport sector [23]. 

It is expected that in duty cycles with low energy requirements, such as the average 

car journey, or high stop-start drive cycles, such as vehicles in city centres, ZEV will 

be needed to meet current and future emissions guidelines and improve public 

health. Current BEV technology has shown that it is able to meet this requirement. 

Other heavy duty or high energy drive cycles are currently hard for other propulsion 

technologies to compete with the ICE, such as intercity, international, and 

intercontinental travel. Requiring an ICE propulsion system for at least the near 

future unless an unpredictable breakthrough in technology is made. 

The major drivers for differing propulsion technologies for each suitable application 

are efficiency, energy density, drive cycle, local energy infrastructure, and cost. For 

a vehicle the energy for the propulsion system must also be easily storable, 

transportable, and rechargeable. A fuel with a low volumetric and/or gravimetric 

energy density may not be an issue for local power generation but for a transporter, 
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such as haulage or shipping, the fuel tank must not inhibit the payload capacity or 

cause undue energy consumption through its mass, shape, and/or size. This is the 

barrier which has prevented the use of the electrochemical batteries in the past. 

With electrochemical batteries only in the last decade able to power low energy 

vehicle drive cycle applications, such as PLCVs. However, this currently remains an 

issue for high energy drive cycles, such as international haulage and shipping, which 

limits the application of this solution. 

Each propulsion system has individual benefits that suit specific applications and 

drive cycles. New technologies that have called into question the logic of the past 

century, of using ICEs for every application, will be discussed briefly in detail here. 

A short overview of the major new competing and emerging propulsion technologies 

and their applications will be outlined below. This is to state where the ICE will still 

play a role as it becomes less ubiquitous in the near and distant future.  

2.1.2.2 Battery Electric Vehicles 

Electrochemical battery electric vehicles (BEV) are a ZEV. However, it can be 

argued that BEVs export emissions from where they are used to where the vehicle 

or energy was created. If the electricity grid is assumed to be 100% renewable, then 

the energy use emissions are eliminated. Excluding this issue, they can still make a 

difference to local air emissions and public health by removing emissions from built 

up areas to areas where the effect on health is most impactful. However, there 

remain in use emissions from tyre and brake wear. These PM emissions can be 

higher in the case of BEVs compared to ICE vehicles, due to BEVs having more 

mass than an equivalent ICE vehicle. The EC is aware of these non-exhaust 

emissions, considering these emissions to be constitute 50% of PM10 and produce 

other chemicals that are dangerous to public health [24], hence the introduction into 

their in the latest Euro emissions regulations. While tyre wear with increased vehicle 

mass is unavoidable, BEV and hybrid vehicles can reduce brake wear, in 

comparison to purely ICE vehicles, if they utilise a regenerative braking system. 

Utilising the electric motor instead of traditional brakes to recapture otherwise 

wasted energy and reduce the amount of brake dust particles that would otherwise 

be emitted.  
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Considering road transport, the majority of personal transport vehicles in Europe are 

expected to use an electric drivetrain by 2050, and 80% of the driven kilometres are 

forecast to be under electric propulsion [15]. However, the same study forecasts that 

the remaining 20% of driven kilometres will require an alternative propulsion 

technology due to the high energy requirement of the journey.  

The use of a purely electrochemical battery solution for these high energy 

applications is primarily impractical due to the storeôs mass, which compromises the 

payload capacity of the vehicle and the electrochemical battery. These applications 

represent only 20% of the driven kilometres but consume 40-50% of the total energy 

used by the road transport sector. Closer analysis of this research reveals these 

vehicles are primarily moving freight and people between cities. Others have 

suggested solutions to this issue by means of electrification of roads using overhead 

or under road pantograph [25]. Although this option negates the need for a 

breakthrough in electrochemical battery technology, there remains the challenge of 

delivering the infrastructure required to generate, store, and distribute the electricity. 

Considering remote applications, such as intercontinental shipping, this option is 

clearly unfeasible as the energy must be carried and transported in some form within 

the vehicle. 

The emissions produced from the mining, manufacture and end of life processes 

are also significant factors with BEVs. With electric cars typically requiring more 

mining, expensive materials, manufacturing, end of life processing, and energy to 

produce, due to the electrochemical battery. There is a known concern regarding 

the supply, ethics and sustainability of mining lithium, nickel, cobalt, manganese, 

and other expensive mined elements [26]ï[29]. 

The mining industry is an example of a difficult application to utilise BEVs, as they 

are typically in remote locations with no electricity grid and utilise high energy drive 

cycles. Recycling alone will not be able to meet the material demands needed to 

electrify PLCVs and other sectors in the short term to meet demand for BEV [26]. 

Therefore, continued advancement of other technologies will be needed to reduce 

and eliminate emissions in these hard to electrify areas.  

While electrochemical battery technology will undoubtedly continue to advance, 

there is an upper limit to the energy density of electrochemical batteries. Aluminium-
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air, lithium-air and zinc-air are examples of electrochemical batteries with the 

highest theoretical energy densities, comparable to that of gasoline. Like 

combustion fuelled ICEs, atmospheric oxygen is utilised in each electrochemical 

reaction to produce electricity. They have high energy densities comparable to that 

of gasoline as they do not carry oxygen in the electrochemical battery. However, 

currently issues exist as they are non-rechargeable, and have issues with by-

product removal, recycling, and anode cost, making them currently unviable. 

There has been increased interest in solid state electrochemical batteries due to 

potential higher energy density, increased longevity, increased charging rate, and 

reduced thermal runaway issues, compared to lithium ion. However, solid state 

batteries have still not become manufacturable at scale and will still be difficult to 

penetrate high energy drive cycle applications. Therefore, there has been continued 

research interest in reducing anode and cathode sizes of lithium-ion until these 

issues have been overcome. 

Increasing gravimetric and volumetric energy density as well as falling costs of 

electrochemical batteries has led to uptake into the kWh zone over the last decade, 

making electrochemical batteries viable for personal vehicles, as well as light duty 

and heavy duty vehicles with low energy duty cycles. Electrochemical battery 

propulsion will dominate the PLCV sector in the near future, where short low energy 

consumption journeys are prevalent [15]. However, long distance, large payload, 

high energy applications and remotely operated machines, such as inter-city 

transport, haulage, off-highway, marine, and portable power generation, are much 

harder areas to electrify due to the high energy duty cycles. Until an unpredictable 

breakthrough is made in energy density of sustainable electrochemical batteries, or 

other energy storage vectors, high energy chemical fuels will still be needed in the 

short and near future that can reduce emissions in these hard to electrify sectors. 

2.1.2.3 Fuel Cells 

Fuel cells have been the subject of increasing research interest over the last several 

decades and have been proposed as a solution to clean propulsion technology. 

However, challenges remain over the cost effectiveness of the fuel cell, storage 

tank, and cost of delivering the required infrastructure [30]. 
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Green hydrogen and methanol have been outlined as the major potential 

sustainable fuels for utilisation in a fuel cell, with hydrogen gaining particular interest. 

Solid oxide and proton exchange membrane (PEM) electrolysers have made the 

most progress over the last decade. With examples of both technologies now in pilot 

and commercialisation stages. 

Using hydrogen or methanol and an air as an oxidiser, fuel cells can achieve higher 

energy densities and power than that of electrochemical batteries but still slightly 

below that of current fossil fuelled ICEs. Storing fuel in tanks enables economics of 

scale at large capacities and provides rapid refilling, like current fossil fuels, in 

contrast to batteries. However, there are concerns. The implementation of a 

completely new fuel distribution and delivery infrastructure would be required, and 

this has a high capital barrier. Fuel cells can be composed of expensive materials, 

such as platinum. Membrane manufacture is currently relatively immature and 

expensive. Fuel cell specific power and energy is still less than an ICE. 

Emissions are at very low levels, with less than 1ppm NOx, 4ppm of CO, and less 

than 1ppm of reactive organic gases reported without aftertreatment. This is due to 

the low temperatures that the fuel cells operate at. Efficiency is reported to be as 

high as 70% at low load conditions (10% power) [31], with a range of 30-70% over 

the full load range [23]. In comparison current modern conventional ICEs have a 

efficiency range of 30-50% but are most efficient at higher load conditions [23]. 

Figure 2.3 displays a comparison of hydrogen fuelled ICE and fuel cell efficiencies 

over the load range. 
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Figure 2.3 Comparison of hydrogen fuelled ICEs and fuel cell efficiencies [32] 

Hydrogen fuel cells and hydrogen ICEs could be thought of as complimentary 

technologies, due to their commonality of fuel and suitability to different applications. 

With fuel cells most suitable to light to medium load applications, such as passenger 

and light commercial vehicles, and hydrogen ICEs suited to medium to heavy duty 

applications, such as international haulage, agriculture, and NRMM. 

2.1.2.4 Internal Combustion Engines 

The thermodynamic cycles used in conventional ICEs (Diesel and Otto cycles) have 

not changed for over a century. ICEôs have improved dramatically in terms of 

efficiency and emissions over this time, but this can mostly be attributed to reducing 

losses, improved airïfuel mixing, and combustion technologies, rather than a 

change or step improvement in the thermodynamic cycle itself.  

Atkinson and Miller like cycles have been adopted in some recent vehicles, such as 

those by Toyota, as well as small gains through novel valve timings, high pressure 

injection systems, lean homogeneous compression ignition, and energy 

recuperation in modern engines. However, the basic Otto cycle is approaching the 

fundamental limits of the cycle and new novel cycles have shown interest and need. 

For example, through the UK Automotive Councilôs Thermal Propulsion System 

roadmap and the US SuperTruck programmes [33], [34]. 
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There remains an efficiency emissions coupling problem in conventional 

thermodynamic cycles. Increasing combustion temperature increases efficiency but 

also increases production of NOx. Emissions are not directly addressed in-cylinder 

in conventional ICEs unless a cool lean strategy is adopted, such as low 

temperature combustion (LTC). LTC can be ñforcedò on a conventional ICE in a 

limited section of the engine operating map but the control over the end of 

compression temperature, and therefore the start of combustion, in these engines 

makes such strategies difficult to implement effectively. Therefore, alternative 

thermodynamic cycles and engine architectures are required that can deliver a step 

improvement in efficiency and emissions effectively and reliably. 

The combustion engine, where the chemical energy is converted first to heat via a 

fast-chemical reaction and then via a thermal power cycle to work, is attractive due 

to the inherent low cost and high-power density of the power conversion device. 

However, to remain a viable solution two fundamental issues must be overcome: 

addressing toxic emissions, such as NOx and carbonaceous PM that are a by-

product of the combustion process and increasing thermal efficiency.  

Reciprocating heat engines produce the greatest amounts of emissions during use, 

owing to the use of fossil fuels. However, the emissions from production and 

recycling of reciprocating engines are relatively low. With the large use of aluminium 

and steel in the primary engine systems making them highly recyclable and easy to 

manufacture, relative to electrochemical batteries and fuel cells. 

CO2 emissions are intrinsically linked to the fuelsô carbon source, meaning the CO2 

emission may not be a future issue if a sustainable fuel is utilised. An ICE can use 

a wide variety of fuel feedstock, making it suitable for reducing or eliminating by-

products and waste from other processes in a circular economy. 

All applications that continue to use a combustion engine still have the potential to 

be net zero carbon if they can utilise a combustor that utilised a carbon neutral fuel. 

Such as synthetic hydrogen, bio or óe-fuelsô; made from biological and waste 

sources or CO2 captured from the atmosphere and renewable energy. However, 

there remains an issue around other emissions produced during combustion in an 

ICE apart from CO2. For an ICE to be truly zero emissions it must produce NOx, PM, 
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HC, CO, and other trace toxic emissions at levels below the WHO limits at the point 

of use.  

It should be noted that carbon neutral fuels are still in early-stage development and 

are currently expensive in terms of resource and energy use. Any future sustainable 

chemical energy carriers will inevitably have a high initial cost than current fuels from 

fossil derived sources for a certain period. With carbon based renewables having a 

present cost of approximately 3.5 times that of fossil fuels [35]. Therefore, to mitigate 

this cost premium and shorten the adoption timeframe, efficiency will remain a key 

issue to move to cleaner propulsion systems and be a viable replacement for fossil 

fuels without a significant economic impact on society or barrier for adoption. 

2.1.2.5 Comparison of Propulsion Technologies 

Energy dense chemical energy carriers will still play a significant role in the transition 

to and final zero carbon economy. However, the retention of a chemically fuel 

propulsion system has challenges; the fuel must be sustainable, and the propulsion 

system must be clean.  

Figure 2.4 displays the energy and volumetric densities of a range of chemical fuels 

and energy carriers. However, this does not include the energy conversion 

efficiencies of the process which must be considered when deciding on whether the 

energy vector is suitable for the required application. Figure 2.4 demonstrates some 

of the intrinsic issues of current and future energy technologies. Such as hydrogen 

having a low volumetric density unless stored at extremely high pressure (>30 MPa) 

or a low enough temperature to be stored as a liquid. Lithium-ion batteries have a 

better volumetric energy density than atmospheric natural gas and hydrogen but 

has the lowest gravimetric energy density of the compared energy carriers.  
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Figure 2.4 Gravimetric & volumetric energy density of combustible materials & electrochemical 
batteries. Higher heat value for fuels are used as metals are included [36]. 

Even after considering favourable conversion efficiencies for a lithium-ion battery 

(high conversion efficiency of 98%) and low efficiencies for a modern ICE (low 

conversion efficiency of 30%), lithium-ion batteries cannot compete with most 

gaseous and liquid energy carriers for high and dense energy applications. 

Figure 2.5 displays a Ragone plot comparing the energy and power densities of fuel 

cells, ICE, capacitors, and three electrochemical battery chemistries. This highlights 

how gravimetric energy or specific energy can be thought of as the range of the 

vehicle and specific power can be thought of as the acceleration. The acceleration 

is an important factor for heavy duty high mass applications. 



25 

 

 

Figure 2.5 Ragone plot of different energy storage options [31] 

The graph  in Figure 2.6, from a report by the Transport Energy Network (supported 

by the UK Advanced Propulsion Centre, LowCVP, and the University of Brighton) 

[23], displays the total lifetime (500 Mm) CO2 equivalent (CO2e) emissions for an 

urban 7.5 tonne truck across with a range of powertrain technologies and energy 

sources. With the exception of a BEV on renewable electricity, in use CO2e account 

for >50% the total vehicle emissions of the vehicle and fuel types considered. 

 

Figure 2.6 Vehicle lifecycle CO2e emissions for an urban 7.5 tonne truck across different 

powertrain technologies and low carbon fuels over a life of 500Mm [23] 
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The graph indicates that HFCs utilising the 2020 UK electricity grid display the 

largest total lifecycle CO2e, ~370 Mg CO2e, due to the round trip efficiency of 

electrolysis and fuel cells, as well as the carbon intensity of the UK electricity grid. 

However, there is a dramatic decrease in total lifetime CO2e for HFCs when the 

hydrogen is produced from renewable energy, ~75 Mg CO2e. Steam reformation of 

H2 is the predominant source of H2 currently, however this displays the second 

highest amount of total lifetime CO2e. BEV utilising current UK electricity grid 

equates to roughly half the total lifetime CO2e of the Diesel and CNG powered 

trucks. However, the ICEs powered by waste feedstock, such as used cooking oil 

and biomethane from food waste are half of the current BEV, close to that of a BEV 

utilising renewable electricity. The low CO2e and importance for circular economy 

make these waste fuels attractive as a fuel. 

The capital and operational expenditure of the truck is another key consideration for 

use and adoption. Figure 2.7 displays an estimate of vehicle capital and operations 

cost amortised over the life of the vehicle in 2020. The costs are wholesale without 

tax, subsidy, or cost of infrastructure. The error bars display the maximum and 

minimum potential cost, this is predominantly dictated by the cost of the fuel for the 

propulsion system. The lowest potential costs is a Diesel engine running on a diesel 

fuel and a BEV with a small electrochemical battery. Followed by a SCE operating 

on green hydrogen, with a Diesel engine not far behind. Diesel fossil fuel and green 

ammonia fuel systems have the lowest variability in cost. 

 

Figure 2.7 Estimated 2020 cost per year for a UK class 8 truck without tax or subsidy. 
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The 2040 estimated cost per year for competing technologies and fuels starts to 

become more competitive, as shown in Figure 2.8. There is still a large amount of 

uncertainty of cost for all the alternative fuels and technologies. This is 

predominantly dictated by the uncertainty in renewable electricity costs in the UK in 

2040. The estimates of costing used for the comparisons in Figure 2.7 and Figure 

2.8 can be found in Appendix 1. 

 

Figure 2.8 Estimated 2040 cost per year for a UK class 8 truck without tax or subsidy. 

A SCE represents a cost saving per year and uncertainty reduction vs a Diesel 

engine over all three fuels, even with a higher capital expenditure, due to the 

efficiency gains and higher potential maximum efficiency in 2040. A Diesel engine 

utilising a direct air capture (DAC) efuel has a high chance of not being competitive 

in 2040. However, the cost saving of a SCE can dramatically increase DAC efuel 

competitiveness with a large electrochemical battery. Ammonia provides the least 

uncertainty due to the very small difference in cost for green ammonia in 2020 and 

2040. This makes it a potentially less risky avenue for a TPS than DAC efuel or 

green hydrogen. Both green hydrogen and ammonia are carbon free fuels with great 

potential. The uncertainty with green hydrogen is the cost. If there is low-cost green 

hydrogen available in 2040, a Diesel engine retrofitted with a hydrogen fuel and 

combustion system could remain cost competitive route to decarbonise the heavy 

duty sector. Green hydrogen utilising a SCE has the lowest potential cost overall 

using current estimates. There remains a large uncertainty across all of the potential 

propulsion systems.  
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Metrics that are important to transportation are cost per kg and CO2e per kg to move 

items over the course of the life of the vehicle. A deeper analysis is required to 

understand vehicle cargo weights, vehicle weight, refuelling, and down time of each 

vehicle technology for the vehicle application to understand which provides the best 

CO2e saving at an acceptable cost. As well as other factors to consider, such as 

emissions other than CO2. 

Figure 2.9 displays a potential energy consumption view for transport put forward 

by Siemens. The figure does not suggest that all aviation, marine and road/heavy 

trucks will be powered solely by biofuel and e-fuels, instead illustrating that there will 

be a place for sustainable biofuels and e-fuels. Either through on demand grid power 

or through batteries, electricity will dominate the transport sector in the future. 

However, in areas that require and can afford the added cost of converting 

renewable electricity to a green fuel can provide clean energy vectors in these 

areas. Siemenôs report highlights green hydrocarbon feedstocks, such as methanol, 

will also be required for areas such as the pharmaceutical and medical industries. 

 

Figure 2.9 Siemens low-CO2 emission future fuel options for global transport in millions of tons [37] 

2.1.3 Problems and Challenges 

2.1.3.1 Toxic Emissions 

As previously discussed, the impact of exhaust emissions on air quality, especially 

in cities, remains the largest concern and motivation. Any future propulsion system 
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operating in an urban area must deliver near zero emissions in the real world no 

matter what the driving conditions are. The current range of legislated emissions are 

expected to widen to consider the size of the particles and other airborne emissions 

where there are health concerns, such as PM and other fine particles [38]. How zero 

emissions are defined is open to debate, and arguably should consider impacts in 

manufacturing, recycling, energy production, as well as in use emissions. This wider 

debate is beyond the scope of this work; with a focus only on emissions at the point 

of use and considering the Euro VII standard as the minimum target for a near future 

TPS. 

2.1.3.2 Carbon Dioxide 

In recent years, tailpipe toxic emissions have received the most attention. However, 

with countries committing to net zero targets for 2030-2050, CO2 will remain a 

primary legislative driver. Current legislation is focused on the ótank to tailpipeô 

emissions. In the future, life cycle carbon emissions, including the production and 

recycling of the vehicle as well as contributions from the energy the vehicle 

consumes in use, will need to be added to the current policy framework. The ónet 

zeroô target will necessitate a transition to sustainable fuel from, for example, a 

renewable bio or synthetic source. Reviewing all the potential future fuel sources is 

beyond the scope of this piece of work, but a few of the current main alternative 

sustainable fuels will be discussed in Sections 2.2 and 2.3. However, it is important 

to underline that regardless of the source, the alternative sustainable fuel will most 

likely have a higher cost initially than current fossil fuels. It is therefore assumed that 

a significant rise in thermal efficiency will be required to best utilise precious 

sustainable energy in the future minimising operating cost and consumption of 

precious renewable resources. 

2.1.3.3 Cost 

The fossil fuelled ICE has delivered over a century of affordable transport. Any future 

solution must also deliver an affordable solution to society if the world is to maintain 

its current way of life. When considering cost, the whole value chain must be 

considered, including new infrastructure for energy production and distribution as 

well as the vehicle itself. As such, the avoidance of high-cost materials and as far 

as possible maintaining the general architecture of current engines is desirable. 
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2.1.3.4 Energy System 

To date, the coupling of the transport and power energy supply systems has been 

weak. Some link between oil and gas prices has historically fed through to electricity 

prices, but with the electrification of much of the road transport system, this coupling 

will be inevitably strong in the future. Future transport propulsion technologies must 

consider the impact on the wider energy system, to avoid unnecessary costs and 

emissions being transferred from one sector to another, and ensure the minimum 

societal cost and emissions are achieved. 

2.1.3.5 Discussion 

The four challenges that must be overcome to transition fossil fuelled ICE vehicles 

to a clean, sustainable, and affordable propulsion solution are outlined. There 

remains a question over whether these challenges can be all overcome by an ICE. 

If they are achievable, the end solution should not be viewed as an ICE under the 

more traditional definition, but as a óthermal propulsion systemô in recognition of the 

fundamental changes that will be required to meet these challenges and separate it 

from the fossil fuelled ICEs of the past. This will include changes at the fundamental 

thermodynamic cycle level and reaction chemistries between the oxidant and the 

fuel. Within the scope of this thesis, the heat release process will remain within an 

enclosed expanding volume from which work is extracted via a crank, but all other 

aspects of the system can, and probably will, require changes. 

 

2.2 Combustion 

2.2.1 Introduction 

This section will give an overview of the fundamentals of combustion phenomena 

affecting ICEs and what combustion technology could be used and aid the goal of 

ultra-low emissions. Chemistry will first be addressed before consideration of a 

flame and the effects the mixture preparation and combustion conditions have on 

the primary toxic emissions of NOx and PM. 
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2.2.2 Chemistry 

Combustion is a chemical process in which an exothermic oxidation reaction occurs. 

Typically, the reaction rate is relatively fast, although the reaction rate is heavily 

dependent on the fuel and oxidiser. Combustion is typically a relatively high energy 

exothermic chemical reaction; the high amount of energy release generally leads to 

high temperature and reaction rates. However, the reaction rates are lower than 

those of explosions. 

Chemical mechanisms underpin the combustion process. Dictating the products, 

emissions, and conversion of chemical energy into heat, which an ICE converts into 

useful work. It is worth underlining the basic equations that are useful for quantifying 

energies and adiabatic flame temperatures at this point.  

Stoichiometry describes ñthe relative proportions in which elements form 

compounds or in which substances reactò [39, p. 505]. For a combustion reaction, 

this is the condition at which a fuel and oxidant are in proportion to produce products 

that conserve the elements or mass at the end of the reaction. Hydrocarbon 

reactants dominate combustion in the natural world and are the basis of current 

conventional fossil fuels. The ideal complete stoichiometric reaction for an acyclic 

saturated hydrocarbon (alkane) is shown in Equation (1). 

 
ὅὌ

σὲ ρ

ς
ὕ ᴼὲὅὕ ὲ ρὌὕ 

(1) 

The ratio of reactants must also be considered. The mixture typically utilises air and 

operates over a range of air fuel ratios (AFR). At localised and macro levels the AFR 

will differ and cause differing amounts of heat release and chemical reactions to 

occur at different locations throughout the mixture. Equation (2) displays the formula 

for AFR. Equation (3) displays the formula for lambda (‗) and equivalence ratio (‰). 

 ὃὊὙ
ά

ά
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ὃὊὙ
 (3) 
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As air is not completely oxygen, the concentration of oxygen in the air or working 

fluid must be considered. The introduction of other reactants with the fuel other than 

oxygen leads to a variety of products being produced during and post reaction which 

are unwanted or unhelpful. In Equation (4) below, only the main two components of 

air are considered, i.e., nitrogen and oxygen, as these generally constitute over 99% 

of the composition of air. 

 ὕ Ϸ άὥίί
ὕϷ ὺέὰȢὕ άὥίί

ρ ὕϷ ὺέὰȢὔ άὥίίὕϷ ὺέὰȢὕ άὥίί
 (4) 

Relatively inert reactants, such as nitrogen, can reduce reaction rates and 

temperatures, acting as diluents. Dilution of the oxygen content of air can be 

achieved with various non-oxidisers other than nitrogen in air, with exhaust gas 

particularly of note for ICEs as a diluent. This reduces the amount of oxygen 

available to generate heat while simultaneously increasing the amount of other 

elements that are available to absorb heat, leading to lower adiabatic flame 

temperatures. Nitrogen dilution is of particular interest in this piece of work, the 

reason for which will be highlighted in Section 2.7.7 and further expanded upon in 

Section 5.10. The formula for the standard enthalpy of formation with no heat loss 

is shown in Equation (5). 

 

ὛὸὥὲὨὥὶὨ ὉὲὸὬὥὰὴώ έὪ ὊέὶάὥὸὭέὲЎὌ

ὺЎὌ ὴὶέὨόὧὸί

ὺЎὌ ὶὩὥὧὸὥὲὸί 

(5) 

Combined with the initial temperature, heat capacity, and amounts of the products, 

the adiabatic flame temperature can be calculated, assuming that all the exothermic 

energy from combustion is contained within the products post combustion. Each 

product has a differing heat capacity that depends upon temperature. Using the 

overall heat capacities of the products, shown in Equation (6), the overall heat 

capacity for the products can be calculated. 

 ὌὩὥὸ έὪ ὙὩὥὧὸὭέὲὗ ὧ Ὕ Ὕ  (6) 

 ὌὩὥὸ έὪ ὅέάὴέὲὩὲὸίὗ ὗ  (7) 
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 ὗ ὗ π (8) 

This assumes all products are homogenously mixed and heat is distributed evenly. 

As previously mentioned, in real combustion reactions there are many reaction 

pathways that will occur in the local area, which are dependent on the reactants, 

heat release, initial temperature, pressure, and products. 

2.2.2.1 Chemical Kinetic Mechanisms 

Real fuels are typically a complex mixture of many different compounds and 

structural analogues. It is generally agreed that the behaviour of the complex fuels 

can be well matched and reproduced through simpler surrogate fuels for modelling. 

Highly refined fuels, such as efuels, can be less complex and purer, enabling better 

matching and simpler modelling depending on the composition, but are still likely to 

be made up of several compounds. Detailed chemical mechanisms of surrogate 

fuels enable 0D to 3D models to be applied and well matched against real data. 

Providing insight to the combustion process and rapid combustion development.  

There are many detailed chemical kinetic mechanisms that are available to model 

the combustion of fuels and reaction pathways, depending on the fuel that is of 

interest and the level of detail, complexity, computational power, and time available. 

Several chemical kinetic mechanism relevant to combustion will be discussed in 

detail in this section.  

2.2.2.1.1 Natural Gas Surrogate 

The GRI-Mech is a chemical mechanism developed by Berkeley for natural gas 

combustion, specifically optimised for methane and air [40]. However, reactions for 

other alkanes are also present, such as ethane and propane. The method of 

systematic and computational optimisation of the model is laid out by Frenklach et 

al [41]. In brief, with each new variation of the model, the systematic optimisation 

relies on literature of reliable experimentation, a computational model to solve the 

reaction mechanism kinetics and transport equations, and a final tuning optimisation 

to create a reliable and accurate model. 
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GRI-Mech 3.0 is composed of 53 species and 352 reactions, with associated rate 

and thermal data. Two comparison of ignition delay for several methane air 

compositions using the GRI-Mech 1.2 and 3.0 mechanisms against experimental 

data are shown in Figure 2.10, provided by the team at Berkeley [42], using data 

from shock tube ignition data by Seery & Bowman [43]. For the GRI-Mech 3.0, 

methane ignition delay data is well matched against experimental data by Seery et 

al. There is a broader range of comparisons made against various other 

experimental data points, such as by Cheng et al [44] in which the GRI-Mech 3.0 

demonstrated good ignition matching for hydrogen and methane. 

  

Figure 2.10 Comparison of ignition delay for three different mixtures of methane and oxygen by the 

team at Berkeley [42]. In which they compared the GRI-Mech 1.2 and 3.0 mechanism results 
against real experimental data by Seery & Bowman [43]. 

2.2.2.1.2 Gasoline Surrogate 

Mehl et al developed a detailed chemical kinetics model for relevant component 

mixtures of gasoline [45]. The pure component fuels the scheme is optimised for are 

n-heptane, iso-octane, toluene, and 1-hexene. The full chemical kinetic scheme for 

all component fuels includes approximately 1550 species and 8000 reactions [45].  

As a primary reference fuel for gasoline, iso-octane is of most interest as a simple 

single surrogate fuel and therefore will be discussed here in detail. A graph of 

ignition delay calculated by the scheme versus experimental data for pressures of 

15, 34, and 45 atm is displayed in Figure 2.11. The ignition delay matches the trends 

of increasing ignition delay with decreasing pressure and is best matched against 

the 15 atm experimental data. However, the mechanism overpredicts the ignition 

delay against experimental data for the highest pressure case of 45 atm from 
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approximately 1100K/T to 1300K/T. Although the temperature may not be highly 

accurate in this window, the model is otherwise well matched against the data. 

 

Figure 2.11 Experimental and calculated ignition delay of iso-octane over a range of conditions, 

with experimental data displayed as symbols and the chemical mechanism response displayed in 
solid lines for pressures of 15, 34, and 45 atm [45]. 

2.2.2.1.3 Jet Fuel Surrogate 

JetSurF is a detailed chemical kinetics model for the combustion of a jet fuel 

surrogate. Developed through a multi university research collaboration, led by 

Stanford, and funded by the United States Air Force Office of Scientific Research 

[46]. The model is centred on development of high temperature chemistry for n-

dodecane and n-butyl-cyclohexane, but also includes all n-alkanes up to n-

dodecane, and mono-alkylated cyclohexanes, including n-propylcyclohexane, 

ethylcyclohexane, methylcyclohexane, and cyclohexane. The development effort 

aims to achieve consistent kinetic parameter assignment and predictions for a wide 

range of hydrocarbons. JetSurF 1.0 contains 194 species and 1459 reactions. 

JetSurF 2.0 contains 348 species and 2163 reactions. 

Figure 2.12 display two graphs comparing the decane ignition response of the 

JetSurF 1.0 model against two conditions and sets of data. While having very 

different levels of equivalence ratio and pressure, both sets of data display that the 

JetSurF 1.0 model slightly overpredicts the length of ignition delay but fairly 

accurately predicts the trend in response to changes in temperature. 
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Figure 2.12 Comparison of ignition delay of decane from JetSurF 1.0 model (solid red line) and two 
sets of experimental data  [47]. The left graph is compared with data from Zhukov et al [48] (black 
symbols) and the right graph is compared with data from Horning et al [49] (black symbols) and 

includes uncertainty in JetSurF 1.0 predictions using Monte Carlo simulation (small blue symbols). 

2.2.2.1.4 Diesel Surrogate 

Westbrook et al developed a detailed chemical kinetic reaction model for 

combustion of n-alkane hydrocarbons from n-octane to n-hexadecane [50]. Low 

temperature and high temperature reaction pathways are included for all of the 

alkanes in the model. The single mechanism can then be edited down for any of the 

alkanes included in the model for increased modelling efficiency. 

Dodecane is of most interest as a surrogate for diesel fuel. Therefore the reported 

chemical mechanism results compared to experimental data by Westbrook et al [50] 

are shown in Figure 2.13 and Figure 2.14. There is high level of agreement between 

fuel conversion and temperature and residence time. There is good agreement of 

mole fraction of methane and propene. 
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Figure 2.13 Conversion of fuel and species produced in n-dodecane pyrolysis (2% n-dodecane, 

98% He) at 1s residence time for a range of temperatures. Experimental values are shown as 
symbols, lines show computed results, dashed curves include retroene reactions of 1-alkenes [50]. 

 

Figure 2.14 Fuel conversion and species histories in n-dodecane pyrolysis (2% n-dodecane, 98% 
He). Temperature is 973 K, symbols are experimental points, lines are computed results. Dashed 

curves include retroene 1-alkene decompositions, solid curves do not include them [50]. 








































































































































































































































































































































































































































































