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Abstract: ConStruct.1.r is an R Script that estimates the relative contribu-
tions of consanguinity and population substructure to excess homozygosity. 
ConStruct.1.r also offers the option of simulating data with a given F

ST
 and 

magnitude of consanguinity, incorporating a user-specified number of loci, number 
of alleles and population size. The method seems robust when population sizes are 
above 200 and individuals are genotyped at greater than 10 loci.
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1. Introduction
Departures from Hardy–Weinberg expectations within a single population are typically quantified by 
Wright’s inbreeding coefficient: FIS (1951). Discounting null alleles, FIS is a measure of the degree of 
identity by descent (IBD) between two alleles at a locus within an individual, above that expected 
through random mating. This extra degree of relatedness between alleles results in an excess of 
homozygosity relative to Hardy–Weinberg expectations. However, undetected population substruc-
ture can also cause an excess of homozygosity. This is referred to as the Wahlund effect, which 
arises whenever a population is cryptically composed of numerous subpopulations, each experienc-
ing a degree of isolation (Hartl & Clark, 2007). In this latter scenario, the excess of homozygosity is 
not caused by increased IDB between alleles within individuals relative to the population as a whole, 
but increased IBD between alleles within subpopulations relative to the total population. This occurs 
whenever there are barriers to gene flow between the subpopulations such that the ensuing genetic 
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drift causes the allele frequency distributions within subpopulations to diverge, which is typically 
measured by another of Wright’s inbreeding coefficients: FST. Recognising descrete subpopulations 
can be difficult, in which case the substructure of the population is cryptic. Further, without knowl-
edge of the subpopulations, it is not possible to perform typical hierarchical analysis [e.g. hierfstat 
Goudet, 2005 or GENEPOP (Rousset, 2008)]. Whether there is close-kin mating (i.e. consanguinity) 
and/or population subdivision, the resultant excess of homozygosity is captured as a positive value 
of FIS. In such situations, FIS and FST have been confused (Overall & Nichols, 2001). Nevertheless, the 
underlying causes of consanguinity and population substructure are quite different and result in 
distinct patterns of homozygosity at multilocus genotypes that can, under certain circumstances, be 
used to distinguish between the different causes (Overall & Nichols, 2001). ConStruct is an R Script 
that estimates the relative contributions of consanguinity and cryptic substructure to homozygosity 
within a single data-set.

2. Method
The R Script is available from https://github.com/AndyOverall/ConStruct, along with GNU public li-
cense details, and needs to be copied into the folder to be used as the R working directory. Once the 
script has been “sourced”, by typing source(”ConStruct.1.r”), three different functions can be 
called:

(1)  max.likelihood - Estimates the magnitude of excess homozygosity (F) within an existing 
data-set. 

max.likelihood = function(data, max.alleles, resolution) 

Arguments: 

data is the input file of multilocus genotypes 

max.alleles places an uppermost limit on the number of alleles considered 

resolution is the resolution of the F parameter (i.e. the number of estimates made between 0 
and the maximum value of F) 

Example of use: 

> max.likelihood(data="infile.txt", max.alleles=1000, resolution=100)

(2)  construct - Estimates the joint likelihood of the % of the population with consanguineous 
parents and FST within an existing data-set 

construct = function(data, max.alleles, f.resolution, c.resolution, r) 

Arguments: 

data is the input file of multilocus genotypes 

max.alleles places an uppermost limit on the number of alleles considered 

f.resolution is the resolution of the Fst parameter 

c.resolution is the resolution on the c parameter (% of population that is inbred) 

r is the value of the inbreeding coefficient being considered for the analysis of the data-set

 Example of use: 

> construct(data="infile.txt", max.alleles=1000, f.resolution=100, 
c.resolution=100, r=0.0625)

(3)  simulate - Simulates data-set with specified % of consanguinity and FST between two 
subpopulations 

simulate = function(N, num.loc, fst, r.actual, c, r.consider, max.alleles, 
f.resolution, c.resolution, iteration) 

Arguments: 

N is the total sample size 
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num.loc is the number of loci 

fst is the value of Fst that is to be simulated between two populations 

r.actual is the inbreeding coefficient of the inbred individuals 

c is the proportion of the population inbred to degree r.actual 

r.consider is the value of the inbreeding coefficient being considered for the analysis of the 
simulated data-set 

max.alleles places an uppermost limit on the number of alleles considered 

f.resolution is the resolution of the Fst parameter 

c.resolution is the resolution on the c parameter 

iteration is the number of iterations of the simulation run in order to arrive at the specified, 
simulated Fst 

Example of use: 

> simulate(N=200, num.loc=12, fst=0.05, r.actual=0.05, c=0.5, 
r.consider=0.05, max.alleles=100, f.resolution=100, c.resolution=100, 
iteration=10000) 

If the number of loci specified is, as in this example, 12, the code needs to be modified to tell it how 
many alleles are required for each locus, for example: 

num.alleles = c(4,5,6,7,8,9,10,10,11,9,8,4)

2.1. max.likelihood—Estimate excess homozygosity (F) from existing data-set

To distinguish the relative contributions of consanguinity and substructure to an excess of ho-
mozygosity, the total magnitude of excess, which we will call F, is initially sought. This is achieved by 
calling the max.likelihood function. An example input file is available (“infile.txt”) which com-
prises 200 diploid individuals, each with 12 microsatellite genotypes. The format for the input file is 
a tab delimited series of multilocus diploid genotypes. Each line represents a different individual and 
missing genotypes are presented as NA NA. The maximum value of FST (FSTmax) is output, assuming 
two subpopulations according to (1 - HS)/HS (Hedrick, 2005), where HS, the expected heterozygosity 
of the population, is output, along with the maximum likelihood value of F. The likelihood of F is cal-
culated as � = Pr(Data | F):

where pi is the frequency of allele i and F is the excess of homozygosity over Hardy–Weinberg expec-
tations. The allele frequency estimates are taken simply as counts, without consideration of sampling 
error, which may be relevant when analysing small N (sample size); for example, Lynch, Bost, Wilson, 
Maruki and Harrison (2014) note that unbiased estimates of allele frequencies < 5∕N are difficult to 
obtain and recommend that the rarest allele is required to be 10∕N. When this function is called, the 
distribution of F values is generated and output as a line plot. The maximum likelihood is taken as the 
maximum value of the distribution. As such, the accuracy of this estimate is dependent on the resolu-
tion of F (the argument resolution). Support for the likelihood is defined as the natural logarithm of 
the likelihood ratio (lnLR) (Edwards, 1972), where lnLR = 2 implies a likelihood ratio of e2. Edwards 
(1972) gives G=2 (lnFML - lnF0 ), for two alternative hypotheses. Here, FML represents the maximum 
likelihood value of F and F

0
 that of F = 0. The G value output gives e(ln(FML)−2), which is the support limit 

for the maximum likelihood value; i.e. there is support if this value exceeds that of the likelihood value 
for F = 0. An analysis of the example input file (infile.txt) using this function is presented in the Results 
section (Figure 1).

� =
∏

Ind

∏

Loci

{

pi[F + (1 − F)pj] if i = j,

2pipj(1 − F) if i ≠ j,
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2.2. construct—Estimate joint likelihood of consanguinity and FST from existing data-set
The function construct estimates the proportion of excess homozygosity that is due to close, non-
random inbreeding (FIS) and that due to cryptic population substructure (FST). However, consanguin-
ity influences FIS estimates as (Overall, Ahmad, Thomas, & Nichols, 2003):

Here, cg is the proportion of the population that are consanguines; that is, inbred to degree Rg [(e.g. 
c
1
 is the proportion of the consanguines inbred to degree R

1
, where R

1
 = 1/16 for offspring of first 

cousins. c
2
 could be the proportion inbred to degree R

2
 where R

2
 = 1/8 for offspring of half sib or  

uncle–niece mating, and so on for k different consanguineous arrangements (Overall et al., 2003)]. 
Generally, the excess homozygosity generated when Rg < 1/32 is negligible and calculations need 
not consider values of Rg below this. Rather than attempt to estimate both the value of cg and Rg 
simultaneously, construct only requires that Rg is specified (the argument r) and proceeds to esti-
mate the corresponding cg. For example, it may be known that a particular breeding system, for 
example that of the red deer (Clutton-Brock, Guinness, & Albon, 1982), is conducive to half-sib mat-
ing (e.g. Rg = 0.125). The construct function then estimates the proportion of half-sib mating (c

1∕8
) 

that best accounts for the excess homozygosity observed. On the other hand, with some human 
populations, it is unlikely that individuals have parents more closely related than first-cousins. 
Globally, the magnitude of consanguinity is variable, reaching above 50% of all marriages in parts of 
the Indian subcontinent (Hamamy, 2012), with first cousins accounting for as much as a third of all 
marriages in some regions (Tadmouri et al., 2009). First cousins have a coefficient of relatedness of 
r = 0.125, hence their offspring have an inbreeding coefficient Rg= 0.0625. With this scenario, we 
would type in a value of 0.0625. The maximum likelihood estimate cg is then an estimate of the most 
likely proportion of the population whose parents were related as first cousins.

Where there is both population substructure and, for simplicity, one type of consanguinity, the 
magnitude of excess homozygosity (F) over Hardy–Weinberg expectations can be accounted for by

for a particular magnitude of inbreeding g. In the extreme case of no consanguinous individuals 
(cg = 0), it becomes clear that F = FST, so that the excess is explained entirely by differentiation 
between allele frequencies between the subpopulations in accordance with Wright’s island model 
(1931). Conversely, if there is no population substructure (FST = 0), F = cgRg; and the effect is ac-
counted for by consanguinity alone (FIS). Of importance is that FST relates to the increased probability 
of IBD at each locus within every individual. This is not the case in the scenario where a proportion of 
the population is the product of consanguinity, where the increased probability of IBD (Rg) is only 
expected within the proportion of the population that are inbred (cg). The remainder of the popula-
tion (1 - cg) is expected to have genotypes corresponding to Hardy–Weinberg expectations (unless 
FST > 0). For this reason, the distribution of the number of homozygous loci within an individual is 
different for each of these two scenarios (substructure and consanguinity) for any given value of F. 
It is these differences in the distribution of homozygous loci within individuals that allow the relative 
contributions of consanguinity and substructure to be estimated by ConStruct and is the rationale 
behind the method introduced by Overall and Nichols (2001) where

The Pr(Data | cg, Rg, FST)=�, where

FIS =

k
∑

g=1

cgRg

F = cg

(

Rg +
(

1 − Rg

)

FST

)

+
(

1 − cg

)

(

FST
)

� =
∏

Ind

[

(1 − cg)
∏

Loci

{

pi[FST + (1 − FST)pj] if i = j,

2pipj(1 − FST) if i ≠ j,

+ cg
∏

Loci

{

pi[Rg + (1 − Rg)(FST + (1 − FST)pj)] if i = j,

2pipj(1 − Rg)(1 − FST) if i ≠ j,
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where pi and pj are the frequencies of alleles i and j at each locus estimated from the total data-set. The 
function construct employs this algorithm by enumeration through cg (0 - 1) and FST (0 - FSTmax) pa-
rameter combinations. Because there are limits to the maximum value that FST can adopt, typically 
being of the order 0.3 (Jakobsson, Edge, & Rosenberg, 2013), the function construct also calculates 
an upper bound on FST (FSTmax) from the data input, considering two subpopulations, using (1 − HS)∕HS 
(Hedrick, 2005).

Before committing to a value of Rg for analysis, it is helpful to consider the maximum likelihood 
value of F output from the max.likelihood function. If, for example, we had an excess of homozy-
gosity equivalent to F=0.1, the excess cannot be entirely accounted for by, for example, first-cousin 
offspring, since the maximum value of cg = 1.0 can only result in FIS=0.0625, and hence F = 0.0625. 
Therefore, either closer inbreeding (e.g. Rg = 0.125) or an additional contribution to homozygosity 
through substructure need to be considered possible. If, on the other hand, there was an excess of 
homozygosity equivalent to, for example, F = 0.0625, we need to consider that such a scenario can 
be generated, not only by pure substructure, FST = 0.0625, but by total first cousin consanguinity, 
where cg = 1.0 (for Rg = 0.0625). In this unlikely event, both scenarios generate identical multilocus 
genotypes and both scenarios will be identified as likely (the likelihood surface will contain two 
maxima: cg = 1 & FST = 0 and cg = 0 & FST = 0.0625). In short, the effects of pure consanguinity 
and the Wahlund effect can only be disentangled when Rg > F.

The construct function therefore implements the method outlined in Overall & Nichols (2001) 
and the joint maximum likelihood distribution for cg (the proportion of the population that is inbred 
through consanguinity) and FST between unknown population substructure (the Wahlund effect) is 
estimated. The maximum likelihood values are output, along with a contour plot of the likelihood 
distribution and support limits. In addition, the elikelihood values are placed into an output file: 
ConStruct.Outfile.txt. Alternatively, the FST, cg and elikelihood values can be accessed by data.frame:

> dist = data.frame(f.axis, c.axis, probability)

> dist

An analysis of the example input file infile.txt using this option is presented in the Results section 
(Figure 2).

2.3. simulate—Simulate data-set
The ability of the construct function to distinguish between population scenarios depends upon 
the quantity of information available. For example, with a small sample of individuals (e.g. N = 50), 
genotyped at four loci, each with five alleles, it is unlikely that many scenarios can be distinguished 
with much confidence. The simulate function is provided to identify whether a given data-set con-
tains enough information to distinguish between consanguinity and substructure. This function of-
fers the option of generating simulated data-sets, where the number of loci and alleles at each locus 
is specified along with the desired values of cg and FST [(bearing in mind that the maximal value of 
FST is dependent on the allele frequency distribution within each subpopulation (Jakobsson et al., 
2013)]. Two populations are simulated to contain divergent allele frequency distributions that sat-
isfy the equation FST =

∑

i[(pi − p̄)
2∕(p̄(1 − p̄)), for each locus summed over i alleles. The allele 

frequencies at each locus within each subpopulation are each initiated by random numbers that 
sum to 1, and FST is calculated. With each iteration of the simulation, new allele frequency values are 
chosen from a uniform distribution within 1/100th of the total range centred around the previous 
input values. If the resultant FST is closer to the desired value, the new frequencies are accepted and 
subsequent values are chosen centred around these. Otherwise, the previous values are retained 
and another iteration commences. The simulated FST values refer to the locus averages, rather than 
specific allelic FST values. This script can take some time to run, depending on the magnitude of pa-
rameters specified by the user. The simulated data-set is then analysed using the equivalent method 
to the construct function.
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Two values of r are specified by the user: r.actual and r.consider. This is because the value 
being investigated (r.consider) does not have to be the same as that which has been simulated 
(r.actual). It may be of interest to explore the sensitivity of the method when the incorrect value 
of consanguinity is assumed for analysis. It is recommended that the number of iterations of the 
algorithm performed, in order to search for allele frequencies that correspond with the required FST, 
is greater than 10,000. As with the function construct, the maximum likelihood values of cg and 
FST are output, along with a contour plot of the distribution and the support limit. Also, the elikelihood 
values are placed into an output file: ConStruct.Sim.Outfile.txt. As with the max.likelihood func-
tion, the axis and probability values that make up the plot can be accessed as global variables: 
f.axis, c.axis and probability.

To evaluate the performance of the scripts, a range of parameters were simulated: N = 50; 200; 
500; number of loci = 10; 30; number of alleles = 8 and three population scenarios: (1) FST = 0; cg = 
0.5; Rg = 0.0625. (2) FST = 0.03; cg = 0.5; Rg = 0.0625. (3) FST = 0.03; cg = 0; Rg = 0.0625. Although the Rg 
value in the third set of simulations is redundant, because cg = 0, it is important to remember to type 
in a value of consanguinity to be considered for analysis.

3. Results
The example input file, infile.txt, is made up of 200 diploid individuals genotyped at 12 microsat-
ellite markers, each with 8 alleles. This is an example of a data-set where no information relating to 
substructure is available. When this data is analysed using hierarchical algorithms, such as Weir and 
Cockerham’s (1984), implemented in, for example, GENEPOP (Rousset, 2008), FIS values are output 
for each locus, with an average of FIS = 0.049 (s.d. = 0.019). Figure 1 gives the likelihood curve output 
when the function max.likelihood was called:

> max.likelihood(data="infile.txt", max.alleles=1000, resolution=1000)

The R output is 

Maximum value of Fst = 

[1] 0.209714

Maximum Likelihood value of Fst = 

[1] 0.04403994

G = 

[1] 0.001242958

Figure 1. Likelihood curve 
generated from infile.txt using 
the max.likelihood function. 
Maximum likelihood = 0.044.
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The support envelope (G = 0.0012) excludes values of 0.027 < F > 0.063, the values of which can 
be found by typing 

> dist = data.frame(f.axis, probability)

> dist

Figure 3. Simulated data-sets 
where FST = 0; cg = 0.5 and Rg = 
0.0625. Maximum likelihood 
values with outermost support 
envelope (SE): A) cg=0.48; FST
=0, SE=1e-4; B) cg=0.6; FST=0, 
SE=1e-4; C) cg=0.44; FST=0.009, 
SE=3e-4; D) cg=0.61; FST=0.006, 
SE=1e-4; E) cg=0.48; FST=0, 
SE=5e-4; F) cg=0.47; FST=0.001, 
SE=1e-3.
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Figure 2. Likelihood contour 
from infile.txt using the 
construct function. Maximum 
likelihood FST = 0.01 and cg 
= 0.55, where Rg = 0.0625. 
Support envelope = 2e-4, which 
corresponds with outer most 
contour.
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If it is suspected that the population from which these data have been collected is not a single, 
inbreeding population, but one that may contain subpopulations, in accordance with Wright’s island 
model (1931), then construct is called. construct was called as:

> construct(data="infile.txt", max.alleles=1000, f.resolution=100, 
c.resolution=100, r=0.0625)

The results of which are presented in Figure 2. The R output indicates that the maximum likelihood 
corresponds with an FST = 0.01 and cg = 0.55, where Rg = 0.0625. The F = 0.044 appears to be contrib-
uted to by half the population having parents related as first cousins, but also substructured into 
subpopulations with a variance in allele frequencies corresponding to FST = 0.01.

A series of scenarios were simulated by calling the simulate function to assess the performance 
of this method. Figure 3 presents the likelihood contours where FST = 0; cg = 0.5 and Rg = 0.0625. 
Figure 4 where FST = 0.03; cg = 0.5 and Rg = 0.0625 and Figure 5 where FST = 0.03; cg = 0 and Rg = 0.0625. 
All loci have eight alleles, which were specified, for example with ten loci, as num.alleles = 
c(8,8,8,8,8,8,8,8,8,8).

4. Discussion
Figure 1 illustrates that when a single population is analysed, the maximum likelihood estimate of 
F=0.44, which corresponds to homozygosity in excess of Hardy–Weinberg expectations, is broadly in 
agreement with a point estimate of FIS=0.049 calculated using hierarchical F-statistics [(e.g. those 
employing Weir and Cockerham (1984) in GENEPOP]. Figure 2 shows the joint likelihood of cg and FST. 
The maximum value is found where cg = 0.55 and FST = 0.01. The support envelope of 2e-4, which cor-
responds with the outermost contour of the figure, encloses parameter values that are equivalent to 
being significantly different from values cg = 0 and FST = 0. Values that fall outside of this outermost 

Figure 4. Simulated data-sets 
where FST = 0.03; cg = 0.5 and Rg 
= 0.0625. Maximum likelihood 
values with outermost support 
envelope (SE): A) cg=0.41; FST
=0.04, SE=5e-5; B) cg=0.45; FST
=0.03, SE=1e-4; C) cg=0.54; 
F
ST=0.024, SE=2e-4; D) cg=0.36; 
F
ST=0.023, SE=1e-4; E) cg=0.59; 
F
ST=0.029, SE=2e-4; F) cg=0.35; 
F
ST=0.035, SE=5e-4.
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envelope are, generally, considered to be unlikely. This additional analysis indicates that, in this ex-
ample, the single parameter estimate of F=0.044 is an over-estimate of inbreeding as it is likely con-
tributed to by cryptic substructure. Although, considering where the outermost support envelope 
falls, many other parameter values are, if less likely, still likely; e.g. cg = 0.2 and FST = 0.03. The perfor-
mance of the simulate and construct functions was assessed by generating and analysing vari-
ous scenarios, presented in Figures 3–5. Both of these functions can take several minutes to execute 
when large population sizes and numbers of loci are considered (e.g. N = 500 and number of loci > 10). 
Figures 3–5 illustrate that the method is able to correctly distinguish pure scenarios (Figures 3 and 5) 
as well as combinations of the two scenarios (Figure 4). However, the estimated range of likely pa-
rameter values can be broad with small population sizes (< 200) and few loci (e.g. 10), even though 
the maximum likelihood values can be accurate. In addition, although eight alleles were considered 
here, the number and distribution of allele frequencies can be influential. Generally, rare alleles can 
be more informative when attempting to distinguish departures from Hardy–Weinberg equilibrium 
(the ratio (p2(1 − F) + pF)∕p2 is inversely proportional to p). It is also important to note that because 
the allele frequencies are estimated without consideration of sampling error, rare alleles are only 
expected to be reliably estimated whenever p > 10∕N (Lynch et al., 2014). Although only a limited 
number of scenarios are explored here for the purpose of illustration, the performance of the method 
can vary depending on the allele frequency distributions and the user is encouraged to explore this 
influence. Analysis of more complex allele frequency distributions can be found in Overall et al. (2003) 
and Montarry et al. (2015).
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Figure 5. Simulated data-sets 
where FST = 0.03; cg = 0 and Rg 
= 0.0625. Maximum likelihood 
values with outermost support 
envelope (SE): A) cg=0; FST=0.01, 
SE=2e-4; B) cg=0; FST=0.03, 
SE=3e-4; C) cg=0.03; FST=0.02, 
SE=5e-4; D) cg=0.03; FST=0.014, 
SE=4e-4; E) cg=0; FST=0.02, 
SE=1e-3; F) cg=0; FST=0.03, 
SE=2e-3.

N=50, Loci=10

FST

c g

0.00 0.10 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=200, Loci=10

FST

c g

0.00 0.10 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=500, Loci=10

FST

c g

0.00 0.10 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=50, Loci=30

FST

c g

0.00 0.10 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=200, Loci=30

FST

c g

0.00 0.10 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=500, Loci=30

FST
c g

0.00 0.10 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(A) (B) (C)

(D) (E) (F)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

ri
gh

to
n]

 a
t 0

0:
06

 1
3 

Ja
nu

ar
y 

20
16

 



Page 10 of 10

Overall, Cogent Biology (2016), 2: 1128317
http://dx.doi.org/10.1080/23312025.2015.1128317

© 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
You are free to: 
Share — copy and redistribute the material in any medium or format  
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.  
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.  
No additional restrictions  
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Biology (ISSN: 2331-2025) is published by Cogent OA, part of Taylor & Francis Group. 
Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions
Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Author details
Andrew D.J. Overall1

E-mail: a.d.j.overall@brighton.ac.uk
ORCID ID: http://orcid.org/0000-0001-9766-1056
1  School of Pharmacy & Biomolecular Sciences, University of 

Brighton, Brighton BN2 4GJ, UK.

Citation information
Cite this article as: ConStruct 1.0: An R Script to 
distinguish between substructure and consanguinity 
within a population using multilocus microsatellite data, 
Andrew D.J. Overall, Cogent Biology (2016), 2: 1128317.

References
Clutton-Brock, T. H., Guinness, F. E., & Albon, S. D. (1982). Red 

deer, behaviour and ecology of two sexes. Chicago, IL: 
University of Chicago Press.

Edwards, A. W. F. (1972). Likelihood. Cambridge: Cambridge 
University Press.

Goudet, J. (2005). Hierfstat, a package for R to compute and test 
hierarchical F-statistics. Molecular Ecology Notes, 5, 184–186.

Hamamy, H. (2012). Consanguineous marriages, 
preconception consultation in primary health care 
settings. Journal of Community Genetics, 3, 185–192.

Hartl, D. L., & Clark, A. G. (2007). Principles of population 
genetics. Sunderland, MA: Sinauer.

Hedrick, P. W. (2005). A standardized genetic differentiation 
measure. Evolution, 59, 1633–1638.

Jakobsson, M., Edge, M. D., & Rosenberg, N. A. (2013). The 
relationship between Fst and the frequency of the most 
frequent allele. Genetics, 193, 515–528.

Lynch, M., Bost, D., Wilson, S., Maruki, T., & Harrison, S. 
(2014). Population-genetic inference from pooled-
sequencing data. Genome Biology and Evolution, 6, 
1210–1218.

Montarry, J., Jan, P. L., Gracianne, C., Overall, A. D. J., Bardou-
Valette, S., Olivier, E., ... Petit, E. J. (2015). Heterozygote 
deficits in cyst plant-parasitic nematodes: Possible 
causes and consequences. Molecular Ecology, 24, 
1654–1677.

Overall, A. D. J., Ahmad, M., Thomas, M. G., & Nichols, R. 
A. (2003). An analysis of consanguinity and social 
structure within the UK Asian population using 
microsatellite data. Annals of Human Genetics, 67, 
525–537.

Overall, A. D. J., & Nichols, R. A. (2001). A method for 
distinguishing consanguinity and population substructure 
using multilocus genotype data. Molecular Biology and 
Evolution, 18, 2048–2056.

Rousset, F. (2008). Genepop’007: A complete reimplementation 
of the Genepop software for windows and linux. Molecular 
Ecology Resources, 8, 103–106.

Tadmouri, G. O., Nair, P., Obeid, T., Al Ali, M. T., Al Khaja, N., & 
Hamamy, H. (2009). Consanguinity and reproductive 
health among Arabs. Reproductive Health, 6, 17.

Weir, B. S., & Cockerham, C. C. (1984). Estimating \textit{F}-
statistics for the analysis of population structure. 
Evolution, 38, 1358–1370.

Wright, S. (1931). Evolution in Mendelian populations. Genetics, 
16, 97–159.

Wright, S. (1951). The genetical structure of populations. 
Annals of Eugenics, 15, 323–354.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

ri
gh

to
n]

 a
t 0

0:
06

 1
3 

Ja
nu

ar
y 

20
16

 

mailto:a.d.j.overall@brighton.ac.uk
http://orcid.org/0000-0001-9766-1056

	1.  Introduction
	2.  Method
	2.1.  max.likelihood—Estimate excess homozygosity (F) from existing data-set
	2.2.  construct—Estimate joint likelihood of consanguinity and  from existing data-set
	2.3.  simulate—Simulate data-set

	3.  Results
	4.  Discussion
	Acknowledgements
	References



