
 

 

VIRAL INDICATOR REMOVAL IN A FULL-SCALE MEMBRANE BIOREACTOR 

(MBR) – IMPLICATIONS FOR WASTEWATER REUSE 

 

Sarah Purnell
a
, James Ebdon

a
, Austen Buck

a
, Martyn Tupper

b
 and Huw Taylor

a
 

 

a
Environment and Public Health Research Group, School of Environment and Technology, 

University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United 

Kingdom 

 

b
Thames Water Utilities Limited, Clearwater Court, Vastern Road, Reading, Berkshire RG1 

8DB 

 

*Corresponding author phone: +44 1273 642847; e-mail: S.E.Purnell@Brighton.ac.uk 

 

Abstract 

The aim of this study was to assess the potential removal efficacy of enteric viruses in a full-

scale membrane bioreactor (MBR) wastewater reuse system, using a range of indigenous and 

‘spiked’ bacteriophages (phages) of known size and morphology. Samples were taken each 

week for three months from nine locations at each treatment stage of the water recycling 

plant (WRP) and tested for a range of microbiological parameters (n=135). Mean levels of 

faecal coliforms were reduced to 0.3 CFU/ 100ml in the MBR product and were undetected 

in samples taken after the chlorination stage. A relatively large reduction (5.3 log) in somatic 

coliphages was also observed following MBR treatment. However, F-RNA and human-

specific (GB124) phages were less abundant at all stages, and demonstrated log reductions 

post-MBR of 3.5 and 3.8, respectively. In ‘spiking’ experiments, free-swimming ‘spiked’ 

phages (MS2 and B14) displayed post-MBR log reductions of 2.25 and 2.30, respectively. 

The removal of these ‘free-swimming’ phages, which are smaller than the membrane pore 

size (0.04 µm), also highlights the possible role of the membrane biofilm as an effective 

additional barrier to virus transmission. The findings from this study of a full-scale MBR 
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system demonstrate that the enumeration of several phage groups may offer a practical and 

conservative way of assessing the ability of MBR to remove enteric viruses of human health 

significance.  They also suggest that virus removal in MBR systems may be highly variable 

and may be closely related on the one hand to both the size and morphology of the viruses 

and, on the other, to whether or not they are attached to solids.   
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1. Introduction 

A key objective of all municipal wastewater recycling operations is to minimise the onward 

transmission of human enteric pathogens. Those of potential human health significance in 

secondary wastewater effluents include oocysts of Cryptosporidium parvum, cysts of Giardia 

lamblia and a range of enteric bacteria and viruses (De Luca et al., 2013). Removal of enteric 

viruses normally represents a more challenging objective in water and wastewater treatment 

systems than the removal of enteric bacteria, primarily because most viruses are significantly 

smaller than bacteria, but also because they can normally more-readily pass through widely 

used biological treatment processes, such as activated sludge and trickling filters (Shang et 

al., 2005). Therefore in some circumstances effluents of these biological treatment processes 

may be subjected to additional ‘tertiary’ treatment to reduce further the levels of enteric 

viruses (and other pathogens) in the final effluent. Tertiary treatment technologies include 

sand filtration, ultraviolet and ionising radiation and, more commonly, chemical disinfection 

with chlorine, ozone or peracetic acid (Taghipour, 2004; Koivunen and Heinonen-Tanski, 

2005; Zanetti et al., 2006; De Luca et al., 2008; Chen and Wang, 2012). However, the 



 

 

addition of tertiary processes to a treatment plant inevitably increases capital and operational 

costs.  Further, chemical disinfection processes can generate disinfection by-products that are 

potentially harmful to the environment and human health (Wert et al., 2007; Chen and Wang, 

2012), such as trihalomethanes, haloacetic acids, N-Nitrosodimethylamine, bromate and 

chlorite. 

 

The term ‘membrane bioreactor’ (MBR) refers to water and wastewater treatment processes 

that combine a permselective membrane with a biological process (Judd, 2011). In MBR 

systems, separation of solids is achieved without the need for secondary sedimentation (De 

Luca et al., 2013). Instead, removal of solids is achieved by the membrane. The small pore 

size of the membrane (0.03-0.40 µm) also results in the physical removal of a wide variety of 

microorganisms. In recent years, MBR technology has emerged as an alternative to 

conventional activated sludge treatment (van Nieuwenhuijzen et al., 2008).  In part this is 

because activated sludge effluents have been shown to contain levels of enteric organisms 

that may pose an unacceptable hazard to human health, particularly when indirect or even 

direct reuse (for potable or non-potable uses) is proposed (Koivunen and Heinonen-Tanski, 

2005; Simmons and Xagoraraki, 2011; Zhang and Farahbakhsh, 2007). 

 

A range of studies, performed at both pilot-scale and within full-scale municipal wastewater 

plants, have demonstrated that microbial removal in MBR systems is more effective than in 

conventional activated sludge treatment systems (Arraj et al., 2005; Ottoson et al., 2006; 

Francy et al., 2012; Marti et al., 2011). Further, MBR systems have been shown to remove 

microorganisms that are greater in size than the membrane filter pores. The dimensions of 

faecal indicator bacteria (>0.5µm x >2.0µm), the spores of bacterial indicators (1-5µm), 

helminth eggs (>20µm x 25µm) and protozoa, including oocysts of Cryptosporidium and 



 

 

Giardia (>4 µm), all exceed the membrane pore size, and should be removed by exclusion 

(Marti et al., 2011). Ueda and Horan (2000) observed greater than 5 log removal rates for 

faecal coliform bacteria and spores of sulphite-reducing Clostridium spp. in an MBR pilot 

plant with a nominal pore size of 0.4 µm. These relatively high removal rates for bacteria and 

protozoa have also been observed in a number of other studies (Ottoson et al., 2006; Zhang 

and Farahbakhsh, 2007; Zanetti et al., 2010). 

 

However, most viruses of human health significance are smaller than the pore sizes used in 

MBR treatment systems. Noroviruses, sapoviruses, rotaviruses, enteroviruses, and hepatitis A 

and E viruses have diameters of approximately 30 nm, while the diameter of larger viruses, 

such as adenoviruses, ranges from 60 to 90 nm (van Regenmortel et al., 2000). Although 

viruses are clearly smaller in size than the membrane pores used, high removal rates of 

viruses have been reported for MBR (Winnen et al., 1996; Ueda and Horan, 2000; 

Farahbakhsh and Smith, 2004). The removal of viruses is thought to be primarily influenced 

by the development of a biofilm on the membrane, and by virus adsorption to this biomass 

(Da Silva et al., 2007; Wong et al., 2009; Hirani et al., 2014; van den Akker et al., 2014). 

Viruses capable of infecting bacteria (bacteriophages or phages) have long been proposed as 

models for the removal of enteric viruses in treatment systems (IAWPRC, 1991). Indeed, 

phages may be a more appropriate indicator of the presence of enteric viruses in water and 

wastewaters than the bacterial indicators that continue to be widely used (Jofre et al., 1986; 

Gantzer et al., 1998; Purnell et al., 2011; Ebdon et al., 2012; Jofre et al., 2014) because of 

their similarity to these viruses in terms of structure, morphology, size and resistance to 

inactivation. 

 



 

 

Several studies have considered the removal of indigenous phages, namely somatic 

coliphage, F-specific RNA phages, and phages of Bacteroides species in water and 

wastewater treatment systems. Studies have demonstrated that MBR systems remove phages 

more effectively than conventional activated sludge treatment processes. For example, a 

recent study by De Luca et al. (2013) demonstrated that reductions in levels of somatic 

coliphages and F-RNA specific phages were 2.7 and 1.7 log higher as a result of MBR 

treatment than by conventional activated sludge treatment. Zanetti et al. (2010) observed that, 

despite the smaller diameter of F-RNA specific phages (21-30nm), their levels in the 

permeate were lower than those of somatic coliphages (30-100nm). Research conducted by 

Gantzer et al. (2001) supports these findings, demonstrating that F-specific RNA phages have 

a greater tendency to adsorb to solids and the membrane, and are therefore removed in greater 

numbers. 

 

In addition to monitoring the concentration of indigenous phages in MBR systems, ‘spiking 

trials’ have been conducted using phage such as MS2 from the family Leviviridae  (an F-

specific RNA phage that has been extensively used to assess the removal efficacy of viruses 

in treatment systems) (Shang et al., 2005; Hijnen et al., 2010; Marti et al., 2011). This is a 

relatively small virus (20-25 nm), and as a result it has been recommended as a potential 

pathogenic virus surrogate in treatment efficacy studies (Marti et al., 2011). Results of 

previous phage spiking studies have shown MS2 removal by MBR systems to range from 1.0 

log to 5.9 log (Madaeni et al., 1995; Ueda and Horan, 2000; Hirani et al., 2010). Hirani et al. 

(2010) suggested that differences in virus removal between different MBR systems may be 

attributed to variations in membrane pore size between these systems. Differences in biomass 

and the length of time the mature biofilm takes to form, may also contribute to the variance in 

results obtained from spiking trials. Shang et al. (2005) demonstrated a 0.8 log removal of 



 

 

spiked MS2 by adsorption to biomass, and a 2.1 log removal by biofilm formed during 21 

days of filtration. 

 

Removal of enteric viruses by MBR treatment has also been investigated (Ottoson et al., 

2006; Francy et al., 2012) and results from comparative studies suggest that MBR treatment 

removes enteric viruses more effectively than conventional secondary treatment (Oota et al., 

2005; Zhang and Farahbakhsh, 2007). Ottoson et al. (2006) demonstrated that human virus 

genomes were not removed as effectively as phages, with 1.8 and 1.1 log removals for 

enteroviruses and noroviruses, respectively, but the authors concluded that the differences 

were probably related to the use of different detection methods. For example, phages are 

normally cultured, whilst human viruses are typically detected using culture-independent 

molecular approaches (e.g., PCR), which are based on the detection of nucleic acids, rather 

than a complete, infectious particle (virion). Therefore, the detection of nucleic acids from 

damaged organisms in MBR effluents may lead to an underestimation of virus removal 

efficiency, and hence may overestimate the potential risk to human health of these effluents.  

 

While the removal efficacy of viruses in pilot MBR treatment systems has previously been 

reported, published data from full-scale MBR treatment systems remain limited, at a time 

when interest in this technology is increasing rapidly. According to Dahl (2010), the limited 

availability of empirical data on the operational efficacy of full-scale MBR treatment systems 

means that their potential role in the disinfection of waters and wastewaters is yet to be fully 

recognised. The aim of this project was therefore to investigate for the first time the 

behaviour of a range of enteric phages (both indigenous and ‘spiked’) in a full-scale MBR 

treatment (with subsequent GAC treatment) system for wastewaters intended for direct non-

potable reuse in order to elucidate whether the approach may provide new insights into the 



 

 

removal of enteric viruses in such systems. The treatment processes investigated are 

particularly interesting because they comprise the largest UK example of a community 

equivalent scale reuse system designed to treat raw municipal wastewater for direct non-

potable reuse within a high-profile setting (namely, the Queen Elizabeth Olympic Park, 

London).  

 

2. Material and methods 

2.1 The membrane bioreactor water recycling plant 

The Old Ford WRP treats raw municipal wastewater  mined from the Northern Outfall Sewer 

to provide 574 m
3
/day non-potable supply of water to the Queen Elizabeth Olympic Park, 

London for the purposes of parkland irrigation, venue toilet flushing and rain water 

harvesting top up (Hill and James, 2014). The raw sewage is predominantly domestic and 

light commercial with surface drainage inputs from a large catchment population of 

approximately 360,000. The Old Ford WRP takes a small proportion of the flow from the 

Northern Outfall Sewer for treatment. The process comprises a pre-treatment stage with gross 

solid removal through underground septic tanks followed by 1 mm rotating screens for 

particulate matter removal (hair and fibres). Screened sewage flows to the membrane 

bioreactor (MBR) which consists of an above ground activated sludge tank operating at 7 g/L 

mixed liquor suspended solids and segregated in to anoxic and aerobic zones. A separate 

cross-flow membrane tank holds three racks of aerated ultra-filtration membranes (nominal 

pore size of 0.04 µm (Siemens Water Technologies Memcor Ltd)) which are periodically 

cleaned in place. The reclaimed water undergoes post-treatment in the form of granular 

activated carbon (GAC), primarily for colour removal, and chlorination (0.3 to 1.5 mg/l 

chlorine residual) before entering a dedicated 3.65km distribution network. 

 



 

 

2.2 Monitoring programme 

The potential removal efficacy of viruses at the Old Ford WRP was determined by 

monitoring background levels of indigenous phages (somatic coliphage, F-specific RNA 

phages and phages capable of infecting GB124, a human-specific strain of Bacteroides 

fragilis) at each stage of the WRP (so as to try to reflect the wide range of sizes, 

morphologies and adsorption that are characteristic of common waterborne enteric 

pathogenic viruses, including noroviruses and adenoviruses). Samples were taken each week 

(15 sampling occasions), over a three month period from nine sampling points, located after 

each stage of the Old Ford WRP treatment system (Figure 1). In addition, the MBR system 

was also challenged with high-titre suspensions of phages MS2 and GB124 (B-14). All 

samples were transported to the University of Brighton laboratory, in the dark, at 4
o
C, and 

were analysed within four hours of collection. 

 

2.3 Quantification of faecal indicator organisms 

Faecal coliforms were enumerated by membrane filtration on mFC agar, in triplicate, 

according to standard methods (Anon., 2000) and results were expressed as colony-forming 

units per 100 ml (CFU/100ml). Somatic coliphage, F-specific RNA phages and human-

specific GB124 phages were quantified by enumerating plaque-forming units (PFU/100ml), 

in triplicate, according to standardised double-agar-layer methods (Anon, 2001[a-c], 

respectively). Host strain WG5 (E. coli) was used for somatic coliphage enumeration, WG49 

(S. typhimurium) was used for F-specific RNA phages, and GB124 (Bact. fragilis) was used 

for the detection of phages active against this human specific gut bacterium. 

 

2.4 Phage isolation, purification and concentration 



 

 

Plaques enumerated in the MBR product were picked for phage isolation. These phages were 

then purified and concentrated by a plate propagation method described elsewhere (Carey-

Smith et al. 2006; Fard et al. 2010). In brief, cores of agar, containing a distinct single 

plaque, were picked using sterile glass Pasteur pipettes and suspended in 200 µl of phage 

buffer (19.5 mM Na2HPO4, 22 mM KH2PO4, 85.5 mM NaCl, 1 mM MgSO4, 0.1 mM 

CaCl2) (Puig and Girones, 1999; Diston et al., 2014) in microcentrifuge tubes (Fisher 

Scientific, UK). These phage suspensions were then left overnight at 4°C to allow phage 

diffusion into the buffer. The suspensions and dilutions were retested (using the double agar-

layer method) to purify and confirm the presence of phages. This process was repeated three 

times to obtain purified phage.  

 

Once purified, 5 ml of phage buffer were added to plates exhibiting near complete-lysis of the 

host bacterium. These plates were left at room temperature for 1 h and ‘swirled’ using an 

orbital shaker (Stuart™) to promote phage diffusion into the buffer. The liquid and top agar-

layer were then scraped into a 50 ml centrifuge tube (Fisher Scientific, UK), mixed briefly 

using a Whirlimixer™, and left at room temperature for a further thirty minutes. Bacterial 

debris and the top agar-layer were removed from the suspension by centrifugation at 3000xg 

for twenty minutes. The supernatant was then filtered through a 0.22 µm polyvinylidene 

difluoride membrane syringe-driven filter, and stored in light-tight glass bottles at 4 °C in the 

dark. The titre of the suspension was determined by testing ten-fold dilutions (10
-1

-10
-8

) using 

the spot test assay. The process was repeated until a minimum titre of 1 x 10
8
 PFU/ml was 

achieved with all phage suspensions.  

 

2.5 Transmission electron microscopy (TEM) 



 

 

All phages were examined by transmission electron microscopy (TEM) to determine their 

morphology. To view the phage under TEM, the phage suspensions were negatively stained. 

This was achieved by mixing the phage particles with an electron-dense solution of a metal 

salt of high molecular weight and small molecular size, into which the particles were 

embedded.  As a result of this process, phages appeared white on a dark background 

(Ackermann, 2009). Uranyl acetate (UA) stain (pH 4.0-4.5) was used to stain the phage 

suspensions. One drop (10 µl) of previously prepared high-titre phage suspension was applied 

to 200 mesh Formvar/Carbon copper electron microscope grids (Agar Scientific, UK). After 

two minutes, any excess suspension was removed using Whatman No. 1 filter paper 

(Whatman, UK). One drop (10 µl) of UA stain (1 % w/v, previously filtered through a 0.22 

µm filter unit) was then applied to the grid for one minute. Excess stain was removed again 

with Whatman No. 1 filter paper, and the grids were then left to dry. Grids were subsequently 

viewed under the TEM (Hitachi-7100) at 100 kV. 

 

2.6 Spiking trials 

The system was challenged with high-titre suspensions of two phages, namely MS2 and 

phages of GB124 (B-14). It is important to note that the addition of ‘free-swimming’ 

(unattached) phages into the treatment system may not provide results that reflect normal 

operational conditions, as phages have been shown to adsorb readily and rapidly to suspended 

sediments, facilitating their removal by MBR technology (Marti et al., 2011). Therefore, both 

‘free-swimming’ phages and phages previously mixed into mixed liquor solids were spiked in 

the system before the MBR and the removal of phages by the membrane was determined 

using regression analysis to model the curve, followed by integration. 

 

3. Results 



 

 

In total, 135 samples (15 from each sampling point) were analysed for levels of faecal 

coliforms, somatic coliphages, F-RNA phages and phages capable of infecting B. fragilis 

strain GB124 over a period of three months.  

 

3.1 Faecal coliforms 

Mean levels of faecal coliforms at the nine sampling points through the Old Ford WRP are 

presented in Figure 2. Mean numbers were reduced to 0.27 CFU/ 100ml after MBR, and to 

0.17 CFU/100ml after GAC treatment. Removal rates of 6.81 and 6.83 log were recorded 

after MBR and GAC, respectively. Following chlorination, faecal coliforms were undetected 

(<1 per 100 ml) in all samples. 

 

3.2 Indigenous bacteriophages 

Figure 3 demonstrates the mean number of indigenous phages recorded at each stage of the 

Old Ford WRP system. Somatic coliphage predominated throughout much of the system, 

with levels as high as 1.23 x 10
6
 PFU/100ml observed in the raw wastewater. A relatively 

large reduction in somatic coliphage numbers was observed following MBR treatment (5.34 

log). In contrast, F-RNA and B. fragilis GB124 phages were detected at lower levels 

throughout, and demonstrated log reductions through the MBR stage of 3.5 and 3.8, 

respectively. Following MBR treatment, somatic coliphages were the only phages detected 

(F-RNA and B. fragilis GB124 phages being undetected in all samples).  

 

3.3 Results of transmission electron microscopy  

All phage plaques obtained from the MBR product (i.e., only somatic coliphages) were 

processed and viewed by TEM to determine their morphology. All these phages re-infected 

their bacterial host, positively identifying them as viable lytic phages. These phages were 



 

 

then successfully propagated and concentrated to a high titre (10
11

), stained and viewed under 

the TEM. All micrographs demonstrated a single phage morphology (Figure 4), indicating 

them to be members of the family Microviridae. Microviridae are a non-tailed family of non-

enveloped virions that demonstrate icosahedral symmetry (Ackerman, 2011). They are 

relatively small phages, with diameters of between 25- 27nm. 

 

3.4 Results of spiking trials 

MS2 phages and B14 phages were spiked into the membrane tank at titres of 2 x 10
12

 and 1 x 

10
8
, respectively. The experiment was undertaken twice, first using  ‘free-swimming’ phages 

(‘first protocol’) and secondly using phages that had previously been spiked into the MBR 

mixed liquor  and which were therefore likely to be bound to the mixed liquor suspended 

solids (‘second protocol’). While the results of the first protocol provided valuable insights 

into the removal of ‘free-swimming’ phages by the membrane, this spiking protocol is 

unlikely to have effectively mimicked normal operational conditions within the system, hence 

the inclusion of the modified second protocol. Figures 5 and 6 show levels of MS2 phages 

and B14 phages detected in the MBR product for both spiking protocols. Both MS2 and B14 

phages were removed by the membrane to a greater extent when initially associated with 

solids (second protocol). The recorded removal of ‘free-swimming’ MS2 and B14 phages 

was 2.25 and 2.30 log, respectively and the recorded removal of MS2 and B14 phages 

associated with mixed liquor solids was 2.3 and 8.0 log, respectively. Although an 8.0 log 

removal of B14 was recorded, the level of phages fell below the detection limit of the method 

used in the MBR product and the log removal in reality is likely to be considerably lower. 

 

4. Discussion 



 

 

The log removal values for faecal coliforms and phages reported in this study are consistent 

with the findings of other recent studies, which have shown greater phage removal in MBR 

systems, in comparison with conventional activated-sludge treatment. Not only were somatic 

coliphages recorded at the greatest concentration of all phage groups investigated but they 

were also demonstrated to be the only phage group that was detected in the MBR effluent. 

Clearly a direct comparison of the removal rates of the phage groups studied is problematic 

since their concentrations in the raw wastewater varied.  However, the findings do suggest 

that somatic coliphages may represent a useful conservative model by which to assess virus 

removal in MBR systems. Although the removal rates from this study should be treated with 

caution, they appear to be consistent with the findings of both Gantzer et al. (2001) and 

Zanetti et al. (2010), who demonstrated that F-RNA phages were removed in greater numbers 

than somatic coliphages as a result of their greater tendency to adsorb to solids. In our study, 

plaques of somatic coliphages detected in the MBR product were propagated and the 

resulting phage concentrated to a high titre and viewed by transmission electron microscopy. 

The observation that all somatic coliphages isolated from the MBR product were identified as 

belonging to the Microviridae family, which is composed of relatively small un-tailed  

phages (25 and 27nm) may support the hypothesis that  that tailed phage families (namely, 

Myoviridae and Siphoviridae) may be more susceptible to adsorption to solids and/or damage 

within the MBR process. The detection of only a single family of somatic coliphage in the 

MBR product suggests that viral morphology may be an important factor in their removal by 

MBR membranes. However, given the low numbers of phage detected in the MBR product, 

further research is recommended to ascertain whether morphological characteristics played a 

role in their apparent resilience to the treatment process. 

 



 

 

Although efforts were made in the second spiking protocol to model the attachment of phages 

to particles prior to filtration through the MBR membrane, the protocol used is unlikely to 

have achieved the level of attachment that has previously been observed in MBR systems. 

Indeed, other studies have suggested that spiking phages into environmental matrices is 

unlikely to reproduce the conditions of the system (Guzmán et al., 2007). One reason for this 

could be that levels of phage may exceed the number of available binding sites resulting in 

limited attachment levels. While the spiking trials may not have effectively mimicked normal 

operational conditions, the experiments did allow removal of ‘free-swimming’ (unattached) 

phage by the membrane to be assessed. Significantly, ‘free-swimming’ phages were 

successfully removed by the membrane, even though these phage groups investigated were 

smaller than the membrane pore size. Other authors have demonstrated that phage removal in 

the absence of solids may be highly dependent on the formation of the biofilm (Ueda and 

Horan, 2000).  

 

Within the constraints of the experimental design, our study demonstrated virus removal in a 

full-scale MBR wastewater treatment system as high as 5.3 log.  This is comparable with that 

achieved in reverse osmosis (RO) treatment processes where removal rates between 1.4 and 

greater than 7.4 log have been recorded.   

 

5. Conclusions 

The microbial removal values recorded in a full-scale MBR wastewater system were greater 

than those commonly reported for conventional activated sludge treatment. Somatic 

coliphages were shown to represent a potential conservative model by which to assess virus 

removal in MBR systems, but importantly the research also demonstrates the potential 

benefits of studying a range of enteric phages (with a diverse range of  sizes and 



 

 

morphologies) to assess the virus removal performance of treatment technologies. Therefore 

this study provides first evidence that a ‘toolbox’ approach to wastewater treatment process 

monitoring, in which relatively low-cost methods are used to detect a range enteric phages, 

may form the basis of a revised monitoring paradigm that more effectively protects human 

health within a risk-based integrated approach to wastewater reuse. However, further research 

is recommended to elucidate more fully the relationship between phages that may be used to 

monitor treatment systems at relatively low-cost and specific enteric viral pathogens of 

human health significance.  Such studies may demonstrate whether, under specific 

circumstances, phage models may represent an acceptable low-cost substitute for viral 

pathogen enumeration in support of a quantitative microbial risk assessment (QMRA) 

approach to managing the risk to human health of future wastewater reuse systems.  
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Figure 1. Sampling locations for weekly monitoring of surrogate levels at the Old Ford WRP 
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Figure 2. Mean numbers of faecal coliforms at each treatment stage in the Old Ford WRP. 

Outliers (observations >1.5 times the interquartile range) are represented by a *.  

 

  
Figure 3. Mean numbers of bacteriophages at each treatment stage in the Old Ford WRP. 

Outliers (observations >1.5 times the interquartile range) are represented by a *. 

 

 

Figure 4. TEM micrograph with somatic coliphages present in MBR product belonging to 

the Microviridae family (bar=100nm) 
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Figure 5. MS2 bacteriophages detected in MBR product with time following phage spiking 

 

 

Figure 6. B14 bacteriophages detected in MBR product with time following phage spiking 

 


