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Abstract—Diagrammatic notations and reasoning have be-
come a prominent focus of research over the last two decades.
We have now reached a point where the techniques required to
formalize diagrammatic logics and prove meta-level results, such
as soundness and completeness, are well understood. Moreover,
we have insight into what makes effective diagrams. However, the
majority of progress has been on diagrammatic logics that are
very limited in expressiveness. Whilst such logics are exemplars
of the current state-of-the-art and are useful in simple cases,
they have not yet realized their full potential in real world
applications. This paper summarizes the existing state-of-the-
art in diagrammatic logics and poses a set of open questions.
The paper will discuss the need for software tools to support
the creation and use of diagrammatic logics which are needed
for large-scale real-world take-up. Significant research is still
necessary to deliver the full potential of diagrammatic logics.

I. INTRODUCTION

Diagrammatic notations are widely used to convey in-
formation, reflecting their perceived benefits as a mode of
communication. In mathematics, diagrams are often sketched
as accompaniments to proofs or definitions, say, in order to
illuminate their more formal presentation. However, the tradi-
tional presentation of formal or rigorous mathematics and, in
particular, logic has used symbolic notations that are textual in
style. In the case of logic, a mature branch of mathematics, the
long held approach to formalization is to distinguish between
the syntax and semantics. For classical logic, the semantics
are typically defined using a model-theoretic approach. This
then raises the question as to whether diagrams can be used
as an equally formal alternative to symbolic logics. This was
answered affirmatively by Shin, in seminal work during the
1990s [1], who not only formalized the syntax and semantics
of the Venn-I and Venn-II logics, but also provided them with
sound and complete inferences rules. Shin demonstrated that
the syntax and semantics of diagrammatic notations can be
defined just as rigorously as for symbolic logics.

Around the same time as Shin’s seminal work, Hammer
devised a sound and complete Euler diagram logic which had
just three inference rules [2]. The last two decades have seen
many more diagrammatic logics successfully developed. Euler
diagrams, in particular, have been prominent in diagrammatic
logics research, providing the basis for Swoboda and Allwein’s
Euler/Venn diagrams [3], Howse et al.’s spider diagrams [4],
and Kent’s constraint diagrams [5]. Moreover, Euler diagrams
themselves have been investigated as a basis for syllogistic
reasoning by Mineshima et al. [6]. Indeed, it has been shown,
by Sato et al., that Euler diagrams lead to better understanding
and ability to carry out inference tasks than symbolic ap-
proaches [7]. Thus, it is undeniable that Euler diagrams have
formed a major component of research in this field. Other key

examples of diagrammatic logics include Peirce’s existential
graphs [8], further developed by both Shin [9] and Dau [10].

Our knowledge about how to formalize diagrammatic log-
ics has, since those early days of Shin’s seminal contributions,
considerably advanced. Typically, they are formally defined via
an abstract syntax [11] and given a model theoretic semantics.
Using an abstract syntax was found to overcome problems,
identified by di Luzio [12], associated with attempting to
reason about the logic at the concrete syntax level [13] (i.e.,
reasoning with the actual drawn diagrams). Formalized and
well-supported diagrammatic logics with appropriate levels of
expressiveness for real-world applications are well beyond the
current state of the art. This is a substantial hinderance to
realizing the significant potential of diagrammatic logics and
needs to be addressed. In order to address this limitation,
consideration needs to be given as to what scientific advances
are necessary given how such diagrams might be applied. It
is posited that the following are key areas that should be the
focus of research, developed in tandem rather than in isolation,
to deliver this potential:

1) Expressiveness Diagrammatic logics should be suit-
ably expressive for intended application domains.

2) Inference Systems It should be possible to reason
with the diagrammatic logic, to ensure that desirable
properties follow from axioms defined, and that un-
desirable properties do not.

3) Manual Diagram Drawing To be practically appli-
cable on a real-world scale, intelligent software must
be provided that allows end-users to create and use
diagrammatic statements.

4) Automated Diagram Drawing Software should be
provided to automatically draw the results of in-
ference rule applications, or translations from other
notations.

All of the above need to have a strong emphasis on usability. If
we are to realize a major goal of diagrams research (to provide
accessible ways representing, and reasoning about, knowledge)
then empirical evaluations are essential. The remainder of
this paper is devoted to discussing these five aspects of
diagrams research. Sections II to V correspond to the four
areas listed above. Each of these sections briefly describes the
existing state-of-the-art for the family of Euler diagram logics,
highlights limitations and presents avenues for future work.
Section VI concludes.

II. EXPRESSIVENESS

Most of the existing diagrammatic logics have very limited
expressiveness and are, therefore, not usable in a wealth of
real-world applications. Of the Euler diagram family, most
of them are monadic logics and cannot, therefore, talk about



relationships between elements [1], [4], [14], [15]. Some
extensions, such as Kent’s constraint diagrams [5], formalized
in [16], go beyond the monadic case, by using arrows to
represent binary relations. Concept diagrams take the level of
expressiveness beyond first-order, allowing quantification over
sets, elements, and binary relations [17]. Table I summarizes
the expressiveness of the family of Euler diagram-based logics,
where: MFOL is monadic first-order logic, MFOL[=] is MFOL
with equality, MFOL[≤] is MFOL with an order operator,
DFOL[=] is dyadic FOL with equality, and DSOL[=] is dyadic
second-order logic with equality .

TABLE I. THE EXPRESSIVENESS OF EULER DIAGRAM-BASED LOGICS

Diagrammatic Logic Lower Bound Upper Bound
Euler diagrams, as in [14] MFOL MFOL
Venn-II, as in [1] MFOL MFOL
Euler/Venn, as in [3] MFOL MFOL[=]
Spider diagrams, as in [15] MFOL[=] MFOL[=]
Spider diagrams with constants, as in [18] MFOL[=] MFOL[=]
Spider diagrams of order, as in [19] MFOL[≤] MFOL[≤]
Constraint diagrams, as in [16] >MFOL[=] DFOL[=]
Generalized constraint diagrams, as in [20] DFOL[=] <DSOL[=]
Concept diagrams, as in [17] DSOL[=] DSOL[=]

We now give a set of examples to illustrate differences
between these levels of expressiveness. Consider the following
sentences from the given symbolic logics:

(1) MFOL: ∀x¬(A(x) ∧B(x)) ∧ ∃yA(y).
(2) MFOL[=]: ∀x(A(x) ⇔ B(x))∧∃y∃z(A(y)∧A(z)∧¬(y = z)).
(3) MFOL[≤]: ∀x(A(x) ⇔ B(x))∧∃y∃z(A(y)∧¬A(z)∧ y < z).
(4) DFOL[=]: ∀x∀y

(
(A(x) ∧R(x, y)) ⇒ B(y)

)
.

(5) DSOL[=]: ∀x∀y∃f
(
(A(x) ∧ f(x, y)) ⇒ B(y)

)
.

The first sentence can be expressed by all of the dia-
grammatic logics in table I. Examples of an Euler diagram
and a Venn-II diagram expressing the same information are
in Figs 1 and 2 respectively. The Euler diagram expresses
∀x¬(A(x)∧B(x)) by using two non-overlapping closed curves
(one for A and one for B). However, asserting ∃yA(y) needs
to be done indirectly, by turning the statement into ¬∀y¬A(y).
The statement ∀y¬A(y) is expressed by the righthand Euler
diagram with the shading denoting that no elements can be in
A. A horizontal bar, over the diagram, expresses negation. By
contrast, the Venn-II diagram expressing (1) is more succinct,
not requiring the use of any logical operators. This diagram
expresses ∀x¬(A(x) ∧ B(x)) by the use of shading. The ⊗-
sequence asserts ∃yA(y). In fact, the part of the ⊗-sequence
inside both A and B is redundant, because we know no
elements are inside both A and B, because of the shading.

Fig. 1. Euler diagram for (1). Fig. 2. Venn-II dia-
gram for (1).

A spider diagram expressing (2) is in Fig. 3. It uses graphs
(here, each graph comprises a single node) to represent the
existence of elements, with distinct graphs representing distinct
elements. Unlike spider diagrams, Euler/Venn diagrams do not
include notation for explicitly representing the existence of
elements. However, Euler/Venn diagrams do include notation

to represent specific elements, i.e. constants, as do spider
diagrams with constants. The Euler/Venn diagram in Fig. 4
expresses ∀x¬(A(x) ∧ B(x)) ∧ A(tom) ∧ B(jerry). A spider
diagram with constants expressing the same information is
almost identical, shown in Fig. 5. Whilst it might appear
that the inclusion of constants increases expressive power, this
is actually not true. It can readily be shown that constants
can be removed from logics, replacing them with existentially
quantified formulae, without reducing expressiveness. See [18]
for details in the case of spider diagrams with constants.
Of note is that an extension of Shin’s Venn logic includes
constants, but its level of expressiveness is unknown [21], [22].

Fig. 3. Spider diagram
for (2).

Fig. 4. An Euler/Venn
diagram.

Fig. 5. A spider dia-
gram with constants.

Statement (3) can be expressed by a spider diagram of
order, introduced by Delaney [19], [23]. This variant of the
spider diagram syntax expresses ordering information by aug-
menting the graphs (dots) with numbers [24], as well as a
‘product’ operator between diagrams. Numbers are placed on
the nodes of graphs to indicate the relative ordering of the
elements represented. The diagram corresponding to (3) is in
Fig. 6, where the numbering, 1, of the dot inside A (and B)
tells us that the represented element is ordered before the dot,
numbered 2, outside A (and B). For this example, the product
operator is not needed; see [19] for details and examples of
its use.

Fig. 6. Spider diagram
of order for (3).

Fig. 7. Constraint di-
agram for (4).

Fig. 8. Concept diagram
for (5).

So far, all of the example diagrams given have been from
monadic languages. They all use closed curves to represent sets
(corresponding to 1-place predicates in MFOL) and, except
for Euler diagrams, have explicit syntax to represent elements
(sometimes unnamed elements, sometimes particular elements
i.e. constants). Constraint diagrams and concept diagrams both
build on this level of expressiveness, by including arrows
to represent properties of binary relations. For example, the
constraint diagram in Fig. 7 represents the same information
as statement (4). The graph whose nodes are asterisks acts as
a universal quantifier over A (as it is placed inside the curve
labelled A). Thus, this graph can be thought of as representing
all elements in A. The arrow, then, tells us that each of these
elements is related only to elements in the set represented
by the target of the arrow. In this example, the target is an
unnamed subset of B. To summarize, every element in A is
related to only elements in B under R.

Concept diagrams are similar to constraint diagrams except
that they utilize quantifiers explicitly. The example in Fig. 8



represents statement (5). Here we see the use of a ‘quantifi-
cation expression’, namely ‘for all a ∈ A’, written outside
of the diagram’s bounding box. Within this bounding box
are two sub-diagrams. By placing the curves A and B inside
different rectangles, concept diagrams avoid making assertions
about the disjointness or subset relationships between the
represented sets; see [25] for a discussion on how the use of
multiple rectangles allows concept diagrams to reduce clutter
and overcome over-specificity problems that commonly arise
in diagrammatic notations.

Thus far, we have briefly detailed the expressiveness of a
variety of diagrammatic logics based on Euler diagrams. There
are various avenues of future work and here we pose three
important open questions:

Q1: How can Euler diagram logics be extended to repre-
sent relations of arbitrary arity?

Q2: Can higher-order statements be effectively expressed
by diagrammatic logics?

Q3: How effective are statements made in diagrammatic
logics relative to those made in symbolic logics? Does
any relative benefit decrease/increase as expressive-
ness increases?

Q3, in particular, represents a substantial programme of
research and requires many empirical studies to be conducted.
The results of such studies will be greatly illuminating and,
potentially, help with the development of new diagrammatic
logics. Q3 will also provide evidence (or otherwise) that
serves to promote the use of diagrammatic approaches in place
of their symbolic counterparts. Moreover, answers to these
questions will aid with the application of diagrams to solving
real-world problems. For instance, in the area of software
modelling, for which constraint diagrams were proposed, there
can be a need to make higher-order assertions, such as to define
the transitive closer of a predicate or to quantify over sets.

III. INFERENCE SYSTEMS

At the heart of any logic is its inference system. Indeed,
a key aim of the diagrammatic reasoning community is to
make proofs more accessible than those written using symbolic
logics. For the purposes of this paper, a (formal) proof is
a sequence of formulae where each formula is an axiom or
derived, using an inference rule, from formulae written down
earlier in the proof. Thus, in order to produce diagrammatic
proofs, inference rules need to be developed for diagrammatic
logics. Table II summarizes the state-of-the-art results for the
development of inference systems for logics based on Euler
diagrams. As the table indicates, the majority of the monadic
logics are associated with a sound and complete inference sys-
tem. Constraint diagrams, which we have seen include dyadic
(2-place) predicates, whilst incomplete as a logic, does have
sound and complete fragments such as [26]. The completeness
proof strategies for all these logics rely on the decidability
of the logics in question. Even though they are decidable,
obtaining completeness is not always straightforward [27].

We now look, in more detail, at the inference rules that have
been developed for a selection of these logics, starting with
Venn-II. Shin’s work on Venn-II (and Venn-I) [1] is widely
regarded as the first formalization of a diagrammatic inference
system. Both Venn-I and Venn-II are sound and complete. An

TABLE II. THE SOUNDNESS AND COMPLETENESS OF EULER
DIAGRAM-BASED LOGICS

Diagrammatic Logic Sound Complete
Euler diagrams, as in [14] Y Y
Venn-II, as in [1] Y Y
Euler/Venn, as in [28] Y Y
Spider diagrams, as in [4] Y Y
Spider diagrams with constants, as in [29] Y Y
Spider diagrams of order, as in [19] Y N
Constraint diagrams, as in [30] Y N
Generalized constraint diagrams, as in [31] Y N
Concept diagrams, as in [25] Y N

example of an inference rule application, in Venn-II, can be
seen in Fig. 9. The diagrams d1 and d2 are taken as axioms,
with d1 asserting that A ̸= ∅ (or, in MFOL, ∃xA(x)) and
d2 asserting A ∩ C = ∅ (equivalently, ∀x¬(A(x) ∧ C(x)) in
MFOL). From d1 and d2 we can deduce d3, which expresses
the same information but in a single diagram. Shin’s so-called
unification rule allows d1 and d2 to be combined into d3.
However, there is no single inference rule that allows d4 in
Fig. 10 to be deduced from d1 and d2 in just one step. This is
perhaps surprising since d4 is an obvious consequence of d1
and d2: d4 merely takes d2 and adds to it the information that
A ̸= ∅ given in d1.

Fig. 9. Inference in Venn-II.

Fig. 10. Inference in Venn-II: simple deduction.

Fig. 11. A proof task using spider diagrams.

Examples of trivial deductions, like d4, requiring non-
trivial proofs are not unusual and certainly not confined to
Venn-II. We now give a further, much more extreme, example
of a trivial deduction requiring a non-trivial proof in the spider
diagram logic. The proof task requires the deduction of d′1∧d2
from the assumption d1 ∧ d2 shown in Fig. 11. We observe,
from d1 and d2, the following information:

d1: B − C is empty (1), and
d2: D is a subset of B (2).

Using (1) and (2), we can readily deduce D is a subset of B∩
C. The only difference between d1 and d′1 is the inclusion of
the information that D ⊆ B ∩C. Intuitively, therefore, we see
d1∧d2 � d′1∧d2. The natural question then arises: how can we



use spider diagram inference rules to prove d1∧d2 ⊢ d′1∧d2?
A proof certainly exists because the logic is complete, but all
proofs of d′1 ∧ d2 are surprisingly long. One proof strategy is
(loosely), to first add D to d1 and then manipulate the syntax
until we obtain d′1. Using the inference rules in [4], the shortest
proof that we have found takes, surprisingly, 24 steps.

The first step adds D, given in the first row of Fig. 12.
The ‘add contour’ rule (the closed curves are called contours
in spider diagrams) splits all regions, called zones, into two
pieces. The graphs, which are called spiders, have twice the
number of nodes after the rule has been applied. For each node
in the original diagram, the two new nodes are placed in the
two zones arising from the zone containing the original node.
Semantically, this is because the element represented by the
spider must lie either inside (the set denoted by) D or outside
D. The proof must now use the information contained within
d3 and d2 to ‘move’ D so that it is inside both B and C.

The next step is to apply a rule called excluded middle to
d3. This rule turns d3 into a disjunction, with one new spider
placed inside D, but outside B, to give d4 and shading is added
to the same region to give d5. It is possible to show that d4 and
d2 are in contradiction. Only one rule in the spider diagram
logic allows contradictions to be identified and it requires that
all spiders comprise single nodes, which is not the case for d4.
The proof will, later, identify this contradiction. Furthermore,
we can also see that, in d5, the element represented by the
spider in A cannot also be in D, given the information in
d2. We can apply a rule called splitting spiders to d5, giving
d6 and d7 shown in the next line, turning this spider into two
spiders, one inside A−D (in d6) and one inside A∩D (in d7).
As with d4 and d2, we now have d7 and d2 in contradiction.
Again, the proof will eliminate this contradiction.

At this point in the proof, we now focus d6. A spider
diagram inference rule that allows the removal of shaded zones
that contain no spiders can be applied, five times, removing the
five such zones inside D. This moves D to inside both B and
C, resulting in d′1. Our diagram, at this stage in the proof, is
now (d4∨d′1∨d7)∧d2. To be able to identify that d4∧d2 and
d7 ∧ d2 are contradictions, we require all spiders to comprise
just one node. We could now apply the splitting spiders rule
to reduce the number of feet per spider, but this would result
in an overly long proof. Instead, we remove information from
d4 and d7 until only that needed for the contradiction to exist
remains. For space reasons we omit the details, but the rest of
the key steps in the proof are shown in Fig. 12. This 24 step
proof is the shortest that we have been able to find that shows
d1 ∧ d2 ⊢ d′1 ∧ d2. Clearly, for such an intuitively obvious
result, this proof is not desirable.

One might ask why the proofs that arise using diagram-
matic logics are not ideal given that a key ambition is to
provide logics that are more accessible than their symbolic
counterparts? The answer lies in the reason for which the in-
ference rules were devised. Certainly in the case of spider dia-
grams, the inference rules were designed for obtaining a sound
and complete system [4]. The nature of the inference rules for
other diagrammatic logics, and their inherent usefulness for
the completeness proofs given in the literature, suggests that
the same holds for these other logics too. It is reasonable to
conclude that the focus of inference rule development has been
on obtaining soundness and completeness.

It is posited that the time is right for changing this focus,
by designing inference rules that allow observable deductions
to be made when writing proofs. Very recent work began, for
spider diagrams, with this change of emphasis in mind [32].
New inference rules in [32] allow d′1 ∧ d2 to be proved from
d1∧d2 in a single step, using the observable information about
D in d2 to add D to d1. However, there is still a long way to
go for this new approach to designing inference rule to result
in improved logics, with the system in [32] only including five
new rules all of which apply to diagrams of the form d1 ∧ d2.

Future challenges include answering the following ques-
tions:

Q4: What constitutes a readable/understandable diagram-
matic proof?

Q5: How can inference rules for diagrammatic logics
be designed so that they enable the production of
readable/understandable proofs?

Q6: Are the inference rules that allow the production of
readable/understandable proofs also those that best
allow proofs to be written by people?

Q7: Is is possible to produce a sound and complete set
of inference rules that allow readable/understandable
diagrammatic proofs to be written?

As with the open problems given for expressiveness ques-
tions, these challenges will require contributions from cogni-
tive science and need many empirical studies to be executed.
As it stands, there is very little understanding about how
to best design diagrammatic logics when aiming to make
them effective tools for people to use. Defining such logics
is important if they are to realize their full potential.

IV. MANUAL DIAGRAM DRAWING

If diagrammatic logics are to be useful in practice on a
wide scale, such as in the area of ontology development [33],
[34] then software tools are needed to support their use. A
fundamental component of such tools is the ability of users to
draw diagrams manually. There are numerous software tools
that support diagram drawing, such as Inkscape or Word’s
diagram editing functionality. However, off-the-shelf tools do
not offer sophisticated support for what can be complex tasks
that must be performed using diagrammatic logics. These
tasks include checking for consistency, debugging sets of
axioms (i.e. determining whether the axioms define what was
intended), and producing proofs using inference rules. Thus,
dedicated tool support is needed.

We argue that such dedicated software for diagrammatic
logics should support (at least) the following:

(a) Sketch-based diagram drawing, using stylus-based
input.

(b) Diagram drawing using traditional point-and-click
mouse based input.

(c) Automatic understanding of the diagram syntax (both
the concrete syntax and the abstract syntax).

(d) Automated and interactive theorem proving support.
(e) Automated diagram layout.

We now briefly discuss the first three requirements with
respect to manual diagram drawing. The last two requirements
will be discussed in the next section.



Add D:

Excluded Middle:

Split Spiders:

Remove Zones ×5:

Remove Contours, Equalize Zones, ×8:

Remove Spiders, Distributivity. ×4:

Identify contradictions, Remove ⊥s ×4:

Fig. 12. A complex proof of a simple deduction.

Concerning (a), sketching tools have the advantage of
providing natural interaction with the diagram and aid prob-
lem solving and communication [35]. Non-sketched diagrams
(sometimes called formal diagrams, i.e. those created using
traditional approaches) also have a role to play, in part because
of the perception that sketches are incomplete, unfinished or
inaccurate in some way [36]. In addition, the formal diagram is
generally required for distribution. This supports our position
that intelligent diagram creation systems should support visu-
alization via formal diagrams, which appear as though they
have been drawn in an editing tool rather than by hand, as
well as sketched diagrams.

The provision of such tools requires sketch recognition
technology to be developed for diagrammatic logics. Early

work, by WAng et al., focused on Euler diagrams [37], and has
been extended to include graphs (i.e. to spider-like diagrams)
by Stapleton et al. [38]. An example can be seen in Fig. 13,
which shows two screenshots of the SketchSet software [37].
The top image shows a manually drawn spider diagram which
has been automatically converted to the formal diagram un-
derneath. The interface also shows a stylized version of the
abstract syntax (bottom left panels in each screenshot). The
tool automatically computes the abstract syntax and uses it to
ensure consistency between the sketch and formal diagrams.
SketchSet allows edits to be made in each interface, automat-
ically updating the other whilst maintaining consistency. Of
note is that SketchSet utilizes a single-stroke recognizer to
classify the sketched diagrammatic elements.



Fig. 13. Sketch recognition technology for spider diagrams.

Future challenges include answering the following ques-
tions:

Q8: Can sketch recognition technology be developed to
allow multi-stroke recognition and stroke segmenta-
tion (when one stroke contributes to two or more
syntactic elements) for diagrammatic logics?

Q9: What constitutes good user interface design for dia-
gram creation tools that are specifically for diagram-
matic logics?

Q10: Can we produce computationally efficient algorithms
for computing the abstract syntax of concrete dia-
grams, building on initial work for Euler and spider
diagrams [37], [39], [40]?

The first of these challenges is a core problem faced by the

sketch recognition community. Solving it will be important if
diagram creation tools are to be able to handle the variety of
ways in which people draw diagrams using a stylus.

V. AUTOMATED DIAGRAM DRAWING

In order to fully support interactive [41] and automated
theorem proving [42], diagrams need to be automatically
drawn on the application of an inference rule. For some
inference rule applications, automatically drawing the resulting
diagram is trivial, particularly if the inference rule merely
deletes an item of syntax. However, some inference rules do
not give rise to simple changes in diagram syntax. For instance,
in Fig. 9, the diagram d3 is not obtained from d1 or d2 by
simple syntax deletion. Instead, it needs to be drawn using a
more sophisticated approach. For this, algorithms are needed
that automatically draw diagrams.

To-date, there has been considerable research effort towards
automatically drawing Euler diagrams [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53]. These approaches start
with the abstract syntax of the required diagram and proceed
to seek a layout, often subject to some conditions (e.g. the
curves in the resulting diagram must not self-intersect) [54].
Some of these automated diagram drawing (layout) methods
use specific geometric shapes for the curves [45], [46], [50],
[53]. An example of an automatically drawn Euler diagram,
using circles, is in Fig. 14; a stylized form of the abstract
syntax is shown at the top, entered by the user in order to
create the diagram.

Fig. 14. An automatically drawn Euler diagram [52].

Whilst recognizable geometric shapes are desirable, and
circles are known to be both preferable [53] and most effec-
tive [55], not all diagrams can be drawn with them. Thus, other
methods which allow arbitrary shaped curves, such as [44],
[47] also have their place.



In order to produce the most effective diagram layouts,
shape is not the only property that must be considered. To-date,
empirical studies have been conducted exploring the impact
of layout features on the comprehension of Euler diagrams.
For instance, Blake et al. established that diagram orientation
does not impact on user comprehension [56]. Related work by
Benoy and Rodgers, showed that curves should be smooth and,
when they intersect, they should diverge and zones should have
roughly equal areas [57]. Other research has shown that well-
formed Euler diagrams (see [54] for a list of well-formedness
properties), better support comprehension than those which are
not well-formed [58]. Some layout methods aim to produce
well-formed diagrams only, such as the first ever method by
Flower and Howse [44], extended by Rodgers et al. [48].

There are still a number of very challenging research
problems to be solved in this area. Here we identify those
we see as the most fundamental:

Q11: How can we automatically draw diagrams that aug-
ment Euler diagrams with additional syntax?

Q12: What are desirable/undesirable geometric and topo-
logical properties of logical diagrams, in terms of user
comprehension and preference?

Q13: Building on Q11 and Q12, how can we automatically
draw diagrams for ‘best’ user comprehension?

Q14: How can we automatically draw a set of diagrams
that have common syntax?

For Q11, a naive approach is to automatically draw an
Euler diagram and then add to it any additional syntax.
However, as Fig 15 demonstrates, the best layout for the
augmented diagrams need not be obtained in this way. On the
left, the Euler diagram layout has compromised the addition
of the graph whereas the layout on the right does not. Even
partial solutions to Q12 will be able to inform layout choices,
like that just illustrated, which will be key for answering Q13.

Fig. 15. Layout choices: impact on syntax.

Fig. 16. Layout choices: in the context of logical connectives.

Q14 is particularly important for diagrammatic logics. For
instance, a diagram that involves logical connectives could
include diagrams with common parts, as in Fig. 16. Here, the
common curves in d1 and d2 (namely A, B, C and D) adopt

the same layout, rather than occupying significantly different
positions as in d1 ∧ d3.

The only work, of which we are aware, that considers
multiple Euler diagram layout (Q14) is by Rodgers et al. [59].
This work alters the layout of one diagram until it is similar to
another. However, this approach is somewhat limited since it
does not alter topological properties of diagrams. This means,
for instance, that zone adjacency will never be altered. Thus,
there are some pairs of diagrams that could both include Venn-
4 as a sub-diagram that will never be made to look similar
using the methods of [59]. More sophisticated approaches are
needed for multiple diagram layout.

VI. CONCLUSION

This paper has summarized key results in diagrammatic
logics research from a number of perspectives, focusing on
expressiveness, inference, manual diagram drawing and auto-
mated diagram drawing. Whilst significant progress has been
made, a number of open problems of some significance remain.
We have presented some of these problems in this paper.

It is posited that solving these problems should not be
done in isolation, but they should be informed by each other.
Results achievable in one area will, no doubt, impact on the
possible solutions in other areas. For instance, in the context
of automated or interactive reasoning, the choice of inference
rule application at each step could be guided by the automated
layout algorithms that exist for the diagrammatic logic: the
application of one inference rule may result in an ineffective
layout for the resulting diagram, whereas another inference
rule may yield an effective diagram layout. Optimizing proof
readability and understandability will have to take into account
results for diagram drawability.
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