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Abstract

Engine manufacturers are constantly striving to find
new and improved techniques for the monitoring
and control of motor-vehicle engines.  The aim is to
achieve reduced exhaust emissions and superior
fuel economy.  Intelligent-systems techniques, such
as neural networks and fuzzy methods, are
attractive for application in this area because of
their capabilities in  pattern-recognition, modelling
and control.  For this reason, the use of neural
networks in the monitoring and control of  motor-
vehicle engines is becoming an area of research
which is receiving increasing attention from both
the academic and commercial research
communities.  This paper reviews the way in which
neural networks can be applied to gasoline or
spark-ignition motor vehicle engines for combustion
monitoring, on-board diagnostics and enhanced
control strategies.  It also describes research in
these areas being carried out at the Transfrontier
Centre for Automotive Research at the University of
Brighton. 

Introduction

There are two recurrent themes in the area of motor-
vehicle engine design, fuel economy and the
reduction in harmful exhaust emissions.  Europe, the
United States, and much of the rest of the world,
have legislative controls which govern the
permissible levels of pollutants in the exhaust of
Internal Combustion (IC) engines [1].  Maintaining
these standards in current engines demands strict
control of operational parameters using a
microprocessor-based  Engine Management
Systems (EMS) or Engine Control Unit (ECU).  

The EMS implements control strategies which aim
to achieve optimum efficiency and high output
power when required, while at the same time
maintaining low emission levels.  At the same time,
in a gasoline or spark-ignition engine, the EMS
must operate the engine in a region favourable to the
operation of a three-way catalytic converter, which

further reduces the harmful content of the exhaust.
The engine must also exhibit good transient
response and other characteristics desirable to the
operator, known among motor manufacturers as
driveability, in response to movements of the
driver's main control, the throttle or accelerator
pedal.  The EMS governs the amount of fuel
admitted to the engine (the fuel-pulse width), the
point in the cycle at which the mixture is ignited
(the ignition timing), the amount of exhaust gas
recirculated (EGR), and other parameters in
advanced engine designs, for example, the valve
timings.  It selects values for these parameters from
measured quantities such as speed, load torque, air
mass flow rate, inlet manifold air pressure,
temperatures at various points, and throttle angle.  

The EMS has a further role, in that legislation in the
US and now in Europe demands an on-board
diagnostic (OBD) system.  The OBD system must
indicate when emissions do not conform to
standards, or when fault conditions occur which
could lead to excessive emissions.

Research is taking place to develop improved
engine control by incorporating neural networks and
other intelligent-systems techniques into the EMS.
The contribution of the neural network can be
categorised into three areas which are explored in
this paper:-

• Neural networks have a role in interpretting
data from sensors already present in the engine,
or available at low additional cost, so as to
extract new information.  An example of this is
combustion monitoring using the spark plug,
which is described later.

• Neural networks can be used for the detection
of specific signatures from new or existing
sensors in OBD systems in order to detect and
identify fault conditions.

• Neural networks, and the related technology,
fuzzy systems, can be valuable in the
implementation of advanced control strategies.



Combustion Monitoring using the
Spark Plug

The use of the spark plug as a combustion sensor in
gasoline or spark-ignition (SI) engines appears
attractive when compared to other sensory methods.
Many techniques, such as pressure measurements or
light emission recording by fibre-optics, require that
the combustion chamber be modified and this can
itself affect the combustion.  Secondly, engines are
extremely price sensitive and additional sensors can
only be provided if they are economically justifiable
in terms of the improvements they provide.  

The spark plug is already present in a gasoline
engine,  eliminating the need to make any
potentially detrimental modifications to the cylinder
head or combustion chamber and avoiding
additional costs.  As the spark plug is in direct
contact with the combustion, it is an excellent
witness to the combustion process.  Analysing the
spark-plug voltage and current waveforms therefore
potentially provides a robust and low-cost method
for monitoring phenomena in the combustion
chamber.  

The method of using the spark plug as a combustion
sensor which has received most attention is known
as the Ionic Current method.  This has been
investigated for measuring combustion pressure, air-
to-fuel ratio (AFR) and the detection of fault
conditions such as misfire and knocking
combustion.  

An alternative method, currently being investigated
at TCAR, is called Spark Voltage Characterisation
which involves neural-network analysis of the time-
varying spark voltage waveform.  Current research
involves the use of neural networks to predict the
AFR with promising results, and the possibility of
use for combustion fault detection.

Ionic Current Monitoring Systems

In the ionic current system, the spark plug is used as
a sensor during the non-firing part of the cycle.
This is done by applying a small bias voltage of
about 100 volts to the spark plug and measuring the
current.  This current is due to the reactive ions in
the flame which conduct current across the gap
when the voltage is applied.  The ions are formed
during and after combustion, and the type and
amount of ions present is dependent on the
combustion  characteristics.  The ionization current
is also dependent on the pressure, temperature etc.
and therefore is rich in information but very
complex [2].  

The ionic-current waveform has three notable peaks.
The first is due to the ignition pulse.  The second is
the flame front passing through the gap.  The third,
termed post flame, correlates with the pressure
signal and is used for spark timing control and gas
temperature sensing around the spark gap [3].
Much work has been done on the use of ionic
currents for monitoring combustion, mainly to
estimate combustion pressure, and thus act as a
replacement for combustion pressure sensors.  Ion
current systems have also been proposed for AFR
and ignition-timing estimation, and misfire and
knocking detection [4, 5].  More recently, neural
networks have been applied to the analysis of ionic-
current data for spark-advance control and AFR
estimation [6,7].

The ionic-current method appears attractive because
only minor modifications are required to adapt the
engine.  However, high-voltage diodes or other
switching methods are needed to isolate the ionic-
current circuitry from the ignition system and these
have been prone to failure in the past.  The 100V
power supply is also an additional component which
is required and the cost of any additional component
must be carefully justified. 

Spark Voltage Characterisation
using Neural Networks

The Method

Spark Voltage Characterisation (SVC) is a
combustion monitoring technique which offers an
alternative to the ionic-current method.  Using the
spark plug as the combustion sensor, this technique
has many of the advantages of the ionic current
method. However, as the method involves analysing
the ignition voltage waveform itself, it eliminates
the need for an additional bias power supply, and
for the associated high-voltage switching circuitry.

TCAR is engaged in the investigation of spark
voltage characterisation as a method for combustion
monitoring, for example for the determination of
air-fuel ratio (AFR).  Accurate measurement of
AFR is desirable, but not currently achievable in
production engines due to the high cost of sensors.
A low-cost accurate method of determining the AFR
in the cylinder would have a great appeal to the
motor industry.  The method also could 



potentially be extended to the measurement of in-
cylinder pressure.      

The SVC method of AFR estimation involves the
use of a neural network to associate the time-
varying voltage waveform at the spark plug with the
AFR measured by the exhaust gas analyser.  

Data Capture and Synchronisation

The SVC method requires a data-capture system
which allows desired portions of the spark plug
voltage waveform to be recorded in a repeatable
manner.  Synchronisation circuitry has been
developed to allow this to be done.  Figure 1 shows
the essential elements of a gasoline engine ignition
system.  The ignition coil is essentially a high
voltage transformer, increasing the battery voltage
(approximately 12V) to between approximately six
and 25 kV.  The contact breaker was once
universally a mechanical component, but in
electronic ignition systems is replaced by a
semiconductor switch such as an automotive
specification transistor or thyristor.  
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Figure 1: The Ignition System

The contact breaker closes and current builds up in
the low-tension (LT) winding of the coil resulting in
the storage of energy; however, the speed at which
this occurs is limited by the resistance of the coil.
At an appropriate point in the engine cycle, when a
petrol-air mixture has been injected into the cylinder
via the inlet valve, and compressed so that the
piston lies just before top-dead-centre, the contact
breaker opens.  The magnetic field in the coil
collapses rapidly, with an equally rapid change in
magnetic flux, and a high voltage pulse is induced
into the high-tension (HT) side of the coil, igniting
the petrol-air mixture.  The resulting combustion
drives the power stroke of the engine.  

Each cylinder in a four-stroke engine experiences
one power stroke for every two revolutions of the
crank- shaft.  In a multi-cylinder engine a distributor
can be used to switch the ignition pulse to the
correct cylinder.  Alternatively, there may be
multiple coils and no distributor.  In a wasted-spark
system each cylinder receives a spark once every
crank-shaft revolution.  This requires multiple coils,
in a multi-cylinder engine, but enables the
distributor to be dispensed with, and is common
practice.   Single cylinder engines also commonly
use this principle, as it allows the ignition system to
be triggered directly from the crankshaft

Figure 2 shows the form of the spark plug voltage
waveform for approximately 720 degrees of crank
angle  in a wasted spark ignition system.  The
waveform shows four distinct spark events: 'b' and
'd' correspond to pulses which are obtained when
the contact breaker closes.  The voltage which these
reach is limited because the coil resistance limits the
rate of change of flux.  If these pulses are
troublesome, perhaps giving rise to misfire or
erroneously-timed ignition, they may be suppressed.  
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Figure 2: Spark voltage waveforms for a wasted-
spark ignition system

Pulses 'c' and 'e' are the high-voltage pulses which
occur when the contact breaker opens.  Pulse 'c' is
timed to occur some time before the piston reaches
top-dead-centre and initiates combustion.  The
combustion takes time to develop and the ignition
timing delay allows for the time required for the
combustion pressure to reach its maximum.  Pulse
'e' occurs during the exhaust stroke and has no
effect.  All of these pulses exhibit damped-



resonant behaviour because the ignition system
possesses capacitive and lossy-inductive elements.
Each occupies a few milliseconds in time.

For successful analysis of the spark waveform, it is
necessary to ensure that it is possible to select
portions of the waveform which contain relevant
information.  For example, it may be desired to
capture only the firing spark, ‘c’, or perhaps only
the wasted spark, ‘e’.   Triggering using the spark
voltage waveform is unreliable, due to random
variations between sparks, and unlikely to be
successful in this respect.

Figure 3 shows a data-capture and synchronisation
system that has been developed at TCAR for the
investigation of spark characterisation.  Most
modern engines have a sensor, normally inductive,
which determines the rate of rotation of the crank-
shaft, and also indicates the top-dead-centre position
once every crank-shaft rotation.  A wasted-spark
ignition electronic ignition system can be
synchronised by the signal from this sensor, with a
delay applied to ensure the correct ignition timing.
A sensor which detects the cam-shaft position can
be used to generate a synchronisation signal once
every 720 degrees of crank angle, but a cam-shaft
sensor is not always fitted as a standard engine
component.

Amplifier

ADC

/ Schmitt

/ FilterIsolator

Feature
Vector

Spark
Plug

MAP/Camshaft

Sensor

Z1

Z2

1000:1

Trigger

Analogue
Input

Compress

Delay

Figure 3: Data capture and synchronisation system 

An alternative method which has been found to be
convenient is to fit an inexpensive piezo-electric
pressure transducer to the inlet manifold.  This
sensor is used to measure the Manifold Air Pressure
(MAP) and so detect the opening and closing of the
inlet valve, corresponding to pulse ‘a’ in Figure 2.
The inlet valve closes at approximately bottom-
dead-centre, corresponding to approximately 65
degrees of crank angle before the ignition point.  In
the data-capture system used for this work, the
output of the MAP sensor, subjected to suitable
signal conditioning, is used as a reference.  The
point at which data capture begins is determined by
a delay, the length of which is adjusted according to
the speed to correspond to a fixed number of
degrees of crank-angle.  The desired portions of the



signal at the spark plug due to the firing or non-
firing spark can be selected by changing this delay.  

The high-tension signal from the spark plug is
reduced in voltage by a potential divider formed
from impedances Z1 and Z2.  The reduced-voltage
signal is then pre-processed, compressed and
filtered, and digitised.  A feature vector is produced
for each ignition spark; these are stored and used in
training the neural network.

Multi-Layer Perceptron (MLP) and Radial Basis
Function (RBF) networks are under investigation
for this application and a number of different neural
network training regimes are being evaluated.
Initially, the engine was adjusted to run at a
particular speed and AFR.  A large number of
digitised spark voltage data records were captured
and stored.  The process was repeated for different
speeds and AFRs.  The neural network was trained
using a portion of this data, and tested using the
unseen remainder. 

Experimental work initially involved the use of
multi-cylinder engines.  However, current work
makes use of a test-rig based on a 98.2 cc single-
cylinder engine with electric dynamometer.  The
ignition timing is fixed at 24 degrees before top-
dead-centre.  Semi-automatic adjustment of the
petrol-air mixture is possible and the resulting AFR
is measured by an exhaust gas analyser.  TCAR has
attracted European Union funding and the support
of a prominent firm of engine design consultants
situated local to the University, resulting in the
provision of a Hydra research engine for future
work.  

Results

Using a multi-cylinder engine and random spark
waveform capture it has been found that the neural
network can differentiate between various
categories of air-fuel ratio (lambda  ratio = 1.0, 1.2
or 1.4 respectively) with a success rate of up to
approximately 90% provided load, speed etc., were
held constant [8].  



Subsequent work using the small-capacity single-
cylinder test rig, referred to above, showed that it
was possible to improve on this, and obtain
classification rates of about 95%, again with other
parameters held constant [9, 10].  The effects of
variations in speed were also investigated.  A
practical AFR system needs to be able to provide
accurate measurements over a range of speed and
load conditions.  The enhancements in experimental
facilities are intended to allow investigation and
improvements in this area. Experimental results
using the new synchronisation system, described
above, will be made available later.

On-board diagnostics

The legislation in the US widely known as the
OBD2 legislation requires that the EMS
incorporates on-board diagnostics (OBD) which are
able to detect faults and combustion anomalies.
Fault conditions which have the potential to damage
the catalytic converter, for example misfire and
knocking, which can cause fuel-contamination of
the catalyst, must be detected, and a warning given
to the driver.

Although misfire detection systems have been
researched for some time, it has proved difficult to
find a universal algorithm, with a low
implementation cost, that can detect misfire with
high accuracy and without false alarms in real time.
Among many methods researched for misfire
detection, crank-shaft speed fluctuation based
methods are commonly used, due to low-cost signal
availability, and adequate performance under most
conditions.  Recently neural networks have been
investigated for the identification of signal-
components which are characteristic of the
occurence of misfire.  A method which uses the
neural interpretation of crankshaft-speed
fluctuations has been described [11].  Ribbens, et al.
propose a method where convential signal-
processing techniques are suplemented by neural
networks analysis for this purpose [12].

Engine knock detection is as important as misfire
detection.  Combustion efficiency is achieved by a
high in-chamber compression ratio.  However,
knocking combustion places a limit on the
compression ratio which can practically be
achieved.  To obtain high performance, engines
have to operate close to the critical knock point and
the EMS must incorporate a method of detecting the
onset of knocking.  Classical knock detection
methods are based on accelerometers or acoustic
transducers and analogue signal analysis.  However,
signal-to-noise ratio problems can be apparent,

especially at high speeds.  The use of modern
micro-controllers in the EMS makes it possible to
use advanced algorithms, for example neural
networks or fuzzy logic, to extract more information
from the accelerometer signal and more accurately
anticipate the onset of knock [13, 14].

The use of the spark plug as a sensor for use in
measuring AFR etc., has already been described, but
it can also be used for sensing combustion
anomalies [5].  At TCAR, the spark voltage analysis
technique is being applied to the detection of mis-
fire and is yielding interesting results. 

Engine Modelling and Control
Using Neural Networks

IC engines are dynamic systems with highly non-
linear characteristics containing variable time-
constant terms and delays. The abilities of
intelligent-systems techniques, for example neural
networks and fuzzy methods, to relate these non-
linear properties makes them excellent tools in the
modeling of engines [15].  For example, Ayeb, et al.
discuss a method where static neural networks
(SNN), time delayed neural networks (TDNN) and
dynamic neural networks are used for modeling a SI
engine [16].  

Modelling can be used for engine simulation, but it
can also be used in virtual sensors.  If a model can
be devised which relates engine parameters, then the
quantities of interest which cannot easily be
measured can be determined from those which are
known.  A virtual sensor could, for example,
estimate AFR, which cannot economically be
directly measured, from quantities such as speed,
load, air flow rate, etc., which can be measured
fairly easily.  Atkinson et al. discuss a method
where a neural network based system is used for
predicting the engine performance, emission and
fuel consumption.  The method uses sensors already
present on the engine to measure various parameters
and an engine model based virtual sensor for
estimating parameters that cannot be conveniently
measured [17].  Frith et al. have described a method
for estimation and control of AFR using a multiple
neural-network modelling system [18].  A neural
network based combustion-pressure analyser for
controlling ignition timing [19] has been proposed,
and a method has been described for controlling the
AFR of direct injection (DI) combustion engines
using neural networks [20]. Buamann et al. discuss
a method where neural networks and fuzzy logic are
used on a hybrid electric vehicle to coordinate
powertrain components [21].  



The Intelligent Engine
Management System

Figure 5 illustrates a concept which is under
development at TCAR, that of the Intelligent Engine
Management System.  The Intelligent EMS
combines a neural-network based engine modelling
system with a fuzzy control kernel.  The modelling
system forms a virtual sensor,  which bases its
estimates of AFR and other desired quantities on
relatively slowly changing variables such as speed,
MAP, air flow rate etc., but also on information
obtained from spark voltage characterisation.  The
spark-voltage waveform potentially holds
information which will allow an assessment of
rapidly changing engine conditions, facilitating
better transient response than might be expected
from a virtual sensor based on long-time constant
variables.

The fuzzy-control kernel is used to help overcome
some of the problems which the complex
characteristics of the engine poses for classical
control methods [10].  Devising efficient control
strategies is not straightforward and incorporating
them into classical-model control systems poses
many difficulties.  While it is difficult to produce
accurate mathematical models of the engine, there is
a large body of heuristic knowledge of engine
operation, and empirical observations may be
carried out relatively conveniently.  Fuzzy-control
systems enable the exploitation of this heuristic

operator-knowledge by the computer
implementation of linguistically-based control
strategies.  They replace the classical mathematical
model of a physical system by a heuristic piecewise
approximation which is easily assimilated by the
operator.  Thus the fuzzy-control kernel will aid
efficient calibration of the engine and allow a
measure of rapid prototyping of the control
strategies in the EMU.

Conclusion

The internal combustion engine is likely to be the
most common motor vehicle power plant until well
into the twenty-first century, although new variants
such as the Gasoline Direct Injection (GDI) and
High Speed Direct Injection (HSDI) Diesel engines
may supplant more conventional engine variants.
Engine designers and manufacturers are being set
ambitious targets for fuel economy and exhaust
emissions.  To meet these targets the control
regimes implemented by the EMS will have to
increase in sophistication.  Neural networks and
other intelligent-systems techniques can be
beneficially applied to the analysis of sensory data.
They can also be helpful in achieving the non-linear
mappings necessary for efficient engine modelling
and control.  In gasoline or spark-ignition engines,
the neural-network analysis of data obtained from
the spark plug promises to be a powerful technique
for low-cost combustion monitoring and fault
detection in OBD systems.
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