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ABSTRACT:  

Earthquake ground motion spatial variability can influence significantly the response of certain 

structures. In order to accurately evaluate probabilistic characteristics of the seismic response of 

structures, the Monte Carlo simulation technique is still the only universal method of analysis when 

strong nonlinearities and input uncertainties are involved. Consequently, realizations of ground 

motion time histories taking into account both time and spatial variability need to be generated. 

Furthermore, for some design applications, the generated time histories must also satisfy the 

provision imposed by certain seismic codes stating that they have to be also response-spectrum-

compatible. For these purposes, a spectral-representation-based methodology for generating fully 

non-stationary and spectrum-compatible ground motion vector processes at a number of locations 

on the ground surface is proposed in this paper. The simulated time histories do not require any 

iterations on the individual generated sample functions so that Gaussianity and prescribed 

coherence are suitably preserved. The methodology has also the advantage of providing the fully 

non-stationary and spectrum-compatible cross-spectral density matrix of the ground motion time-

histories that can be used for reliability studies in an analytic stochastic fashion.  
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1 INTRODUCTION  

 

Ground motion arising from seismic waves is a phenomenon that by its nature varies with time and 

in space. Commonly, in earthquake engineering practice, the attention is focused on the time 

variability component and its effects on the structural response. On the other hand, it is well known 

that the spatial variability of earthquake ground motion can influence significantly the response of 

structures, especially if they are long and/or rigid. In this context, a number of contributions has 

been devoted to the study of the effects of spatial variability on various structures including 

buildings [1-4], bridges [5-8], arcs [9,10], dams [11], rigid foundations [12,13], pipelines [14,15], 

transmission lines [16], and nuclear power plants [17]. Readers could also refer to the monograph 

by Zerva [18] for an overview of the engineering applications in which ground motion spatial 

variability has been taken into account. The phenomenon of ground motion spatial variability is 

affected by several factors, i.e. source patterns, path, site effects, etc., that generally cannot be 

described in a deterministic fashion. Consequently, only a probabilistic approach can provide a 

rigorous representation of the spatial variability of earthquake ground motion. As a consequence, 

the computation of structural response is a challenging task for which both ground motion time and 

spatial variability have to be taken into account. Different strategies have been proposed in the last 

2-3 decades for predicting the pertinent structural response. Response spectrum based techniques 

[19-21] are certainly the simplest ones. These methods are very attractive for design purposes due to 

their simplicity, but can become inaccurate, especially in the case of nonlinearly behaving 

structures. Analytical approaches [22,23] based on random vibration theory have captured the 

attention of researchers and practitioners due to their rigorous mathematical basis and their 

efficiency in the case of linear/linearized structures. However, such analytical approaches are not 
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commonly used in practice and possess the limitation to be difficult to apply in the presence of 

strong nonlinearities. To date, Monte Carlo simulation techniques still remain the only universal 

method of analysis when strong nonlinearities as well as input uncertainties are involved. In this 

regard, the accurate simulation of ground motion time histories is the first step in the analysis of the 

effects of both time and spatial variability of earthquake ground motion. To accomplish this 

objective, various simulation techniques have been proposed for generating ground motion time 

histories taking into account spatial variability [24-36]. Readers could refer to the monograph by 

Zerva [18] for an in-depth discussion of the state of the art along with the challenges involved in 

modelling the spatial variability of earthquake ground motion. Spectral-representation-based 

simulation techniques [27,28,37,38] are among the most widely-used today for this purpose. 

Accordingly, earthquake ground motion is modelled as a Gaussian, non-stationary, multi-variate 

vector process, fully defined by its evolutionary cross-spectral density matrix. Spatial variability can 

be described by the off-diagonal elements of this matrix through coherence functions and apparent 

velocity of wave propagation.  

Interestingly, various international seismic codes allow the use of simulated ground motion time-

histories for the seismic design of structures. For this purpose, the simulated time-histories have to 

be spectrum-compatible, i.e. the average response spectrum computed using simulated time 

histories has to match the target response spectrum provided by the code over a fixed frequency 

range and with a code-specified tolerance. This means that the simulated ground motion time 

histories have to be non-stationary in time, spatially variable in space, and spectrum-compatible. 

The number of contributions devoted to the simulation of spectrum-compatible, uni-variate, ground 

motions time histories is significant. However, relatively few contributions have considered the case 

of multi-variate (vector) processes accounting for spatial variability. Hao et al. [39] proposed a 

method that adjusts independently simulated quasi-stationary time histories in order to make them 

compatible with the prescribed response spectrum. This adjustment is performed by Fourier 

transforming each time history to the frequency domain, multiplying its frequency domain Fourier 
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transform by the ratio of the prescribed response spectrum over the computed response spectrum of 

the non-stationary time history, and then inverse transforming the product back to the time domain. 

Deodatis [38] proposed a methodology for generating quasi-stationary spectrum-compatible ground 

motion vector processes starting from the generation of ergodic, stationary time histories that are 

compatible with a coherence function and a velocity of wave propagation but not with the 

prescribed response spectrum. After modulating the generated time histories, the matching of the 

response spectra is achieved by the successive upgrading of the power spectral density functions of 

the components of the vector process.  

It is well known that the dynamic response of nonlinear structures is highly influenced by the non-

stationary behaviour of the input [40-42]. Consequently, for a more reliable representation of the 

seismic structural response, both the amplitude and frequency variation of ground motion time 

histories have to be accounted for. This can be achieved using the concept of evolutionary power 

spectra [43]. According to evolutionary power spectrum theory, in such a case involving so-called 

amplitude and frequency modulation, the elements of the cross-spectral density matrix have to be 

non-separable functions of both frequency and time.  Recently, Sarkar and Gupta [44] proposed an 

iterative methodology for generating fully non-stationary spectrum-compatible vector processes 

using a wavelet-based approach (it should be noted that “fully non-stationary” stands for a non-

stationary process with amplitude and frequency variation in time, while “quasi-stationary” stands 

for a non-stationary process with only amplitude variation in time). The method assumes that a 

suitable accelerogram conforming to the local source and site condition is available. Furthermore, 

the accelerogram is modified so as to be spectrum-compatible to a design response spectrum, 

assumed the same for each free-field location.  

In this paper, a novel methodology for generating fully non-stationary, spectrum-compatible, 

ground motion vector processes is proposed. The methodology considers that the ground motion 

vector process is modelled as the superposition of two contributions: the first one is a known fully 

non-stationary component modelled as a non-separable m-variate non-stationary stochastic process 
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representative of local geological and seismological conditions. The second one is a corrective term 

modeled by an m-variate quasi-stationary non-stationary process. The cross-spectral density matrix 

of the corrective term is determined extending the procedure proposed by Cacciola [45] for scalar 

processes to the case of vector processes. After determining the evolutionary cross-spectral density 

matrix of the vector process resulting from the aforementioned superposition, ground motion 

sample functions at different locations compatible with prescribed response spectra and preserving a 

given coherence function are generated using the procedure proposed by Deodatis [38]. It has to be 

emphasized that the simulated time histories do not require any iterations for matching the 

prescribed response spectra.  

 

 

2  m-VARIATE NON-STATIONARY STOCHASTIC GROUND MOTION PROCESSES  
 

Following the spectral-representation methodology (e.g. Shinozuka and Deodatis [27]), consider the 

1D-mV (one-dimensional, m-variate) non-stationary ground motion stochastic vector process, 

whose components 0 ( ), ( 1,..., )jf t j m=  have zero mean: 

0 ( ) 0, ( 1,..., )jE f t j m  = =     (1) 

cross-correlation matrix given by: 
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and corresponding cross-spectral density matrix with evolutionary power spectrum given by [43]: 
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Due to the non-stationarity of the vector process, the cross-correlation matrix is a function of both 

time t  and time lag τ , while the cross-spectral density matrix is a function of both frequency ω  

and time t . It has to be emphasized that under the hypothesis of fully non-stationary processes 

(non-stationary processes with amplitude and frequency modulation), the cross-spectral density 

matrix is a non-separable function of frequency ω  and time t . Specifically for the case of 

earthquake ground motion, the elements of the cross-spectral density matrix with evolutionary 

power can be expressed in the following special form: 

20

0

( , ) ( , ) ( ), 1, 2,...,

( , ) ( , ) ( , ) ( ) ( ) ( ), , 1, 2,..., ;

jj j j

jk j k j k jk

S t A t S j m

S t A t A t S S j k m j k

ω ω ω

ω ω ω ω ω ω

= =

= Γ = ≠
  (4) 

where ( , )jA tω  and ( )jS ω ( 1, 2,..., )j m=  are the (non-separable) modulating function and the 

(stationary) power spectral density function of component 0 ( ), ( 1, 2,..., )jf t j m= , respectively, and 

( )jk ωΓ , ( , 1, 2,..., ; )j k m j k= ≠  is the complex coherence function between 0 ( )jf t  and 0 ( )kf t . 

The cross spectral density matrix ( )0 ,f tωS  is Hermitian and satisfies the following properties (e.g. 

Deodatis [38] ):  

0 0( , ) ( , ), 1, 2,...,jj jjS t S t j m tω ω= − = ∀    (5) 

with the off-diagonal elements being generally complex functions of ω  satisfying: 

0 0*( , ) ( , ), , 1, 2,..., ; ;jk jkS t S t j k m j k tω ω= − = ≠ ∀    (6) 

and 

0 0*( , ) ( , ), , 1, 2,..., ; ;jk kjS t S t j k m j k tω ω= = ≠ ∀    (7) 
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where the asterisk denotes the complex conjugate. Moreover, the elements of the cross-correlation 

matrix are related to the corresponding elements of the cross-spectral density matrix through the 

following transformations: 

0 ( , ) ( , ) ( , ) ( ) ; 1, 2,...,i
jj j j jR t t A t A t S e d j mωττ ω ω τ ω ω

∞

−∞

+ = + =∫    (8) 

0 ( , ) ( , ) ( , ) ( ) ( ) ( ) ; , 1, 2,..., ;i
jk j k j k jkR t t A t A t S S e d j k m j kωττ ω ω τ ω ω ω ω

∞

−∞

+ = + Γ = ≠∫   (9) 

 

For the special case of uniformly modulated nonstationary stochastic vector process, the modulating 

functions ( , )jA tω  ( 1, 2,..., )j m=  are independent of the frequency ω , that is: 

( , ) ( ), 1, 2,...,j jA t A t j mω = =         (10) 

In this special case, equations (8) and (9) reduce to: 

0 ( , ) ( ) ( ) ( ) ; 1, 2,...,i
jj j j jR t t A t A t S e d j mωττ τ ω ω

∞

−∞

+ = + =∫       (11) 

0 ( , ) ( ) ( ) ( ) ( ) ( ) ; , 1, 2,..., ;i
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∞

−∞

+ = + Γ = ≠∫   (12) 

3. SIMULATION FORMULA FOR m-VARIATE NON-STATIONARY STOCHASTIC 
PROCESSES 
According to the algorithm in [38], in order to simulate the 1D-mV non-stationary ground motion 

vector process, 0 ( )tf ,  the evolutionary cross-spectral density matrix 0 ( , )f tωS  is first decomposed 

at every time instant t  using Cholesky’s method into the following product: 

0 *( , ) ( , ) ( , )T
f t t tω ω ω=S H H     (13) 

where ( , )tωH  is a lower triangular matrix and the superscript T  denotes the transpose of a matrix. 

( , )tωH  is written as: 
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The diagonal elements of ( , )tωH  are real and non-negative functions of ω  satisfying: 

( , ) ( , ), 1, 2,..., ;jj jjH t H t j m tω ω= − = ∀    (15) 

while the off-diagonal elements are generally complex functions of ω . Once the cross-spectral 

density matrix 0 ( , )f tωS  is decomposed according to equations (13) and (14), the non-stationary 

ground motion vector process  0 ( ), 1, 2,...,jf t j m=  can be simulated by the following series as 

N →∞  

1 1
( ) 2 ( , ) cos ( , ) , 1, 2,...,

m N

j jr s s jr s rs
r s

f t H t t t j mω ω ω ϑ ω φ
= =

 = ∆ − + = ∑∑    (16) 

where: 

1
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−
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   (17) 

with [ ]Im   and [ ]Re   denoting the imaginary and real part of a complex number, respectively. 

Note that in eq. (16), superscript "0"  is omitted to distinguish the vector process 0 ( )tf  from its 

simulation ( )tf . The discretization in the frequency domain is done as follows: 

, 1, 2,..., ; c
s s s N

N
ωω ω ω= ∆ = ∆ =           (18) 

In equation (18), cω  represents an upper cut-off frequency beyond which the elements of the cross-

spectral density matrix may be assumed to be zero at any time instant t . Furthermore, the 

( 1,2,..., ; 1, 2,..., )rs r m s Nφ = =  are m sequences of N independent random phase angles distributed 

uniformly over the interval [0, 2 ]π .  
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4. PROPOSED APPROACH FOR GENERATING FULLY NON-STATIONARY SPECTRUM-

COMPATIBLE  GROUND MOTION VECTOR PROCESSES 

The elastic response spectrum approach is the most commonly used method to design structures 

against seismic action according to various international codes. Alternatively, “appropriate 

simulated” ground motion time-histories can be used for seismic design applications [46], [47]. For 

this purpose, the simulated time-histories have to be spectrum-compatible, i.e. the average response 

spectrum computed using simulated time histories has to match the target response spectrum 

provided by the code over a fixed frequency range and with a code-specified tolerance. That is: 

( ) ( ) , ( 1,..., )
( )

j(f )(j)

l u(j)

RSA RSA j m
RSA
ω ω ε ω ω ω

ω
−

≤ ∀ ≤ ≤ =      (19) 

where ( )(j)RSA ω  is the j-th target response spectrum, ( )j(f )RSA ω  is the j-th ensemble-averaged 

response spectrum of the simulated ground motion vector process  ( ), 1, 2,...,jf t j m=  and ε  is a 

code-specified tolerance, commonly defined as a constant value (and not a function of frequency). 

Note that seismic codes impose only the value of the tolerance ε  and of the bounds lω  and uω . No 

specific methodology is suggested to simulate the spectrum-compatible accelerograms (see e.g. 

[46,47]).  

      A spectral representation based approach will be used here for generating fully non-stationary 

spectrum-compatible ground motion vector processes. It should be mentioned that simulated ground 

motion time-histories are generally criticized for failing to rigorously describe the physical 

characteristics of strong ground motion. This is due to the fact that the non-stationary waveforms of 

the actual seismic time histories are strongly influenced by several factors (such as the seismic 

source rupture pattern, inhomogeneities in the soil mass, etc.) that are not fully accounted for in the 

simulation process. To overcome this drawback, the non-stationary as well as the spatial variability 

features of simulated ground motion should be selected so as to reflect local geological and 

seismological conditions. This can be achieved by using recorded local accelerograms. The problem 
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is that recorded accelerograms are not in general spectrum-compatible.  To address this problem, 

the main idea of this work is that the non-stationary spectrum-compatible ground motion vector 

process is given by the superposition of two contributions: the first one is a fully non-stationary 

vector process ( ), ( 1,..., )L
jf t j m=  with known non-separable cross-spectral density matrix 

representative of geological and seismological conditions at the site; while the second one is a 

quasi-stationary vector process ( ), ( 1,..., )C
jf t j m=  with unknown cross-spectral density matrix, 

whose objective is to correct each component of ( ), ( 1,..., )L
jf t j m=  in order to make them 

spectrum-compatible. That is: 

( ) ( ) ( ), ( 1, 2,..., )SC L C
j j jf t f t f t j m= + =    (20) 

where superscript “L” stands for “local” (to emphasize that the first term reflects non-stationarity 

and spatial variability pertinent to the site where the ground motion is modelled); superscript “C” 

stands for “corrective” (to emphasize that the second term is devoted to adjust the process 

( ), ( 1,..., )L
jf t j m=  to make it spectrum-compatible), and the superscript “SC” stands for  

“spectrum-compatible” . The non-stationary characteristics of the simulated ground motion vector 

process – as well as of its spatial variability – are taken into account through a pertinent 

representation of vector process ( ), ( 1,..., )L
jf t j m=  that can be pursued using various approaches 

(see e.g. [38], [40]). The spectrum-compatible condition imposed by the seismic code is satisfied 

through an appropriate definition of the corrective process ( ), ( 1,..., )C
jf t j m=  that has to be 

determined so as to preserve the main features of vector process ( ), ( 1,..., )L
jf t j m= . 

Accordingly, it is assumed that ( ), ( 1,..., )C
jf t j m=  is a quasi-stationary process with 

evolutionary power spectral density for each individual component given by: 

2( , ) ( ) ( ) , ( 1, 2,..., )C C
j j jS t t S j mω ϕ ω= =     (21) 
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where ( )j tϕ  is the j-th modulating function determined so as to preserve the amplitude time 

variability of process ( )L
jf t [45], while ( )C

jS ω  is the j-th (stationary) power spectral density of the 

corrective process that needs to be determined.  

Taking into account now eq. (20), the response spectra ( ) ( )
SC
jfRSA ω , ( 1,..., )j m=  can be 

approximately determined, in analogy with the “square root of sum of squares” (SRSS) modal 

combination rule proposed by Rosenblueth [48], by the following equation: 

2 2
( ) ( ) ( )( ) ( ) ( )

SC L C
j j jf f fRSA RSA RSAω ω ω   = +      

     , ( 1, 2,..., )j m=    (22) 

In eq (22) ( ) ( )
L
jfRSA ω  and ( ) ( )

C
jfRSA ω  are the response spectra of the j-th component of processes 

( )L
jf t  and ( ), ( 1,..., )C

jf t j m= , respectively. Considering that eq. (20) involves stochastic 

processes, eq. (22) should be interpreted here in an ensemble average sense. This means that it is an 

ensemble-averaged ( ) ( )
SC
jfRSA ω  that is supposed to match the target response spectra ( ) ( )jRSA ω ; 

1, 2,...,j m=  prescribed by the seismic code.  

The basic idea of the paper can now be summarized as follows: ( ) ( )
C
jfRSA ω  in eq. (22) can be 

computed as ( ) ( )
SC
jfRSA ω  and ( ) ( )

L
jfRSA ω  are known ( ( ) ( )

SC
jfRSA ω  is supposed to be equal to 

( ) ( )jRSA ω  and ( ) ( )
L
jfRSA ω  can be estimated as ( )L

jf t  is known). The probabilistic characteristics 

of ( )C
jf t  can be computed from ( ) ( )

C
jfRSA ω ; 1, 2,...,j m= . The aforementioned basic idea is 

described in some detail in the following. The response spectrum ( ) ( )
C
jfRSA ω  can be approximately 

determined through the following first crossing problem [49]: 

( ) 2 ( ) ( ) ( ) ( ) ( )
0 0 0 0 0 0 0 00, 1, 2, 0,

( ) ( , , ( ), ( ), ( ), , 0.5) ( )
C
j

C C C C C
f j j j j j

sU U U U U
RSA T pω ω η ω ζ λ ω λ ω λ ω λ ω= =   (23) 
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where ( )
C
j

U
η  is the peak factor, 0ζ  is the damping ratio, sT  is the duration of the observing window 

set equal to the strong motion phase of the process ( )L
jf t , p  is the non-exceedance probability, 

and ( )
,

( 0,1, 2)C
j

i U
iλ =  are the response spectral moments defined as: 

2( )
0 0,

0

( ) ( , ) ( )C
j i C

ji U
H G d

∞

λ ω = ω ω ω ω ω∫    (24) 

where ( ) 12 2 2 2 2 2 2
0 0 0 0( , ) ( ) 4H

−
ω ω = ω −ω + ζ ω ω  is the energy transfer function and 

( ) ( 2 ( ), 0; 0, )C C
j jG S elsewhereω = ω ω≥ =  is the j-th (stationary) one-sided power spectral density 

of process ( ), ( 1, 2,..., )C
jf t j m= . Note that eq. (23) actually provides the 50% fractile of 

distribution of maxima that can be assumed coincident with the mean value of the peak values [49]. 

Equation (23) provides the vehicle for determining the power spectral density of the corrective 

vector process ( )C
jG ω . Specifically, taking into account eqs. (22) and (23) and imposing the 

equivalency between the ensemble-averaged response spectra ( ) ( )
SC
jfRSA ω  and the target response 

spectra ( ) ( )jRSA ω ( 1,..., )j m= , it is straightforward to show after some simple algebra that the 

following relation holds: 

( )( ) ( )22 2 4 ( ) ( )
0 0 0 0 00,( ( )) ( ( )) ( ) ( )

j jj j
L L

C C
(f ) (f )j j

U URSA RSA RSA RSAω ω ω η λ ω ω− = ∀ >   (25) 

The power spectral density of the j-th component of the corrective process ( ), ( 1, 2,..., )C
jf t j m=  

can be determined using the recursive procedure proposed in [45]: 

( ) 0 0C
j lcG ω = ≤ ω≤ ω ,    (26) 

( ) ( )
( )

( ) 22 ( )
10 0

0
2( ) 10 1 0

( , ) ( , )4( ) ( ) ,
4 ( , )

Lj
j

C

f
ii iC C

j i j r lc cj ri i iU

RSA RSA
G G

−

=−

 ω ζ − ω ζ ζ
ω = −∆ω ω ω < ω≤ ω ω π− ζ ω η ω ζ 

 

∑  
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(27) 

where i lc iω = ω + ∆ω  and CUη  is set equal to: 

( ) ( ){ }1 2

0 0 5 2ln 2 1 ln 2C C C C

.( j ) ( j ) ( j ) ( j )
i sU U U U

( , ,T , p . ) N exp N  η ω ζ = = − − δ π    
   (28) 

with: 

( ) 1( ) ln
2C

j s
iU

TN p −= ω −
π

    (29) 

1
2 2

( ) 0
2 2
0 0

1 21 1 arctan
1 1

C
j

U

  ζ  δ = − −
  − ζ π − ζ   

     (30) 

approximately determined according to the hypothesis of a barrier outcrossing in clumps and 

spectral moments determined assuming that the input power spectral density has a smooth shape  

and 0 1ζ << . Moreover, 1 rad / slcω ≅  is the lowest bound in the domain of CU
η  while cω  

represents an upper cut-off frequency beyond which the elements of ( )C
j iG ω  may be assumed to be 

zero.  The accuracy of the power spectral density of each individual corrective term can be 

iteratively improved via the equation:       

 
( )

( ) ( )

( ) 2

0

221

0 0
1

( , )
( ) ( ) ,

( , ) ( , )

j

jj
CL

C C
j jk k (f )(f )

k

RSA
G G

RSA RSA
−

−

 
ω ζ 

 ω = ω
 ω ζ + ω ζ  

   (31) 

where ( )0( , )
j

C(f )

k
RSA ω ζ  represents the response spectrum of the corrective term determined at the 

k-th iteration. It should be noted that the iterations stop as soon as equation (19) is satisfied. 
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After determining the power spectral density function of each corrective term, the elements 

of the evolutionary spectrum-compatible cross-spectral density matrix ( , )SC
f tωS  are established as 

follows: 

( , ) ( , ) ( , ), 1, 2,...,

( , ) ( , ) ( , ) ( ), , 1, 2,..., ;

SC L C
jj jj j

SC SC SC
jk jj kk jk

S t S t S t j m

S t S t S t j k m j k

ω ω ω

ω ω ω ω

= + =

= Γ = ≠
        (32) 

Finally, fully non-stationary ground motion time histories that reflect a prescribed coherence 

function ( )jk ωΓ  and are compatible with prescribed response spectra can be generated using the 

procedure proposed by Deodatis [38] (described in previous sections), using for the evolutionary 

cross-spectral density matrix 0 ( , )f tωS , the computed spectrum-compatible one: ( , )SC
f tωS . The 

proposed methodology is also summarized in flow-chart form in Figure 1. 

The methodology proposed in this paper (outlined in Fig. 1) to simulate fully non-stationary 

ground motion time histories at a number of locations on the ground surface that reflect a prescribed 

coherence function and are compatible with prescribed response spectra does not require any 

iterations on the individual generated sample functions. This is probably the most important 

advantage/innovation of the proposed methodology as Gaussianity and coherence structure of every 

generated sample vector process are guaranteed. It is known that if iterations are involved with the 

generation of sample functions, Gaussianity and coherence structure deteriorate (e.g. Deodatis and 

Micaletti [50]), unless the iterations are random in nature (e.g. Bocchini and Deodatis [51]). 

However, in the latter case, the computational cost increases drastically. 

5 NUMERICAL EXAMPLES  

In this section, the proposed methodology for generating fully non-stationary and spectrum-

compatible ground motion vector processes is demonstrated with a numerical example. For this 

purpose, consider the configuration of points depicted in Figure 2, representing three different 
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locations where fully non-stationary ground motion time histories compatible with three different 

response spectra defined by Eurocode 8 [47] have to be simulated. Specifically, point 1 corresponds 

to type A soil (rock or other rock-like geological formation), point 2 corresponds to type B soil 

(deposits of very dense sand, gravel, or very stiff clay), while point 3 corresponds to type D soil 

(deposits of loose-to-medium cohesionless soil or of predominantly soft-to-firm cohesive soil).  

Furthermore, the maximum ground acceleration ga  has been set equal to 0.35g  for each location. 

According to the proposed methodology, the 1D-3V (one dimensional, tri-variate), non-stationary, 

zero-mean, Gaussian stochastic vector process ( )L tf  having evolutionary cross-spectral density 

matrix: 

11 12 13

21 22 23

31 32 33

( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

L L L

L L L L

L L L

S t S t S t
t S t S t S t

S t S t S t

ω ω ω
ω ω ω ω

ω ω ω

 
 

=  
 
 

S    (33) 

has to be defined first. The Clough-Penzien acceleration spectrum is selected to model the non-

separable power spectral density functions ( , ); 1, 2,3L
jjS t jω = (all three spectra are assumed to be 

identical to each other here): 

2 4
2

2
0 2 22 2 2 2

2 2

1 4 ( )
( ) ( )

( , ) ( ) ( )

1 4 ( ) 1 4 ( )
( ) ( ) ( ) ( )

g
g fL

jj

g f
g g f f

t
t t

S t A t S t

t t
t t t t

ω ωζ
ω ω

ω
ω ω ω ωζ ζ

ω ω ω ω

     +            =
          
   − + − +                           

 (34) 

The off-diagonal terms are defined as: 

( , ) ( , ) ( ) ( , ) ( )L L L
jk jj jk kk jkS t S t S tω ω ω ω ω= Γ = Γ     (35) 

where ( ) ( ) exp /jk jk jki vω γ ω ωξ Γ = −  ,  ( )jkγ ω  is the coherence function, and exp /jki vωξ −   is 

the wave propagation term with jkξ  being the distance between points j and k, and v being the 
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apparent velocity of wave propagation. The Harichandran-Vanmarcke [52] model is chosen to 

model the coherence function: 

2 2
( ) exp (1 ) (1 )exp (1 )

( ) ( )
jk jk

jk a a a a a a
ξ ξ

γ ω α α
αθ ω θ ω

   
= − − + + − − − +   

   
             (36) 

The above models for the evolutionary spectra and coherence function have been selected for 

illustrative purpose only. Alternatively, different models can be used in a straightforward manner. 

Pertinent parameters used in this numerical example include: 

 ( ) 20 7 ; ( ) 0.6 0.2 ; ( ) 0.1 ( ); ( ) ( )
30 30g g f g f g
t tt t t t t tω ζ ω ω ζ ζ= − = − = =    (37) 

and: 

( )1 2( ) expA t a t a t= − ;   1 1
1 20.68 ; 1/ 4a s a s− −= = ;    (38) 

Furthermore: 

2

0 ( )
1( ) 2 ( )

2 ( )g g
g

S t
t t

t

σ

πω ζ
ζ

=
 

+  
 

;   2100 /cm sσ =    (39) 

In Figures 3 and 4 the evolutionary spectra 11 22 33( , ) ( , ) ( , )S t S t S tω ω ω= =  and the coherence 

functions ( ) ( , 1, 2,3; )jk j k j kγ ω = ≠  are displayed assuming [38]: 

0.626; 0.022; 19,700 ; 12.692 / , 3.47a k m rad s bα= = = Ω = =    (40) 

and: 

1/2

( ) 1
b

k ωθ ω
−

  = +  Ω   
.    (41) 

Figure 5a compares the target response spectra ( ) ( )jRSA T  ( 1, 2,3)j =  to the ensemble averaged 

simulated response spectra ( ) ( )
L
jfRSA T , as a function of the natural period. In order to minimize the 
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influence of the corrective term ( )C
jf t  on the non-stationary characteristics of the corresponding 

term ( )L
jf t , each of the ( )L

jf t  terms ( 1,2,3)j =  is scaled so its response spectrum ( ) ( )
L
jfRSA ω  

matches the corresponding target response spectrum ( ) ( )jRSA ω  at at least one point  and at the 

same time ( ) ( )( ) ( )
L
jf jRSA RSAω ω≤  at every frequency. Figure 5b displays the scaled 1( ) ( )

LfRSA T  

together with (1) ( )RSA T , Figure 5c the scaled 2( ) ( )
LfRSA T  together with (2) ( )RSA T , and Figure 5d 

the scaled 3( ) ( )
LfRSA T  together with (3) ( )RSA T . As indicated in Figures 5b - 5d, the matching can 

occur at different periods, depending on the shapes of the evolutionary power spectral densities of 

the local components ( )L
jf t .  

The (stationary) power spectral density functions of the corrective process ( )C
jf t  

( 1, 2,3)j =  are determined using eqs. (26) and (27). The Jennings, Housner and Tsai model [53] is 

selected for the modulating function of the corrective term (refer to eq. (21)):  

( )

2

1
1

1 2

2 2

( ) 1

exp

t t t
t

t t t t

t t t t

ϕ

β

  
 < 
  
= ≤ ≤
  − − > 



   (42) 

whose parameters 1t  and 2t  are determined so as to preserve the strong motion segment of the 

process ( )L tf  via the so-called Husid function (see e.g. [45]) herein extended to stochastic 

processes: 

( ) ( )0 0

0 0

( , )
( ) ; 0 ( ) 1; ( 1,2,3)

( , )
f

t
L
jj

j j
L Lt

L
jj

S t d dt
E t E t j

S t d dt

ω ω

ω ω

∞

∞
= ≤ ≤ =
∫ ∫

∫ ∫
   (43) 
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with ft  being the duration of the process. Following eq. (43), 1 1.65t s=  and 2 12.7t s=  are the time 

instants for which function (1) (2) (3)( ) ( ) ( )L L LE t E t E t= =  assumes the values of 0.05 and 0.95 

respectively. Parameter β  is set equal to 10.1734 s− . It follows that 2 1 11.05ST t t s= − =  satisfies 

the limit imposed by the code ( 10ST s≥ ) [47].  

The evolutionary and spectrum-compatible cross-spectral density matrix is then evaluated using 

equation (32). Its diagonal elements, along with the scaled ( , )L
jjS tω  and ( , ); 1, 2,3C

jS t jω = , are 

plotted in Figure 6. Then, fully non-stationary spectrum-compatible earthquakes are generated using 

eq. (16). A typical sample for each component is provided in Figure 7. A comparison of the 

ensemble-averaged simulated response spectra (using 100 samples) with the target ones confirms 

the effectiveness of the proposed methodology (Figure 8). Figure 9 compares the ensemble-

averaged coherence functions obtained from 10,000 simulated sample functions with the prescribed 

ones defined in equation (36), indicating an excellent agreement (the estimation of the coherence 

function from sample time histories is notoriously difficult (e.g. Zerva 2009) and consequently a 

much larger number of sample functions is used when compared to the estimation of the response 

spectra). Finally, Figure 10 plots on normal probability paper the empirical probability distribution 

functions of generated sample functions at time instant 5t s=  using 10,000 samples. The agreement 

with the Gaussian distribution is excellent (10,000 samples are considered roughly necessary to 

estimate the probability distribution reasonably well).  

6 CONCLUDING REMARKS 

In this paper, a spectral-representation-based methodology has been proposed for generating sample 

functions of fully non-stationary and spectrum-compatible ground motion time histories at a number 

of locations on the ground surface that reflect prescribed coherence functions. The basic idea of the 

methodology considers that the stochastic vector process modelling ground motion is constructed 
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by the superposition of two components: the first is an evolutionary non-stationary stochastic vector 

process with amplitude and frequency modulation, representative of local geological and 

seismological conditions. The second one is a corrective term modelled by a quasi-stationary 

stochastic vector process (a non stationary process with only amplitude modulation) that adjusts the 

response spectra of the overall vector process to make them response spectrum-compatible. The 

proposed methodology is not requiring any iteration on the individual generated sample functions, 

thus preserving the Gaussianity and coherence structure of every generated sample vector process. 

The methodology has also the advantage of providing the fully non-stationary and spectrum-

compatible cross spectral density matrix of the ground motion time histories that can be used for 

reliability studies in an analytic stochastic fashion.  
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FIGURE CAPTIONS 
 
 
 
 

Figure 1: Flow chart of the proposed methodology for generating fully non-stationary and 
spectrum-compatible ground motion vector processes 
 
Figure 2: Configuration of points 1, 2 and 3 on the ground surface depicted along with their 
corresponding target response spectra 
 
Figure 3: Evolutionary power spectral density functions ( , ), ( 1, 2,3)L

jjS t jω =  

 
Figure 4: Prescribed coherence functions ( )jkγ ω  ( , 1, 2,3; )j k j k= ≠   
 
Figure 5: a) Comparison between the ensemble-averaged simulated response spectra 

31 2 ( )( ) ( )( ) ( ) ( )
LL L ff fRSA T RSA T RSA T= =  before scaling  with the target ones ( ) ( ) ( 1, 2,3)jRSA T j = , b) 

Comparison between the scaled 1( ) ( )
LfRSA T  and (1) ( )RSA T ( 1 0.71α = ), c) Comparison between the 

scaled 2( ) ( )
LfRSA T  and (2) ( )RSA T ( 2 1.08α = ), d) Comparison between the scaled 3( ) ( )

LfRSA T  and 
(3) ( )RSA T ( 3 1.55α = ). 

 

Figure 6: a) Evolutionary power spectral density functions ( , ), ( 1, 2,3)L
jjS t jω = after scaling with 

1 0.71α = ; 2 1.08α = ; 3 1.55α = ; b) Evolutionary power spectral density functions of the corrective 
quasi-stationary process ( , ), ( 1, 2,3)C

jS t jω = ; c) Evolutionary spectrum-compatible power spectral 

density functions ( , ), ( 1, 2,3)SC
jjS t jω =  

 
Figure 7: Generated spectrum-compatible sample function for the acceleration at points 1,2 and 3 
 
Figure 8: Comparison between the ensemble-averaged simulated response spectra ( ) ( )

SC
jfRSA T  and 

the corresponding target ones ( ) ( ) ( 1, 2,3)jRSA T j =  using 100 samples.  
 

Figure 9: Comparison between the prescribed and ensemble-averaged simulated coherence 
functions ( )jkγ ω  ( , 1, 2,3; )j k j k= ≠  using 10,000 samples. 

Figure 10: Empirical probability distribution functions of generated sample functions at time instant 
5t s=  using 10,000 samples (plots on normal probability paper). 
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