Glycocluster tetrahydroxamic acids exhibiting unprecedented inhibition of *Pseudomonas aeruginosa* biofilms

Marwa Taouai,a,d\dag Khouloud Chakroun,a,d\dag Gaëlle Michaud,b David Giacalone,c Mohamed Amine Ben Maouia,a,d Rym Abidi,d David Lesur,a David Mathiron,a Tamis Darbre,b Peter J. Cragg,e Catherine Mullié,a\# Jean-Louis Reymond,3a George A. O'Toole,c* and Mohammed Benazza*a

a Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), CNRS- Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens Cédex, France.

b Chemistry and Biochemistry, University of Berne, Freistrasse 3, 3012 Berne, Switzerland.

c Department of Microbiology&Immunology, Geisel School of Medicine at Dartmouth, Rm 202 Remsen Building 66, College Street, Hanover, NH 03755

d Laboratoire LACReSNE, Unité « Interactions Moléculaires Spécifiques », Faculté des Sciences de Bizerte, Université de Carthage Zarzouna-Bizerte, TN 7021, Tunisie.

e School of Pharmacy and Biomolecular Science University of Brighton, Brighton BN2 4GJ, UK.

* To whom correspondence should be addressed

Keywords: LecB inhibition, PAO1 biofilm inhibition, Calixarene, Iron chelating, Cystic fibrosis, *Pseudomonas aeruginosa*, *Pyoverdine-I*
ABSTRACT. Opportunistic Gram-negative *P. aeruginosa* uses adhesins (e.g. LecA and LecB lectins, type VI pili and flagella) and iron to invade host cells with the formation of a biofilm: a thick barrier that protects bacteria from drugs and host immune system. Hindering iron uptake and disrupting adhesins function could be relevant anti-pseudomonal strategy. To test this hypothesis we designed an α-L-fucocluster tetrahydroxamic acid iron-chelating calixarene to interfere with both iron sequestration and glycan recognition processes. Iron depletion led to increased production of the siderophore pyoverdine by *P. aeruginosa* to counteract the loss of iron uptake. Unprecedented strong biofilm inhibition was observed not only with the α-L-fucocluster (72%), but also with its α-D-manno (84%), and α-D-gluco (92%) counterparts used as negative controls. This unprecedented finding suggests that biofilm inhibition is not exclusively through deactivation of soluble lectins.

INTRODUCCION

The increase in bacterial resistance to existing antibiotics presages a dramatic worldwide health disaster.\(^1\)\(^2\) Consequently, new strategies to fight bacterial infections and resistance to drugs are urgently needed.\(^3\)\(^4\)\(^5\) *Pseudomonas aeruginosa* is an opportunistic pathogen\(^6\) that commonly infects immunocompromised individuals\(^7\) and causes chronic, often fatal, lung infections in patients with cystic fibrosis (CF).\(^8\) The intrinsic tolerance of *P. aeruginosa* to traditional drugs\(^9\) is a result of several resistance mechanisms including growth as a multicellular community, or biofilm.\(^10\) Inhibition of biofilm formation could protect against *P. aeruginosa* infection by enhancing antibiotic uptake and efficacy by unicellular planktonic cells.\(^11\) Biofilm formation is a complex and highly regulated process that begins with bacterial attachment to host cells. The mechanisms involved in this early stage, are not fully understood, but in *P. aeruginosa* it is
thought to involve the soluble lectins (LecA and LecB)12,13 and other adhesins such as type IV pili and flagella.14,15 Molecules that efficiently inhibit biofilm formation could become useful antibiotic treatments, yet molecular biofilm inhibitors remain scarce. Recent research has focused on the design of multivalent molecules as host glycan mimics to inhibit the multivalent soluble lectins LecA and/or LecB.16 To date only the polycationic fucosyl dendrimer FD2 and its counterparts have shown favorable properties as lectin and biofilm inhibitors.4,17 \textit{P. aeruginosa} growth is also impacted by microelements such as iron.18 The ferrous cation (Fe2+) is the form involved in bacterial biochemical pathways but its scarcity under physiological conditions requires that \textit{P. aeruginosa} indirectly exploits the more available ferric cation (Fe3+) as a source. The recruitment of Fe3+ takes place efficiently via sophisticated siderophores such as the weakly iron-chelating pyochelin and the non-ribosomally synthesized pyoverdine (Pvd), a strong iron chelator containing two hydroxamic groups (HAGs) and a fluorescent dihydroxyquinoline chromophore.19 Interfering with this process using artificial iron chelators is another promising strategy to stop bacterial growth.20 This possible exogenous antibacterial treatment is likely to avoid resistance but is a still challenging approach as shown by small number of antimicrobial results obtained up to now.21,2

As a new anti-pseudomonal concept, we suggest drugs with dual iron chelating and adhesin inhibiting functions.,2 The candidates targeted for this preliminary investigation are clusters with multiple copies of hydroxamic acid group (HAG)22, as bidentate ligands for Fe3+-sequestration, and a suitable sugar terminus to interact with LecB lectin. A wide range of cluster-based α-L-fucose or α-D-mannose glycodendrimers have been studied, and the fucosylated derivatives typically had better affinities for LecB23 than mannose derivatives.24 We used α-L-fucose, the natural epitope of LecB, and α-D-mannose, a weak ligand of LecB, for our initial investigation.
As a versatile scaffold, we selected the pre-oriented p-tBu-calix[4]arene to improve both iron chelation and binding interactions with lectin. However, this advantage is often marred by the high hydrophobicity even when calixarene carry multiple copies of sugars which compromises biological assessment in aqueous media.25 PEG-linkers,26 anionic or cationic groups27 have incorporated in the hybridized calixarene to improve water solubility but this problem was also solved when an alkyl spacer was linked to a peptide moiety to produce water soluble multivalent calixarenes with a high affinity for the specified lectin.28 The latter solution was attractive for its potential to introduce functional groups in a modular fashion. Furthermore the N-alkylated-HAG ligands29 in a bridging position between the sugar and the scaffold were expected to further improve the water solubility of the calixarene glycoconjugate. We report herein a straightforward synthesis of two conformationally-locked calixglycocusters 1 and 2 with four α-L-fucose and four α-D-mannose units respectively (Figure 1). We successively evaluated: i. their possible inherent antibacterial effect on PAO1 wild strain of \textit{P. aeruginosa}; ii. their possible antibacterial effect in iron supplemented medium on both PAO1 producing siderophore and on siderophore-deficient PAD07 mutant strains of \textit{P. aeruginosa}; iii. their interaction with LecB lectin and iv. their inhibition of the PAO1 biofilm formation. The synthesis of the glucocluster 3 and its evaluation against biofilm formation are also described. Our toxicity studies focused on the compounds’ effects on the airway epithelial host cells from CF patients.
Figure 1. The targeted glyocluster-based calixarene 1 with α-L-fucose, 2 with α-D-mannose and 3 with α-D-glucose units.

Results and discussion

Organic synthesis. A convergent strategy indicated in Schemes 1 and 2 was used to design the target clusters 1, 2 and 3. The key intermediates involved were N-propargylperacetylated benzylhydroxamates 12 with α-L-fucose, 13 with α-D-mannose and 14 with α-D-glucose as sugar derivatives (Scheme 1b). All were formed from masked hydroxamic acid 5 which was obtained in good yield (71%) from amidation of 6-azido hexanoic acid 4 (Scheme 1a). Compound 5 was linked in turn to the propargylated sugars 6 (α-L-fuco), 7 (α-D-manno)31 and 8 (α-D-Gluco) via click chemistry using CuI/DIPEA in acetonitrile to give intermediates 9 (50%), 10 (92%) and 11 (71%), respectively. The three O-glycosyl amide derivatives were transformed via N-propargylation reaction to their corresponding N-propargylated derivatives 12 (50%), 13 (49%) and 14 (75%) under microwave conditions (Schem 1b). As by-products, the three O-propargylated imidates 16 (fuco) (12%), 17 (manno) (15%) and 18 (gluco) (9%) (through amide-
imidate tautomerisation) were obtained. The \(N \)-propargylamide and the \(O \)-propargylimidate groups were distinguished in \(^{13} \text{C} \) NMR spectroscopy by \(\text{C}=\text{O} \) and \(\text{C} = \text{N} \) chemical shifts at 175.6 and 163 ppm for the \textit{fucoid} derivatives 9 and 10, 175.7 and 163.1 for the \textit{manno} derivatives 15 and 16 and 176 and 154.5 ppm for the \textit{gluco} derivatives 14 and 18 of the carbonyl and imidate carbon atoms, respectively. Fucocluster 1 was obtained through linking the azido-calixarene 20 to alkyne \textit{fucoid}-derivative 12 via click chemistry. The tetrafuco benzylhydroxamate 21 (61%) obtained underwent deacetylation reaction to give free fucocluster 24 (60%). Hydrogenation with \(\text{H}_2 \) and Pd/C-10% produced iron chelating fucocluster 1 in good yield (80%). The same strategy was successfully applied to the synthesis of mannocluster 2 obtained from the reaction of \textit{manno}-derivative 13 and 20, and subsequent acetolysis, to give 25 as an intermediate. Hydrogenolysis gave the target cluster 2 in good overall yield. Finally, the synthesis of the glucocluster 3 was obtained in good overall yield using free sugar derivative 15 in the click reaction step, followed by hydrogenolysis. The three glycoclusters 1, 2 and 3 were obtained in high purities by preparative HPLC on 40 \(\mu \text{m} \) C18 reverse phase and a \(\text{H}_2\text{O}/\text{CH}_3\text{CN} \) gradient as the eluant. The purities were determined by LC-MS using C18 5\(\mu \text{m} \) reverse phase column and estimated from peak integrations (See SI, Figures S47, S49 and S51). Through the steps from 20 to 1, 2 and 3, the calix cone conformation was preserved (\(J_{A,B} \) are approximately 12.3 and 12.6 Hz, respectively for the AB system of the bridged \(\text{ArCH}_2\text{Ar} \)). As expected, the three glycoclusters 1, 2 and 3 were highly water-soluble, which made them suitable for biological studies in aqueous media. The free sugar units and hydroxamic acid moieties are required both for hydrophilicity as the corresponding \(O \)-benzylated clusters 23, 24 and 25, with only free sugar units, lose this fundamental property.
a. Synthesis of fucose, manno and gluco-benzylhydroxamate 9, 10 and 11 respectively

\[\text{Scheme 1. Synthesis of } N\text{-propargyl hydroxamate bearing linker with } \alpha-L\text{-fucose 12, } \alpha-D\text{-mannose 13 and } \alpha-D\text{-glucose 14/15 for subsequent click chemistry (Scheme 2). Conditions: i. CuI, DIPEA, CH}_3\text{CN, ii. CuI, DIPEA, CH}_3\text{CN, microwave, 30 min, iii. Propargyl bromide 80% in toluene, MW, 30 min, iv. MeONa/MeOH.} \]
Scheme 2. Synthesis of iron-chelating glyocluster-based calixarene 1 (with α-L-fucose units) and 2 (with α-D-mannose units) designed to stop bacterial growth and inhibit biofilm formation. Glucocluster 3, designed to serve as a negative control, was synthesized by a modified strategy. Reagents and conditions: i. a: 1-bromo-3-chloropropane, NaH, DMF, 90 °C, 48 h; b: NaN₃.
DMF, 80 °C, 16 h; ii. CuSO$_4$·5H$_2$O, sodium ascorbate, tBuOH/H$_2$O/THF, 65 °C, 16 h; iii. Et$_3$N, H$_2$O, MeOH, rt, 48 h; iv. H$_2$, Pd/C 10%, MeOH, rt, 24 h.

Biological assessments.

Impact of 1 and 2 on growth of PAO1 under Mueller-Hinton conditions33 in iron-supplemented media. We first determined that fucocluster 1 and mannocluster 2 did not show any inherent antibiotic activity against wild-type *P. aeruginosa* PAO1 under standard Mueller-Hinton growth conditions33 without iron supplementation (MIC > 512 µg/mL, see SI, Table S1). As no effective protocol exists for biofilm inhibition assays in iron-supplemented culture, we focused on growth in the presence of artificial iron chelators at various concentrations of iron following a well known protocol. We examined the growth of siderophore-producing PAO1 and the siderophore-deficient PAD07 strains in iron-supplemented succinate minimal medium (SMM)34 in the presence of 8 µg/mL (50 µM) of FeCl$_3$ and increasing concentrations of 1 or 2 from 0.125 to 128 µg/mL (equivalent to a [1]/[FeCl$_3$] or [2]/[FeCl$_3$] ratio of 0.0625 to 128).

Fluorescent pyoverdine-I (Pvd-I) is the main siderophore expressed by PAO1 to enhance growth under iron limiting conditions.35 This pigment naturally fluoresces under iron limiting conditions and loses fluorescence in iron-rich media.36 The presence of 1 or 2 did not influence PAO1 growth (See SI, Figure S57) but competed strongly with Pvd-I,37 which was increasingly produced (indicated by green fluorescence in well plates, see SI, Figure S58) to counteract iron deficiency. This was corroborated by measurements of the Pvd-I-specific emission at 447 nm indicating that levels of iron-free Pvd-I increased with increasing concentrations of ligands 1 or 2 (Figure 2A). This iron-limiting effect, which could be a means of inhibiting biofilm formation, is directly related to the presence of hydroxamic acid groups, a conclusion supported by the absence of fluorescence for *O*-benzylated hydroxamate derivatives 24 and 25 (See SI, Figure
S58). No antibacterial effect was observed against PAO1; however, mannocluster 2 significantly disrupted growth of the siderophore-deficient PAD07 strain (Figure 2B). Fucocluster 1 had a weak effect on growth which supports the involvement of the sugar type in the growth-interfering activity. Interestingly, this result is also supportive of iron complexes derived from 1 and 2 not being recognized by bacterial siderophore receptors thus preventing their use by the pathogen to uptake iron as observed for enterobactin-mimics with *Escherichia coli* \(^{38}\).

Figure 2. A. Iron-free Pvd-I fluorescence measurements at \(\lambda_{\text{abs}} = 400 \) nm and fluorescence recorded at \(\lambda_{\text{em}} = 447 \) nm in the presence of ligands. All points on the curves were obtained after incubation of well plates for 24h at 35 °C at the indicated concentrations. Baselines were made with solvent alone and with the same varying amounts of products 1 and 2 in the medium, without the bacterial inoculums, to assess the absorbance generated by our compounds.
Experiments were carried out in duplicate at least twice. Results are given as mean ± Standard Deviation (SD). B. Growth of *P. aeruginosa* non-producing siderophore PAD07 in the presence of 1 or 2 in SMM supplemented with FeCl$_3$ (8 µg/mL). Results are displayed as means ± standard deviation. *: $p \leq 0.05$ (Wilcoxon Mann Whitney test vs. control).

This apparently strong impact of 1 and, to a large extent, 2 on Pvd-I-production is probably related to the vectorization of the iron-complexes close to the bacterial membrane. Interactions may be with the recognition systems of PAO1 as the fucophilic LecB soluble lectin and/or other adhesin systems since mannose is usually weakly recognized by LecB. Consequently we assessed interaction of both ligands with LecB (See below).

Evaluation of LecB inhibition in presence of 1 or 2 using the fluorescence polarization technique.

Using the fluorescence polarization technique as described by Hauck et al., we performed a competitive binding assay with LecB to corroborate at least in part the vectorisation hypothesis. The experiments involved L-fucose, Me-α-L-fucoside, Me-α-D-mannoside, the monovalent carbohydrates 26 (fuco) and 27 (manno), and the multivalent glyoclusters 1 and 2 (Figure 3). Unexpectedly, 2 interact strongly with LecB illustrated by a decrease in fluorescence polarization amplification by factors of 220 and 236 compared to its monovalent derivative 27 and Me-α-D-mannoside respectively. This supports a strong positive effect of multivalency (β-avidities = 55 and 59 respectively, Table 1) never previously observed with a mannocluster. Surprisingly, only a weak relative potency (0.5 with 26 and 3.37 with Me-α-L-fucoside) with loss of binding interaction (β-avidities = 0.13 and 0.84 respectively) were observed with fucocluster 1 illustrating a negative effect of multivalency. Furthermore, the IC$_{50}$ (664 nM) of 2 is only three times lower than that of 1 (294 nM). This finding contrasts with the monovalent Me-α-D-
mannoside, which is a 187-fold weaker inhibitor of LecB than Me-α-L-fucoside. It is striking that the cluster capped with D-mannose units is a better ligand for LecB than its fuco-counterpart although L-fucose is the natural epitope of this lectin. The most likely interaction here is via chelation, as previously suggested for LecB and blood group antigens bearing N-glycans. This is supported by molecular mechanics (MMFF) which predicts the greatest separation between two mannose units of approximately 50 Å in a complex of 2 bound to sugar-free LecB (1OUX) (Figure 4). This is enough to cover the shortest possible distance of 41 Å between two LecB carbohydrate recognition domains (CRDs). Although this distance is also covered by the the fuco-counterpart 1 (see SI, Figure 61), it was not enough for better recognition. We suggest that the orientation of mannose units, leading to complementary protein folding, and the exisitance of secondary interactions, due to the HAG-arms, contribute synergistically to the favorable recognition of multivalent mannocluster 2 by LecB.
Figure 3. Evaluation of ligands 1, 2, 26 and 27 for competitive binding to LecB using a fluorescence polarization-based assay. Compounds 26 and 27 were obtained by traditional acetolysis (MeONa/MeOH) of compounds 9 and 10 respectively. Bottom and top plateaus were defined by the standard compounds L-fucose and methyl α-D-mannoside, respectively, and the data were reanalyzed with these values fixed. Three independent experiments were performed for each inhibitor and average IC$_{50}$ values are given in Table 1.
Figure 4. Computer generated views of 2 superimposed on the anti-parallel tetrameric lectin, LecB (1OUX);42 We observe that the sugars in 1,3-position of calixarene can bind (See SI, Table S2 for output data) two CRDs that are normally separated by 41 Å.43,44 For computer generated views of fucocluster 1 superimposed on LecB, see SI, Figure 61.
Table 1. Evaluation of monovalent and multivalent inhibitors in a competitive binding assay with LecB.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>IC$_{50}$</th>
<th>s.d. [μM]</th>
<th>n$^{[a]}$</th>
<th>Rel. IC$_{50}$</th>
<th>Rel. s.d.</th>
<th>Rel. Potency w.r.t.</th>
<th>Rel. Potency</th>
<th>β avidity = IC$_{50ligand}$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-fucose</td>
<td>2.7439</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Me-α-D-mannoside</td>
<td>15739</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Me-α-L-fucoside</td>
<td>0.8440</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 (Fuco)</td>
<td>0.249</td>
<td>0.12</td>
<td>4</td>
<td>0.996</td>
<td>0.48</td>
<td>0.5*</td>
<td>3.37*</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2 (Manno)</td>
<td>0.664</td>
<td>0.170</td>
<td>4</td>
<td>2.658</td>
<td>0.68</td>
<td>220**</td>
<td>236**</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>26 (Fuco)</td>
<td>0.50</td>
<td>0.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>27 (Manno)</td>
<td>146.3</td>
<td>24.40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[a] Number of monosaccharide epitopes in the ligand; [b] relative IC50 = IC50(ligand) x n; [c] relative potency (Rel. Pot.) = IC50(Me-α-L-fuc)/IC50(ligand) for 1 and relative potency (Rel. Pot.) = IC50 (Me-α-D-man)/IC50(ligand) for 2. Three independent experiments were performed for each inhibitor, average IC50 values and standard deviations are given.
Due to this apparent strong inhibition of LecB and the well known relationship between LecB and biofilm control,13,12 we hypothesized that 2 could be a much better inhibitor of PAO1 biofilm formation than 1 (See below).

Assessment of PAO1 biofilm inhibition by 1 and 2 and synergistic effect in presence of tobramycin (Tb) antibiotic using Diggle protocol.45 We examined the ability of 1 and 2 to inhibit PAO1 biofilm formation using the protocol of Diggle et al.,45 previously applied to the fuco dendrimer FD217 and used here as a positive control. The biofilm quantification was analysed using the WST-8 assay46 to determine the number of viable cells in the biofilm. At a concentration of 50 µM, we determined that fucocluster 1 had no significant effect on PAO1 biofilm formation (Figure 5A and see SI, Figure S59 for well plates). Conversely, mannocluster 2 strongly reduced biofilm formation by 70% at 50 µM. This activity subsequently increased to 83% and at a lower concentration of 20 µM (Figure 5B). This is a surprising finding which contrasts with inactive calixarene mannoclusters reported in literature.26 The lack of biofilm inhibition by fucocluster 1 was unexpected since fucose is the natural epitope of LecB. However, the unexpectedly potent interaction of mannocluster 2 with LecB requires caution regarding its link with biofilm inhibition at this stage as other undefined synergistic interactions involving both linker bearing HAG and sugar terminus remain possible.

The design of compound 2 was based on the anticipation of a synergetic interaction between two complementary antibiofilm moieties combined within the same structure: the inhibition of LecB and the hindrance of the bacterial iron uptake via iron sequestration. Although 2 exhibited an iron complexation property that induced a stress response of \textit{P. aeruginosa}, it was not enough to cause death \textit{via} iron depletion. The impact of iron depletion on the biofilm was not assessed, consequently, the observed biofilm inhibition was attributed to the synergistic interaction
between the carbohydrate termini and the rest of the scaffold. To improve the anti-biofilm activity, we used 2 in combination with tobramycin (Tb) as another route to a synergistic effect. Tb is an antibiotic used to treat lung infections associated with cystic fibrosis. While Tb is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear chronic P. aeruginosa infections in older patients. The normal action of Tb is intracellular; Tb binds to bacterial ribosomes and prevents translation leading to cell death. However, Tb also induces bacterial biofilm formation when used alone at sub-inhibitory concentrations (Sub-IC) of 0.1 µM. Furthermore, combined with iron chelators (e.g. Deferasirox) or with other antibiotics (e.g. Colistin, Claritromycin or fosfomycin), Tb led to synergistic biofilm inhibition. Figure 5C shows the effect of Tb alone or in combination with 2 on biofilm formation. At doses greater than 0.15 µM of Tb, we observed its normal antibiotic role, and the planktonic cells were killed. From 0.15 µM to Sub-IC, biofilm formation occurs, in agreement with the literature. Surprisingly, when Tb was administered with 2 at its Sub-IC, there was a total inhibition of biofilm formation without any toxic effects (Figure 6). This synergy could be related to the possible protonation of cationogenic Tb, as a base bearing five amino groups, by acidic cluster 2 with four hydroxamic acid groups transformed in turn in to their corresponding hydroxamate anions. The resulting cationic species is likely responsible for biofilm inhibition without any antimicrobial effects, as observed recently with small cationic molecules. In this reaction between 2 and Tb, we not exclude the interference of this negatively charged hydroxamate species that acts following other mechanisms against the biofilm.
Figure 5. A. Biofilm formation assay using a 96-well dish microtiter plate assay to assess the efficacy of 1 and 2 at 50 µM for inhibition of the biofilm formed by P. aeruginosa PAO1. B. Biofilm inhibition assay with P. aeruginosa PAO1 treated with mannocalixarene 2 at different concentrations using 30 uM FD2 as a reference. C. Biofilm inhibition assay with P. aeruginosa PAO1 treated with a mixture of 2 and a sub-inhibitory concentration (0.1 µM) of tobramycin (Tb). For experiments A, B and C, the biofilm was quantified using the WST-8 assay to determine the number of viable cells in the biofilm. D. Biofilm inhibition assay with P. aeruginosa PAO1 treated with 20 µM of 1, 2 and 3 glycoclusters respectively performed in M63 minimal medium supplemented with 0.4 % arginine and 1 mM magnesium sulfate, and incubated for 24 hours before staining with crystal violet prior to quantification.
Assessment of PAO1 biofilm inhibition by 1, 2 and glucocluster 3 using Tool’s method.56

Observing the concentration dependent activities of Tb led us to revisit the potential use of fucocluster 1 as a biofilm inhibitor. We found that 1 had little impact on biofilm formation at 50 μM (Figure 5A), and decided to re-examine biofilm inhibition assays with 20 μM concentrations of 1, 2 and added the glucocluster 3 as a negative control. Furthermore, to confirm result obtained using the Diggle method45 for mannocluster 2 (Figure 5A), we used a second method described previously by O’Toole56 to assess biofilm growth and inhibition. In fact, we found that mannocluster 2 efficiently inhibits 84% of biofilm formation at 20 μM (Figure 5D), in agreement with the previous assay using the Diggle method45 (83% at 20 μM, Figure 4B). Surprisingly, fucocluster 1 prevented 72% biofilm formation at 20 μM, suggesting concentration dependent activity as hypothesized. Another intriguing result was the strong inhibition of biofilm formation with α-D-glucose-based cluster 3 (92% at 20 μM) used as negative control. In the best of our knowledge, it is the first glucocluster with efficient action against \textit{P. aeruginosa} biofilm formation. This activity is likely to be independent of the ability to inhibit the function of the known soluble lectins. This supports the existence of other types of interactions with other virulence factors towards the bacterial membrane. We suggest the possibility of synergistic actions between the carbohydrate terminus and the anionogenic hydroxamic acids which interact with flagella of \textit{P. aeruginosa} as do the negatively charged glycosaminoglycan heparane sulfates of host cell walls.57
Figure 6. Bacterial growth curves of *P. aeruginosa* wild-type strain PAO1 in the presence of 2 (20 µM) alone and 2 (20 µM) + subinhibitory concentration of tobramycin (Tb).

Cytotoxicity on the airway epithelial host cells from CF patients (known as CFBEΔF cells). Although *P. aeruginosa* affects many tissues,58,59 for toxicity evaluation we focused on the airway epithelial host cells from CF patients (CFBEΔF cells) by measuring lactate dehydrogenase (LDH) activity. No LDH activity48,60,61 was detected in cells in the presence of 1, 2 or 3, as compared to cells treated with the negative control, minimal medium (MEM) alone (Figure 7). Complete lysis was detected when cells were treated with the surfactant Triton.48 This result indicated that none of these ligands is toxic to CFBEΔF cells, supporting the potential of our research to improve the efficiency of ligands designed for potential antipseudomonal use.
Figure 7. LDH assay of cytotoxicity of compounds 1, 2, and 3 on CFBEΔF cells.\(^{48}\) The compounds were each set at a concentration of 20 µM in water. MEM is a minimal tissue culture medium.

CONCLUSION

In conclusion, we provide herein a straightforward convergent synthesis of unique, water-soluble calixarene-based iron-chelating glycoclusters designed to interfere with the iron uptake process to inhibit bacterial adhesins through glycan mimicry. Incorporating four mannose substituents and four hydroxamic acid groups showed mannocluster 2 to be a strong iron chelator through the production of the Pvd-I siderophore by PAO1 in response to iron depletion. Strong inhibition of biofilm was also observed when 2 was used alone. Complete biofilm eradication, without any toxic effect, was subsequently achieved synergistically through combination of 2 with sub-inhibitory concentrations of the antibiotic tobramycin. The unique inhibition of LecB at a nanomolar IC\(_{50}\) with 236-fold potency enhancement compared to the Me-\(\alpha\)-D-mannoside, seemed to cause inhibition of the biofilm. This apparent relationship was revised when we discovered that the \(\alpha\)-D-glucocluster counterpart 3 had a more potent action against biofilms. This unprecedented result suggests the alteration of another bacterial adhesin expressing a high
synergistic affinity to both alkylhydroxamic bearing linkers and sugar cap. The use of antbiofilm drugs is an attractive therapy against *P. aeruginosa* infections, so this finding offers a real advance through the first cluster based D-glucose derivatlibve that elicits inhibition of *P. aeruginosa* biofilm while preventing deactivation of fucophilic and/or mannophilic lectin of innate immune system.62,63

EXPERIMENTAL SECTION

Organic synthesis.

General methods. Syntheses under microwave irradiation were performed under pressure with a CEM Discover single-mode apparatus (2450 MHz) using an external reaction temperature sensor. All chemical reagents were purchased from Sigma, Fisher (France) or TCI-Europe. \(^1\)H and \(^{13}\)C NMR spectra were recorded on 300 and 600 MHz Bruker spectrometers in appropriate deuterated solvents; chemical shifts are reported on the \(\delta\) scale. All \(^{13}\)C NMR signals were assigned through C–H correlated HSQC spectra. TLC was performed on Silica Gel 60 F254, 230 mesh (E. Merck) with cyclohexane-EtOAc or EtOAc-MeOH, and spots were detected by vanillin–H\(_2\)SO\(_4\) reagent. Preparative column chromatography was performed using 230–400 mesh Merck silica gel (purchased from Sigma). Flash chromatography was performed with Reveleris-Flash System apparatus with cartridge SiO\(_2\)-normal phase or C18-reverse phase. For purity estimation we used HPLC on Prevail C18, 5 \(\mu\)m column. In all cases the estimated purities was higher that required by *Journal of Medicinal Chemistry* (95%).

Optical rotations were determined with a Perkin Elmer Model 343 Polarimeter\(1\) mL cell. Low-resolution electrospray mass spectra (ESI-MS) in the positive or negative ion mode were obtained on a Waters ZQ 4000 quadrupole instrument equipped with an electrospray (Z-spray) ion source. High resolution electrospray experiments (ESI-HRMS) were performed on a Waters Q-TOF Ultima Global hybrid quadrupole time-of-flight instrument, equipped with an electrospray (Z-spray) ion source. Infrared spectra were recorded on an FTIR spectrometer.

\(\alpha\)-L-fuco-p-tBu-calix[4]arene tetrahydroxamic acid 1. To compound 24 (0.124 g; 0.0414 mmol) dissolved in MeOH (12 mL), was added Pd/C (10\%) (0.040 g). The mixture was stirred at
room temperature under an atmosphere of hydrogen until the TLC monitoring (6/3/0.8: EtOAc/MeOH/H₂O) showed the total consumption of the starting material. The catalyst was then removed by filtration through Celite and washed with methanol. After evaporation of the solvent under reduced pressure, compound 1 was obtained as white solid after purification by preparative HPLC on 40 µM C18 reverse phase with suitable gradient of H₂O/CH₃CN as eluant. Yield 0.085 g (80%); R$_f$ (SiO$_2$, EtOAc/MeOH/H₂O: 6/3/0.8) = 0.13; ESI-MS: m/z = 1337.7 [M-2Na]$^{2+}$; [α]2_0 = -38 (c = 0.155 in MeOH). 1H-NMR (600 MHz, MeOD, 25°C): δ = 8.01 (s, 4H, CH$_2$triazole), 7.98 (s, 4H, CH$_2$triazole), 6.83 (s, 8H, CH$_2$Ar), 4.87 (m, 4H, H-1), 4.76 (d, J = 9.1 Hz, 4H, OCH$_2$triazole), 4.60 (m, 12H, OCH$_2$triazole/CH$_2$N$_2$triazole), 4.36 (t, J=7.0 Hz, 8H, CH$_2$N$_2$triazole), 4.31 (d, J =12.3 Hz, 4H, ArCH$_2$Ar), 3.95 (m, 4H, H-5), 3.88 (m, 8H, CH$_3$OAr), 3.75 (m, 8H, H-3/H-2), 3.13 (d, J = 12.3 Hz, 4H, ArCH$_2$Ar), 2.53 (m, 8H, CH$_2$), 2.47 (m, 8H, CH$_2$), 1.87 (m, 8H, CH$_2$), 1.61 (m, 8H, CH$_2$), 1.29 (m, 8H, CH$_2$), 1.18 (d, J$_{6,5}$ = 6.6 Hz, 12H, H-6), 1.08 (s, 36H, CH$_3$). 13C-NMR (150 MHz, MeOD, 25°C): δ = 176.0 (C=O amide), 154.2 (ArC=OCH$_2$), 146.1 (ArCtBu), 145.6 (C$_2$triazole), 144.2 (C$_2$triazole), 134.8 (ArC=CH$_2$C=Ar), 126.4 (CHAr), 125.3 (CH$_2$triazole), 125.1 (CH$_2$triazole), 100.1 (C-1), 73.5 (C-4), 73.0 (CH$_3$OAr), 71.5 (C-2), 69.9 (C-3), 67.7 (C-5), 61.7 (CH$_2$Otriazole), 51.1 (CH$_2$N), 34.7 (C(CH$_3$)$_3$), 32.9 (CH$_2$), 32.1 (CH$_2$), 32.0 (CH$_3$), 30.9 (CH$_2$), 27.0 (CH$_2$), 25.0 (CH$_2$), 24.0 (CH$_2$), 16.6 (C-6). HRMS(ESI/Q-TOF) m/z : [M+2Na]$^{2+}$ calcd for C$_{128}$H$_{188}$N$_{28}$O$_{32}$Na$_2$ 1337.6870; found 1337.6852.

α-D-manno-p-tBu-calix[4]arene tetrahydroxamic acid 2. To compound 25 (0.08 g; 0.026 mmol) dissolved in MeOH (8mL), was added Pd/C (10%) (0.023 g). The mixture was stirred at room temperature under an atmosphere of hydrogen until total consumption of the starting material. The catalyst was then removed by filtration through Celite and washed with methanol. After evaporation of the solvent under reduced pressure, compound 2 was obtained as white
solid after purification by preparative HPLC on 40 µM C18 reverse phase with suitable gradient of H$_2$O/CH$_3$CN as eluant. Yield 0.051 g (72 %); ESI-MS: m/z = 1370.2 [M-2Na$^+$]$^{2+}$; $[^\alpha]_D^{20} = +32$ (c = 0.08 in MeOH). 1H-NMR (600 MHz, MeOD, 25 °C): δ = 8.00 (s, 4H, CH$_{\text{triazole}}$), 7.96 (s, 4H, CH$_{\text{triazole}}$), 6.82 (s, 8H, CH$_{\text{Ar}}$), 4.86 (m, 4H, H-1), 4.77 (d, J = 12.4 Hz, 4H, OCH$_2$triazole), 4.61 (m, 12H, OCH$_2$triazole/CH$_2$N$_{\text{triazole}}$), 4.37-4.26 (m, 12H, CH$_2$N$_{\text{triazole}}$/ArCH$_2$Ar), 3.93-3.57 (m, 32H, H-6/H-5/H-4/H-3), 3.12 (d, J = 12.3 Hz, 4H, ArCH$_2$Ar), 2.53 (m, 8H, CH$_2$), 2.46 (m, 8H, CH$_2$), 1.86 (m, 8H, CH$_2$), 1.59 (m, 8H, CH$_2$), 1.29 (m, 8H, CH$_2$), 1.07 (s, 36H, CH$_3$). 13C-NMR(75 MHz, MeOD, 25 °C): δ = 175.9 (C=O amide), 154.3 (ArCOCH$_2$), 146.1 (ArC(tBu), 145.2 (C$_{\text{triazole}}$), 144.2 (C$_{\text{triazole}}$), 134.9 (ArCCH$_2$CAr), 126.4 (CH$_{\text{Ar}}$), 125.3 (CH$_{\text{triazole}}$), 100.7 (C-1), 74.9, 73.0 (CH$_2$OAr), 72.4, 71.9, 68.6 (C-5, C-4, C-3, C-2), 62.9 (C-6), 60.7 (CH$_2$Otriazole), 51.2 (CH$_2$N), 44.5 (CH$_2$N), 34.7 (C(CH$_3$)$_3$), 32.9 (CH$_2$), 32.1 (CH$_3$), 30.9 (CH$_2$), 27.1 (CH$_2$), 25.0 (CH$_2$). HRMS(ESI/Q-TOF) m/z : [M+2Na$^+$]$^{2+}$ calcd for C$_{128}$H$_{188}$O$_{36}$N$_{28}$Na$_2$ 1369.6763; found 1369.6700.

α-D-gluco-p-tBu-calix[4]arene tetrahydroxamic acid 3. To compound 23 (0.2 g; 0.061 mmol) dissolved in MeOH (18 mL), was added Pd/C (10%) (0.1 g). The mixture was stirred at room temperature under an atmosphere of hydrogen until total consumption of the starting material. The catalyst was then removed by filtration under Celite and washed with methanol. After evaporation of the solvent under reduced pressure, compound 3 was obtained after purification by preparative HPLC on 40 µM C18 reverse phase with suitable gradient of H$_2$O/CH$_3$CN as eluant. Yield 0.092 g (72 %); ESI-MS: m/z = 1370.2 [M-2Na$^+$]$^{2+}$; $[^\alpha]_D^{20} = +15.2$ (c = 0.5 in MeOH). 1H-RMN (600 MHz, MeOD, 25°C): δ = 8.02 (s, 4H, CH$_{\text{triazole}}$), 7.98 (s, 4H, CH$_{\text{triazole}}$), 6.83 (s, 8H, CH$_{\text{Ar}}$), 4.1 (d, J = 3.5Hz, 4H, H-1), 4.72-4.52 (m, 12H, OCH$_2$triazole/H-3), 4.46-4.24 (m, 12H, OCH$_2$triazole/CH$_2$N$_{\text{triazole}}$), 3.96-3.76 (m, 12H, H-2/ ArCH$_2$Ar), 3.73-3.56
(m, 12H, H-6a/H-4), 3.46 (dd, J = 3.6 Hz, J = 9.7 Hz, 4H, H-6b), 3.37-3.27 (m, 4H, H-5), 3.13 (d, J = 12.7 Hz, 4H, ArCH₂Ar), 2.5 (m, 8H, CH₂), 1.87 (m, 8H, CH₂), 1.62 (m, 8H, CH₂), 1.31 (m, 8H, CH₂), 1.08 (s, 36H, CH₃). ¹³C-RMN (150 MHz, MeOD, 25°C): δ = 175.8 (C=O), 154.3 (ArCOCH₂), 145.1 (ArCtBu), 145.4 (C₃triazole), 144.3 (C₃triazole), 134.9 (ArCH₂C₃Ar), 126.4 (CHAr), 125.3 (CH₃triazole), 99.5 (C-1), 75.0, 74.0, 73.4, 73.0 (CH₂OAr), 71.8 (C-5, C-4, C-3, C-2), 62.6 (C-6), 61.4 (CH₂Otriazole), 51.2 (CH₂N), 44.5 (CH₂Ncalix), 34.8 (C(CH₃)₃), 32.9 (CH₂), 32.0 (CH₃), 30.9 (CH₂), 27.1 (CH₂), 25.0 (CH₂). HRMS(ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₂₈H₁₈₈O₃₆N₂₈ 1369.6763; found, 1369.6700.

6-Azido-N-benzylhexanamide (5). A stirred solution of 6-azido hexanoic acid (4)⁶⁴ (2 g, 12 mmol) and O-benzylhydroxylamine (1.58 g, 15.2 mmol) in CH₂Cl₂ (66 mL) was cooled to 0°C. A solution of DCC (3.154 g, 15.28 mmol) in CH₂Cl₂ (40 mL) was added dropwise over 5 min and the solution was allowed to warm to room temperature, with stirring continued for 3h. The mixture was filtered and the filtrate was concentrated under reduced pressure. Purification by flash chromatography (cyclohexane/EtOAc) afforded 6-azido-N-benzylhexanamide 5 as a colorless oil. Yield 2.387 g (71%); Rₛ(SiO₂, cyclohexane/EtOAc: 4/3) = 0.32; ESI-MS: m/z = 284.9 [M+Na]⁺. ¹H-NMR (300 MHz, CDCl₃): δ = 10.24 (s, 1H, NH), 7.45-7.29 (m, 5H, CHBn), 4.84 (s, 2H, CH₂Bn), 3.15 (t, J = 6.8 Hz, 2H, CH₂), 2.05 (t, J = 6.6 Hz, 2H, CH₂), 1.59-1.46 (m, 4H, CH₂), 1.28 (m, 2H, CH₂). ¹³C-NMR (75 MHz, CDCl₃, 25°C): δ = 170.8 (C=O), 135.5 (C_Bn), 128.9 (CH_Bn), 128.4 (CH_Bn), 128.3 (CH_Bn), 77.9 (CH₂Bn), 51.1 (CH₂N₃), 32.6 (CH₂), 28.4 (CH₂), 25.8 (CH₂), 24.8 (CH₂). HRMS(ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₈N₄O₂Na 285.1327; found 285.1324.

Propargyl 2,3,4-tri-O-acetyl-α-L-fucopyranoside (6). Peracetylated fucose (0.4 g, 1.203 mmol), boron trifluoride diethyl etherate (0.684 g, 4.814 mmol) and propargyl alcohol (0.269 g,
4.814 mmol) in CH₂Cl₂ (4mL), were irradiated under pressure at 100 W, 70 °C during 10 min with stirring. After acetylation of the crude product and standard workup, purification by flash chromatography (cyclohexane/EtOAc) afforded α-anomer compound 6 as a yellow solid. Yield 0.256 g (70%); Rf (SiO₂, cyclohexane/EtOAc: 4/2) = 0.44. ESI-MS: m/z = 350.9 [M+Na]⁺; [α]D²⁰ = -164 (c = 0.2 in CH₂Cl₂). ¹H-NMR (300 MHz, CDCl₃, 25°C): δ = 5.23 (dd, J₃,₂ = 10.8 Hz, J₃,₄ = 3.4 Hz, 1H, H-3), 5.18 (dd, J₄,₃ = 3.4 Hz, J₄,₅ = 1.1 Hz, 1H, H-4), 5.13 (d, J₁,₂ = 3.8 Hz, 1H, H-1), 5.03 (dd, J₂,₁ = 3.8 Hz, J₂,₃ = 10.8 Hz, 1H, H-2), 4.15 (d, J = 2.4 Hz, 2H, CH₂C≡CH), 4.09 (qd, J₅,₆ = 6.6 Hz, J₅,₄ = 1.1Hz, 1H, H-5), 2.39 (t, J = 2.4 Hz, 1H, CH₂C≡C), 2.05 (s, 3H, CH₃), 1.97 (s, 3H, CH₃), 1.87 (s, 3H, CH₃), 1.03 (d, J₆,₅ = 6.6 Hz, 3H, H-6). ¹³C-NMR (75 MHz, CDCl₃, 25°C): δ = 170.3 (C=O), 170.1 (C=O), 169.7 (C=O), 94.9 (C-1), 78.5 (CH₂C≡CH), 74.8 (CH₂C≡CH), 70.9 (C-4), 67.7 (C-2, C-3), 64.8 (C-5), 55.0 (CH₂C≡CH), 20.6 (CH₃), 20.5 (CH₃), 20.4 (CH₃), 15.6 (C-6). HRMS(ESI/Q-TOF) m/z : [M+Na]⁺ calcd for C₁₅H₂₀O₈Na 351.1056; found 351.1051.

6’’-[4’-(2,3,4-Tri-O-acetyl-α-L-fucopyranosyloxy-methyl)-1’H-1’,2’,3’-triazole-1’-yl]-N-benzyloxy-hexanamide (9). To a stirred solution of compounds 6 (0.49 g, 1.49 mmol) and 5 (0.58 g, 2.23 mmol) in THF/tBuOH (5 mL, 7.5 mL) was added a freshly prepared solution of Cu(I) (from CuSO₄.5H₂O (0.18 g, 0.746 mmol) and sodium ascorbate (0.295 g, 1.49 mmol) in H₂O (7.5 mL)). The mixture was stirred for 3h at 65 °C. The solvent was evaporated and the crude product was purified by flash chromatography (cyclohexane/EtOAc) to afford 9 as the main product as white powder. Yield 0.567 g (64%); Rf (SiO₂, cyclohexane/EtOAc: 1/9) = 0.30. ESI-MS: m/z = 613.0 [M+Na]⁺; [α]D²⁰ = -86 (c = 0.25 in CH₂Cl₂). ¹H-NMR (300 MHz, CDCl₃, 25 °C): δ = 7.50 (s, 1H, CH₃triazole), 7.33 (m, 5H, CH₃Bn), 5.31 (dd, J₃,₂ = 10.6, J₃,₄ = 3.3 Hz,1H, H-3), 5.24 (dd, J₄,₃ = 3.3 Hz, J₄,₅ = 10.5 Hz, 1H, H-4), 5.12 (d, J₁,₂ = 3.5 Hz, 1H,H-1), 5.07 (dd, J₂,₁
= 3.5 Hz, J_{2,3} = 10.6 Hz, 1H, H-2), 4.91-4.73 (m, 3H,CH_{2}Bn/OCH_{2}triazole), 4.59 (d, J = 12.3 Hz, 1H, OCH_{2}triazole), 4.29 (t, J = 6.6 Hz, 2H, CH_{2}), 4.14 (dq, J_{5,4} = 10.5 Hz et J_{5,6} = 6.5 Hz, 1H, H-5), 2.12 (s, 3H, CH_{3}), 2.03 (t, 2H, CH_{2}), 1.98 (s, 3H, CH_{3}), 1.93 (s, 3H, CH_{3}), 1.86 (m, 2H, CH_{2}), 1.63 (m, 2H, CH_{2}), 1.24 (m, 2H, CH_{2}), 1.09 (d, J_{6,5} = 6.5 Hz, 3H, H-6). 13C-NMR(75 MHz, CDCl_{3}, 25°C): δ = 170.5 (C=O), 170.3 (C=O), 170.0 (C=O), 143.7 (C_{triazole}), 135.4 (C_{Bn}), 129.1 (CH_{Bn}), 128.4 (CH_{Bn}), 122.8 (CH_{triazole}), 95.4 (C-1), 78.0 (CH_{2}Bn), 71.1 (C-4), 68.0 (C-2), 67.9 (C-3), 64.6 (C-5), 61.0 (OCH_{2}triazole), 49.9 (CH_{2}N), 32.5 (CH_{2}), 29.7 (CH_{2}), 25.7 (CH_{2}), 24.4 (CH_{2}), 20.7 (CH_{3}), 20.6 (CH_{3}), 20.5 (CH_{3}), 15.7 (C-6). HRMS(ESI/Q-TOF) m/z: [M+Na]^+ calcd for C_{28}H_{38}O_{10}N_{4}Na 613.2486; found 613.2470.

6''-[4'-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyl-oxymethyl)-1'H-1',2',3'-triazole-1'-yl]-N-benzyloxy-hexanamide (10). To a stirred solution of compounds 7 (0.8 g, 2.07 mmol) and 5 (0.814 g, 3.105 mmol) in THF/tBuOH (8 mL/12 mL) was added a freshly prepared solution of Cu(I) (from CuSO_{4}.5H_{2}O (0.258g, 1.035 mmol) and sodium ascorbate (0.41 g, 2.07 mmol)) in H_{2}O (12 mL)). The mixture was stirred for 3h at 65°C. The solvent was evaporated and the crude product was purified by column chromatography (cyclohexane/EtOAc : 1/9) to afford 10 as a white powder. Yield 1.237 g (92%); R_f (SiO_{2}, cyclohexane/EtOAc: 1/9) = 0.12; ESI-MS: m/z = 671.3 [M+Na]^+; [α]D^{20} = +31 (c = 0.125 in CH_{2}Cl_{2}). 1H NMR (300 MHz, CDCl_{3}, 25 °C): δ = 7.55 (s, 1H, CH_{triazole}), 7.32 (m, 5H, CH_{Bn}), 5.36-5.12 (m, 3H, H-4/ H-3/ H-2), 4.94-4.70 (m, 4H, H-1, CH_{2}Bn/CH_{2}O), 4.62 (d, J = 12.3 Hz, 1H, CH_{2}O), 4.26 (m, 3H, CH_{2}N/H-6b), 4.06 (m, 2H, H-6a/H-5), 2.09 (s, 3H, CH_{3}), 2.06 (s, 3H, CH_{3}), 1.99 (s, 3H, CH_{3}), 1.92 (s, 3H, CH_{3}), 1.93-1.75(m, 2H, CH_{2}), 1.70-1.45 (m, 2H, CH_{2}), 1.34-1.09 (m, 2H, CH_{2}). 13C-NMR(75 MHz, CDCl_{3}, 25°C): δ = 170.7 (C=O), 170.1 (C=O), 170.1 (C=O), 169.7 (C=O), 143.4 (C_{Bn}), 129.1 (CH_{Bn}), 128.5 (CH_{Bn}), 123.0 (CH_{triazole}), 96.8 (C-1), 78.0 (CH_{2}Bn), 69.5, 69.1, 68.7, 66.0 (C-2, C-3, C-4, C-5), 62.4
(C-6), 61.0 (CH$_2$O), 50.1 (CH$_2$), 32.6 (CH$_2$), 29.8 (CH$_2$), 25.8 (CH$_2$), 24.5 (CH$_2$), 20.8 (CH$_3$), 20.7 (CH$_3$), 20.7 (CH$_3$). HRMS(ESI/Q-TOF) m/z : [M+Na]$^+$ calcd for C$_{30}$H$_{40}$O$_{12}$N$_4$Na 671.2540; found 671.2548.

6''-[4'-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyloxymethyl)-1'H-1′,2′,3′-triazole-1′-yl]-N-benzyloxyhexanamide (11). To a stirring solution of compound 8 (1 g, 2.58 mmol) with compound 5 (1.06 g, 4.1 mmol) in THF/tBuOH (6 mL/9 mL) a freshly prepared solution of Cu(I) (CuSO$_4$·5H$_2$O (0.37 g) and sodium ascorbate (0.58 g) in H$_2$O (9 mL)) was added. The mixture was stirred for 3 h at 65°C. The solvent was evaporated and the residue was purified by column chromatography (cyclohexane/EtOAc : 1/9) to afford 11 as a white powder. Yield 1.2 g (71 %); R$_f$ (SiO$_2$, Cyclohexane/EtOAc: 1/9) = 0.30. ESI-MS: m/z = 671.3 [M+Na]$^+$; [α]$_D$20 = +23.8 (c = 0.5 in CH$_2$Cl$_2$). 1H-RMN (400 MHz, CDCl$_3$, 25°C): δ = 7.53 (s, 1H, CH$_3$triazole), 7.34 (m, 5H, CH$_3$benzyle), 5.45 (t, J = 10.3, J = 9.3 Hz, 1H, H-3), 5.15 (d, J = 3.7 Hz, 1H, H-1), 5.09-4.99 (m, 1H, H-4), 4.90-4.75 (m, 4H, H-2, CH$_2$benzyl/CH$_2$O), 4.64 (d, 1H, CH$_2$O, J = 12.4 Hz), 44.36-4.27 (m, 2H, CH$_2$N), 4.24 (m, 1H, H-6a), 4.14-3.96 (m, 2H, H$_6$/H$_5$), 2.06 (s, 3H, CH$_3$), 2.01 (s, 3H, CH$_3$), 1.98 (s, 3H, CH$_3$), 1.97 (s, 3H, CH$_3$), 1.91-1.85 (m, 2H, CH$_2$), 1.68-1.61 (m, 2H, CH$_2$), 1.32-1.19 (m, 2H, CH$_2$). 13C-RMN (100 MHz, CDCl$_3$, 25°C): δ = 170.5 (C=O), 169.9 (C=O), 170.1 (C=O),169.3 (C=O), 143.1 (C$_{benzyl}$), 128.9 (CH$_{benzyl}$), 128.3 (CH$_{benzyl}$), 122.6 (CH$_{triazole}$), 94.8 (C-1), 77.8 (CH$_2$benzyl), 70.4, 69.8, 68.2, 67.2 (C-2,C-3, C-4, C-5), 61.5 (C-6), 61.0 (CH$_2$N), 49.9 (CH$_2$), 32.4 (CH$_2$), 29.6 (CH$_2$), 25.5 (CH$_2$), 24.1 (CH$_2$), 20.5 (CH$_3$), 20.4 (CH$_3$), 20.4 (CH$_3$), 20.3 (CH$_3$). HRMS(ESI/Q-TOF) m/z : [M+Na]$^+$ calcd for C$_{30}$H$_{40}$O$_{12}$N$_4$Na 671.2540 found: 671.2548.

6''-[4'-(2,3,4-Tri-O-acetyl-α-L-fucopyranosyloxymethyl)-1'H-1′,2′,3′-triazole-1′-yl]-N-benzyloxy-N-(prop-2-yn-1-yl)hexanamide (12). Compound 9 (1.240 g, 2.1 mmol), K$_2$CO$_3$
(0.580 g, 4.198 mmol) and propargyl bromide (0.749 g, 6.298 mmol) were suspended in CH$_3$CN (37 mL). The mixture was stirred at 70°C overnight. The solvent was removed under reduced pressure and the residue was purified by flash chromatography to afford 12 and 16. 12 is obtained as yellow oil. Yield 0.652 g (50%) yield (0.652 g; R$_f$ (SiO$_2$, cyclohexane/EtOAc: 1/2) = 0.18. ESI-MS: m/z = 650.8 [M+ Na]$^+$; [α]$_D^{20}$ = - 91 (c = 0.15 in CH$_2$Cl$_2$). 1H-NMR (300 MHz, CDCl$_3$, 25 °C): δ = 7.48 (s, 1H, CH$_{triazole}$), 7.35 (m, 5H, CH$_{Bn}$), 5.31 (dd, J$_{3,2}$ = 10.7 Hz, J$_{3,4}$ = 3.4 Hz, 1H, H$_{-3}$), 5.24 (dd, J$_{4,3}$ = 3.4 Hz, J$_{4,5}$ = 1.1, 1H, H-4), 5.13 (d, J$_{1,2}$ = 3.7 Hz, 1H, H-1), 5.07 (dd, J$_{2,1}$ = 3.7 Hz, J$_{2,3}$ = 10.7 Hz, 1H, H-2), 4.92 (s, 2H, CH$_2$Bn), 4.78 (d, J = 12.4 Hz, 1H, OCH$_2$triazole), 4.60 (d, J = 12.4 Hz, 1H, OCH$_2$triazole), 4.31 (d, J = 2.5 Hz, 2H, CH$_2$C≡CH), 4.28 (t, 2H, CH$_2$) 4.21-4.11 (m, 1H, H$_{-5}$), 2.32 (t, J = 7.2 Hz, 2H, CH$_2$), 2.24 (t, J = 2.5 Hz, 1H, CH$_2$C≡CH), 2.10 (s, 3H, CH$_3$), 2.07 (m, 2H, CH$_2$), 1.97 (s, 3H, CH$_3$), 1.85 (m, 2H, CH$_2$), 1.58 (m, 2H, CH$_2$), 1.27 (m, 2H, CH$_2$), 1.09 (d, J$_{6,5}$ = 6.5 Hz, 3H, H-6). 13C-NMR (75 MHz, CDCl$_3$, 25°C): δ = 175.6 (C=Oamide), 170.5 (C=O), 170.2 (C=O), 169.9 (C$_{triazole}$), 143.8 (C$_{triazole}$), 134.4 (C$_{Bn}$), 129.4 (CH$_{Bn}$), 129.0 (CH$_{Bn}$), 128.71(CH$_{Bn}$), 122.6 (C$_{triazole}$), 95.6 (C-1), 78.2 (CH$_2$C≡CH), 77.5 (CH$_2$Bn), 72.0 (CH$_2$C≡CH), 71.1 (C-4), 67.9 (C-2), 67.94 (C-3), 64.6 (C-5), 61.3 (OCH$_2$triazole), 50.0 (CH$_2$N), 36.7 (CH$_2$), 31.9 (CH$_2$), 30.0 (CH$_2$), 25.9 (CH$_2$), 23.3 (CH$_2$), 20.7 (CH$_3$), 20.6 (CH$_3$), 20.5 (CH$_3$), 15.8 (C-6). HRMS(ESI/Q-TOF) m/z : [M+Na]$^+$ calcd for C$_{31}$H$_{40}$O$_{10}$N$_4$Na 651.2642; found 651.2632.

6''-[4''-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyl-oxymethyl)-1''H-1''a,2''a,3''a-triazole-1''-yl]-N-benzyloxy-N-(prop-2-yn-1-yl)hexanamide (13). Compound 10 (0.8 g, 1.23 mmol), K$_2$CO$_3$ (0.34 g, 2.46 mmol) and propargyl bromide (0.44 g, 3.69 mmol) were suspended in CH$_3$CN (24 mL). The mixture was stirred at 60°C overnight. The solvent was removed under
reduced pressure and the residue was purified by flash chromatography to afford \(13 \) and \(17 \) as byproduct.

Compound \(13 \) was obtained as a yellow oil. Yield 0.416 g (49%); \(R_f \) (SiO\(_2\), cyclohexane/EtOAc: 1/2) = 0.25; ESI-MS: \(m/z = 710.1 \) [M+Na]\(^+\); \([\alpha]_D^{20} = +29 \) (c = 0.1 in CH\(_2\)Cl\(_2\)). \(^1\)H-NMR (300 MHz, CDCl\(_3\), 25°C): \(\delta = 7.55 \) (s, 1H, CH\(_{\text{triazole}}\)), 7.41-7.32 (m, 5H, CH\(_{\text{Bn}}\)), 5.33-5.19 (m, 3H, H-4/H-3/H-2), 4.96-4.90 (m, 3H, CH\(_2\)Bn /H-1), 4.82 (d, \(J = 12.3 \) Hz, 1H, CH\(_2\)O), 4.63 (d, \(J = 12.3 \) Hz, 1H, CH\(_2\)O), 4.36-4.21 (m, 5H, C\(_2\)H\(_2\)C≡CH /C\(_2\)H\(_2\)N/H-6b), 4.13-3.96 (m, 2H, H-5/H-6a), 2.35-2.25 (t, \(J = 7.2 \) Hz, 2H, CH\(_2\)), 2.25 (t, \(J = 2.5 \) Hz, 1H, CH\(_2\)C≡CH), 2.11 (s, 3H, CH\(_3\)), 2.00 (s, 3H, CH\(_3\)), 1.95-1.78 (m, 2H, CH\(_2\)), 1.66-1.51 (m, 2H, CH\(_2\)), 1.34-1.21 (m, 2H, CH\(_2\)). \(^13\)C-NMR (75 MHz, CDCl\(_3\), 25°C): \(\delta = 175.7 \) (C=O \text{amide}), 170.7 (C=O), 170.0 (C=O), 169.6 (C=O), 169.7 (C=O), 143.4 (C\(_{\text{triazole}}\)), 134.4 (C\(_{\text{Bn}}\)), 128.4 (CH\(_{\text{Bn}}\)), 128.1 (CH\(_{\text{Bn}}\)), 127.7 (CH\(_{\text{Bn}}\)), 122.9 (CH\(_{\text{triazole}}\)), 96.9 (C-1), 78.2 (CH\(_2\)C≡CH), 77.3 (CH\(_{2\text{Bn}}\)), 72.0 (CH\(_2\)C≡CH), 69.5, 69.1, 68.7, 66.1 (C-2, C-3, C-4, C-5), 62.4 (C-6), 61.1 (CH\(_2\)O), 50.2 (CH\(_2\)N), 36.8 (CH\(_2\)C≡CH), 32.0 (CH\(_2\)), 29.9 (CH\(_2\)), 26.1 (CH\(_2\)), 23.4 (CH\(_2\)), 20.9 (CH\(_3\)), 20.8 (CH\(_3\)), 20.7 (CH\(_3\)). HRMS(ESI/Q-TOF) \(m/z : [M+Na]^+ \) calcd for C\(_{33}\)H\(_{42}\)O\(_12\)N\(_4\)Na 709.2697; found:709.2690.

\(6''\-\{4'\-2,3,4,6\-Tetra-O-acetyl-\alpha\-D-glucopyranosyloxymethyl\-1'\-H-1',2',3'-triazole-1'\-yl\}-\)N-benzyloxy-N-(prop-2-yn-1-yl)hexanamide (14). A mixture of compound \(11 \) (0.8 g, 1.23 mmol), K\(_2\)CO\(_3\) (0.34 g, 2.46 mmol) and propargyl bromide (0.44 g, 3.69 mmol) in CH\(_3\)CN (24 mL) was irradiated under pressure with 100 W power microwaves for 40 min at 70°C under stirring. After cooling for 5 min, the solvent was removed under reduced pressure and the residue was purified by column chromatography (cyclohexane/EtOAc : 2/4) to afford \(14 \) and \(18 \). \(14 \) was obtained as yellow oil. Yield 0.637 g (75%). \(R_f \) (SiO\(_2\), EtOAc/cyclohexane: 3/1) = 0.49; ESI-MS: \(m/z = 709.27 \) [M+Na]\(^+\); \([\alpha]_D^{20} = +78 \) (c = 0.5 in CH\(_2\)Cl\(_2\)). \(^1\)H-RMN (400 MHz, CDCl\(_3\), 25 °C): \(\delta \)
= 7.51 (s, 1H, CH$_{\text{triazole}}$), 7.42-7.32 (m, 5H, CH$_{\text{benzyl}}$), 5.44 (t, $J = 10.8$ Hz, 1H, H-3) 5.33-4.96 (m, 3H, H-4/ H-2/ H-1), 4.96 (m, 2H, CH$_{2}\text{benzyl}$), 4.63 (dd, $J = 12.3$, $J = 1.9$ Hz ,1H, CH$_2$O), 4.39-4.17 (m, 4H, CH$_2$C=CH /CH$_2$N), 4.15-3.96 (m, 2H, H-5/H-6a), 3.44 (dd, $J = 7.0$, $J = 2.4$ Hz, 1H, H-6b), 2.34 (t, $J = 7.2$ Hz, 2H, CH$_2$), 2.25 (t, $J = 2.4$ Hz, 1H, CH$_2$C=CH), 2.11 (s, 3H, CH$_3$), 2.06 (s, 3H, CH$_3$), 2.00 (s, 3H, CH$_3$), 1.98 (s, 3H, CH$_3$), 1.91-1.78 (m, 2H, CH$_2$), 1.68-1.52 (m, 2H, CH$_2$), 1.36-1.18 (m, 2H, CH$_2$). 13C-RMN (100 MHz, CDCl$_3$, 25°C): δ = 176.0 (C=O amide), 171 (C=O), 170.4 (C=O), 169.6 (C=O), 143.7 (C$_{\text{triazole}}$), 134.7 (C$_{\text{benzyl}}$), 129.7 (C$_{\text{benzyl}}$), 129.1 (C$_{\text{benzyl}}$), 123.1 (C$_{\text{triazole}}$), 95.4 (C-1), 78.5 (CH$_2$C=CH), 77.9 (CH$_2$benzyl), 72.3 (CH$_2$C=CH), 70.9, 70.4, 68.8, 67.8 (C-2, C-3, C-4, C-5), 66.1 (C-6), 62.1 (CH$_2$O), 50.4 (CH$_2$N), 37.1 (CH$_2$C=CH), 32.3 (CH$_2$), 30.4 (CH$_2$), 26.3 (CH$_2$), 23.7 (CH$_2$), 21.1 (CH$_3$), 21.0 (CH$_3$), 20.9 (CH$_3$). HRMS(ESI/Q-TOF) m/z: [M+Na]$^+$ calcld for C$_{33}$H$_{42}$N$_4$NaO$_{12}$ 709.2697, found 709.2689.

6’’-[4’-(2,3,4,6-Tetra-O-acetyl-α-D-glucopyranosyloxy methyl)-1’H-1’,2’,3’-triazole-1’-yl]N-benzyloxy-N-(prop-2-yn-1-yl)hexanamide (15). Compound 14 (0.6 g, 0.87 mmol) was dissolved in MeOH (35 mL) and catalytic amount of sodium (Na$^+$) was added. The reaction was then stirred overnight at room temperature. The base was neutralized with Amberlite IR-120. The resine was then removed by filtration and the solvent evaporated in vacuo to afford 15 as colourless oil. Yield 0.41 g (91%); ESI-MS: m/z = 541.3 [M+ Na]$^+$; [α]$_D^{20}$ = + 56 (c = 0.5 in MeOH). 1H-RMN (400 MHz, MeOD, 25°C): δ = 8. 03 (s, 1H, CH$_{\text{triazole}}$), 7.52-7.34 (m, 5H, CH$_{\text{benzyl}}$), 5.02 (m, 2H, CH$_2$benzyl), 4.94 (d, $J =3.7$ Hz, 1H, H-1), 4.87 (s, 2H, CH$_2$O), 4.51-4.31 (m, 4H, CH$_2$C=CH /CH$_2$N), 3.89 (m 1H, H-6a), 3.77-3.57, (m, 3H, H-2/H-3/H-4), 3.44 (dd, $J = 9.7$, $J = 3.8$ Hz, 1H, H-6b), 3.39-3.25 (m, 1H, H-5), 2.71 (t, $J = 2.5$ Hz , 1H, CH$_2$C=CH), 2.37 (t, 2H, CH$_2$ J= 7.3 Hz), 1.95-1.72 (m, 2H, CH$_2$), 1.66-1.52 (m, 2H, CH$_2$), 1.37-1.19 (m, 2H, CH$_2$). 13C-RMN (100 MHz, MeOD, 25°C): δ =177.9 (C=O amide), 146.0 (C$_{\text{triazole}}$), 136.6 (C$_{\text{benzyl}}$), 131.4
(CH_{benzyl}), 130.7 (CH_{benzyl}), 130.3 (CH_{benzyl}), 125.8 (CH_{triazole}), 100.2 (C-1), 79.7 (CH₂C≡CH), 77.7 (CH₂benzyl), 75.6 (CH₂C≡CH), 74.6, 74.1, 73.9, 72.4 (C-2, C-3, C-4, C-5), 63.3 (C-6), 62.0 (CH₂O), 51.8 (CH₂N), 33.7 (CH₂C≡CH), 33.6 (CH₂), 31.5 (CH₂), 27.5 (CH₂), 25.3 (CH₂)

HRMS(ESI/Q-TOF) m/z : [M+Na]⁺ calcd for C₃₃H₄₂O₁₂N₄Na 709.2697, found: 709.2690.

6’’-[4’’(2,3,4-Tri-O-acetyl-α-L-fucopyranosyl-oxyethyl)-1’’H-1’,2’,3’’-triazole-1’’-yl]-O-(prop-2-yn-1-yl)-N-benzyloxyacetimidate (16). Obtained as a yellow oil. Yield 0.158 g (12%).

R_f (SiO₂, cyclohexane/EtOAc: 1/2) = 0.28 [α]_D²⁰ = -77 (c = 0.215 in CH₂C₂).¹H-NMR (300 MHz, CDCl₃, 25 °C): δ = 7.40(s,1H,CH_{triazole}),7.24(m,5H,CH_{Bn}), 5.28(dd, 1, H-3), 5.21(dd, 1H, H-4), 5.13-4.99(m,2H, H-1/H-2),4.86 (s, 2H, CH₂ Bn), 4.76-4.41 (m, 4H, OCH₂triazole/CH₂C≡CH), 4.21(m,3H,CH₂), 4.13(m,1H,H-5), 2.31(t,2H,CH₂), 2.17(m,2H, CH₂), 2.07(s,3H,CH₃), 1.94(t,3H,CH₃), 1.85(t,3H,CH₃), 1.79(t,2H,CH₂), 1.52(t,2H, CH₂), 1.23(t,2H,CH₂), 1.05(d,3H,H-6).¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ =170.4 (C=O), 170.2 (C-O), 169.9 (C=O), 163.0 (N=C-O), 143.7 (C_{triazole}), 137.7 (C_{Bn}), 128.4 (CH_{Bn}), 128.1 (CH_{Bn}), 122.4 (C_{triazole}), 95.5 (C-1), 78.5 (CH₂C≡CH), 75.8 (CH₂C≡CH), 74.6 (CH₂Bn), 71.1 (C-4), 67.9 (C-2), 67.9 (C-3), 64.6 (C-5), 61.2 (OCH₂triazole), 54.0 (CH₂C≡CH), 50.0 (CH₂N), 29.8 (CH₂), 26.6 (CH₂), 25.8 (CH₂), 24.2 (CH₂), 20.7 (CH₃), 20.5 (CH₃), 20.4 (CH₃), 15.8 (C-6).

HRMS(ESI/Q-TOF) m/z : [M+Na]⁺ calcd for C₃₁H₄₀O₁₀N₄Na 651.2642; found 651.2657.

6’’-[4’’(2,3,4-Tri-O-acetyl-α-D-mannopyranosyl-oxyethyl)-1’’H-1’,2’,3’’-triazole-1’’-yl]-O-(prop-2-yn-1-yl)-N-benzyloxyacetimidate (17). Compound 17 was obtained as a yellow oil.

Yield 0.128 g (15%); R_f (SiO₂, cyclohexane/EtOAc: 1/2) = 0.37; [α]_D²⁰ = +31(c = 0.175 in CH₂C₂).¹H NMR (300 MHz, CDCl₃, 25°C): δ = 7.47 (s, 1H, CH_{triazole}), 7.35-7.15 (m, 5H, CH_{Bn}), 5.32-5.13(m,3H,H-4/ H-3/ H-2), 4.91 (d, J = 1.5 Hz, 1H, H-1), 4.85 (s, 2H, CH₂Bn), 4.79 (d, J = 12.2 Hz, 1H, CH₂O),4.62 (d, J = 12.2 Hz, 1H, CH₂O), 4.53 (d, J =2.4 Hz, 2H,
CH₂C≡CH), 4.24 (m, 3H, CH₂N/H-6b), 4.04-3.99 (m, 2H, H-5/H-6a), 2.45 (t, J = 2.4 Hz, 1H, CH₂C≡CH), 2.35 (t, J = 7.2 Hz, 2H, CH₂), 2.10 (s, 3H, CH₃), 2.07 (s, 3H, CH₃), 1.98 (s, 3H, CH₃), 1.93 (s, 3H, CH₃), 1.89-1.78 (m, 2H, CH₂), 1.58-1.47 (m, 2H, CH₂), 1.31-1.16 (m, 2H, CH₂). ¹³C-NMR (75 MHz, CDCl₃, 25°C): δ = 170.6 (C=O), 169.9 (C=O), 169.8 (C=O), 169.6 (C=O), 163.1 (C=NHImidate), 143.3 (C₃triazole), 137.8 (CBn), 128.4 (CBn), 128.2 (CH₂Bn), 127.7 (CH₂Bn), 122.7 (CH₃triazole), 96.7 (C-1), 78.5 (CH₂C=CH), 75.9 (CH₂Bn), 74.8 (CH₂C=CH), 69.4, 69.0, 68.6, 66.0 (C-2, C-3, C-4, C-5), 62.0 (C-6), 61.0 (CH₂O), 54.0 (CH₂C=CH), 50.1 (CH₂N), 29.6 (CH₂), 26.3 (CH₂), 25.8 (CH₂), 24.1 (CH₂), 20.8 (CH₃), 20.7 (CH₃), 20.6 (CH₃). HRMS(ESI/Q-TOF) m/z: [M+Na]⁺ calc'd for C₃₃H₄₂O₁₂NaNa 709.2697, found 709.2681.

6′′-[4′′-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyloxymethyl)-1′H-1’,2’,3’-triazole-1’-yl]-O-(prop-2-yn-1-yl)-N-benzyloxyacetimidate (18). Obtained as yellow oil. Yield 0.087 g (9%); Rf (SiO₂, cyclohexane/EtOAc : 1/2) = 0.27. ¹H-NMR (400 MHz, CDCl₃, 25 °C): δ = 7.41 (s, 1H, CH₃triazole), 7.31-7.14 (m, 5H, CH₃benzyl), 5.38 (t, J = 9.8 Hz, 1H, H-3), 5.10 (t, J = 3.8 Hz, 1H, H-1) 4.98 (t, J = 9.7 Hz, 1H, H-4), 4.86 (m, 2H, CH₂benzyl), 4.83-4.69 (m, 4H, CH₂O/CH₂C=CH), 4.57 (d, J =12.3 Hz, 1H, H-6a) 4.28-4.10 (m, 3H, H-2/CH₂N), 4.05-3.9 (m, 2H, H-5/H-6b), 2.46 (t, J = 2.4 Hz, 1H, CH₂C=CH), 2.15 (t, J = 7.3 Hz, 2H, CH₂), 2 (s, 3H, CH₃), 1.94 (s, 3H, CH₃), 1.93 (s, 3H, CH₃), 1.92 (s, 3H, CH₃), 1.81-1.78 (m, 2H, CH₂), 1.6-1.43 (m, 2H, CH₂), 1.35-1.17 (m, 2H, CH₂). ¹³C-NMR (100 MHz, CDCl₃, 25°C): δ = 170.6 (C=O), 170.0 (C=O), 169.8 (C=O), 169.5 (C=O), 154.5 (C=Oiminol), 143.8 (C₃triazole), 137.7 (Cbenzyl), 128.2 (CH₂benzyl), 128.1 (CH₃benzyl), 127.7 (CH₃benzyl), 122.3 (CH₃triazole), 94.8 (C-1), 78.2 (CH₂C=CH), 75.8 (CH₂benzyl), 75.5 (CH₂C=CH), 70.37, 69.81, 68.25, 67.23 (C-2, C-3, C-4, C-5), 61.51 (C-6), 61.16 (CH₂O), 57.57 (CH₂C=CH), 59.42 (CH₂N), 29.80 (CH₂), 29.63 (CH₂), 25.44 (CH₂), 24.80 (CH₂), 20.48 (CH₃),
20.40 (CH$_3$), 20.34 (CH$_3$). HRMS(ESI/Q-TOF) m/z : [M+Na]$^+$ calcd for C$_{33}$H$_{42}$O$_{12}$N$_4$Na 709.2697, found 709.2690.

Tetra-azidopropyloxy-p-tBu-calix[4]arene 20. Synthesized following the reported procedure65

Peracetylated fuco-p-tBu-calixarene benzyl-hydroxamate 21. To a stirred solution of compounds 20 (0.185 g, 0.189 mmol) and 12 (0.523 g, 0.832 mmol) in a mixture of THF/tBuOH (7.5 mL/15 mL) as solvent, was added a freshly prepared aqueous solution of Cu(I) (from CuSO$_4$.5H$_2$O (0.094 g) and sodium ascorbate (0.149 g) in H$_2$O (15mL)). The mixture was stirred at 65°C for 3h. After removing the solvent, the residue was purified by column chromatography (acetone/ EtOAc/cyclohexane: 3/3/1.5) to afford 21 as a yellow solid. Yield 0.407 g (61%); R_f (SiO$_2$, acetone/EtOAc/cyclohexane: 3/3/1.5) = 0.18; ESI-MS: m/z = 1769.6 [M+2Na$^{2+}$]; [α]$_D^{20}$ = -54 (c = 0.155 in CH$_2$Cl$_2$). 1H-NMR (600 MHz, CDCl$_3$, 25 °C): δ = 7.56 (s, 4H, CH$_3$triazole), 7.44 (s, 4H, CH$_3$triazole), 7.23 (s, 20H, CH$_3$Bn), 6.66 (s, 8H, CH$_2$Ar), 5.28 (dd, $J_{3,2}$ = 10.7 Hz, $J_{3,4}$= 3.3 Hz, 4H, H-3), 5.21 (dd, $J_{4,3}$ = 3.3 Hz, $J_{4,5}$ = 1.0 Hz, 4H, H-4), 5.11 (d, $J_{1,2}$ = 3.7 Hz, 4H, H-1), 5.05 (dd, $J_{2,3}$ = 10.7 Hz, $J_{2,1}$ = 3.7 Hz, 4H, H-2), 4.82 (s, 8H, CH$_2$N$_{amide}$), 4.80 (s, 8H, CH$_2$Bn), 4.79 (d, J = 12.4 Hz, 4H, OCH$_2$triazole), 4.62 (d, J = 12.4 Hz, 4H, OCH$_2$triazole), 4.41 (t, 8H, CH$_2$N$_{triazole}$), 4.26 (t, 8H, CH$_2$N$_{triazole}$), 4.18 (m, 8H, ArCH$_2$Ar / H-5), 3.79 (t, J = 6.2 Hz, 8H, OCH$_2$calix), 3.01 (d, J = 12.7 Hz, 4H, ArCH$_2$Ar), 2.42 (t, 8H, CH$_2$CH$_2$CH$_2$calix), 2.23 (t, J = 7.1 Hz, 8H, CH$_2$), 2.08 (s, 12H, CH$_3$), 1.94 (s, 12H, CH$_3$), 1.89 (s, 12H, CH$_3$), 1.76 (m, 8H, CH$_2$), 1.48 (m, 8H, CH$_2$), 1.19 (m, 8H, CH$_2$), 1.06 (d, $J_{6,5}$ = 6.7 Hz, 12H, H-6), 0.98 (s, 36H, CH$_3$). 13C-NMR (75 MHz, CDCl$_3$, 25°C): δ = 174.9 (C=O$_{amide}$), 170.6 (C=O), 170.4 (C=O), 170.0 (C=O), 152.7 (ArCOC$_2$H$_2$), 145.1 (ArCtBu), 143.8 (C$_{triazole}$), 143.1 (C$_{triazole}$), 134.4 (C$_{Bn}$), 133.3 (ArCCH$_2$CAr), 129.5 (CH$_2$Bn), 129.0 (CH$_2$Bn), 128.7 (CH$_2$Bn), 125.2 (CH$_2$Ar), 123.6 (CH$_3$triazole), 122.6 (CH$_3$triazole), 95.7 (C-1), 76.8 (CH$_2$Bn), 71.7 (CH$_2$OAr), 71.1 (C-4), 68.0 (C-3), 68.0 (C-2), 64.7
Peracetylated manno-\textit{p}-tBu-calix[4]arene benzylhydroxamate 22. To a stirred solution of compounds 20 (0.123 g, 0.125 mmol) and 13 (0.38 g, 0.55 mmol) in a mixture THF/tBuOH (5 mL/7.5 mL) mixture as solvent, a freshly prepared solution of Cu(I) (from CuSO_{4}.5H_{2}O (0.062 g) and sodium ascorbate (0.099 g)) in H_{2}O (7.5mL)) was added. The mixture was stirred for 3h at 65\(^\circ\)C and solvent was evaporated. The crude product was purified by column chromatography (acetone/EtOAc/cyclohexane: 3/3/1) to afford 22 as a yellow solid. Yield 0.268 g (57%); R_{f}(SiO_{2}, acetone/EtOAc/cyclohexane: 3/3/1) = 0.57. ESI-MS: m/z = 1886.8 [M+2Na\(^{2+}\)]; [\alpha]_{D}^{20} = +20 (c = 0.095 in CH_{2}Cl_{2}). 1H-NMR (300 MHz, CDCl_{3}, 25 \degreeC): \delta = 7.57 (s, 4H, CH\textsubscript{triazole}), 7.50 (s, 4H, CH\textsubscript{triazole}), 7.23 (m, 20H, CH\textsubscript{Bn}), 6.66 (s, 8H, CH\textsubscript{Ar}), 5.31-5.13 (m, 12H, H\textsubscript{3}/H\textsubscript{4}/H\textsubscript{2}), 4.93-4.71 (m, 24H, H\textsubscript{1}/CH\textsubscript{2}Bn/ CH\textsubscript{2}N\textsubscript{triazole}/ OCH\textsubscript{2}triazole), 4.59 (d, J = 12.1 Hz, 4H, OCH\textsubscript{3}triazole), 4.42 (m, 8H, CH\textsubscript{2}N\textsubscript{triazole}), 4.23 (m, 12H, CH\textsubscript{2}N\textsubscript{triazole}/H\textsubscript{6}b), 4.15 (d, J = 12.1 Hz, 4H, ArCH\textsubscript{2}Ar), 4.06-3.97 (m, 8H, H-6/H-5), 3.79 (m, 8H, OCH\textsubscript{2}calix), 3.01 (d, J = 12.1 Hz, 4H, ArCH\textsubscript{2}Ar), 2.43 (m, 8H, CH\textsubscript{2}), 2.24 (m, 8H, CH\textsubscript{2}), 2.07 (s, 12H, CH\textsubscript{3}), 2.04 (s, 12H, CH\textsubscript{3}), 1.95 (s, 12H, CH\textsubscript{3}), 1.90 (s, 12H, CH\textsubscript{3}), 1.78 (m, 8H, CH\textsubscript{2}), 1.28 (m, 8H, CH\textsubscript{2}), 1.50 (m, 8H, CH\textsubscript{2}), 0.98 (s, 36H, CH\textsubscript{3}). 13C-NMR(75 MHz, CDCl\textsubscript{3}, 25\degreeC): \delta = 174.8 (C=O\textsubscript{amide}), 170.6 (C=O), 170.0 (C=O), 169.8 (C=O), 169.7 (C=O), 152.7 (ArCOCH\textsubscript{2}), 145.0 (ArC\textsubscript{Bn}), 143.3 (C\textsubscript{triazole}), 143.1 (C\textsubscript{triazole}), 134.4 (C\textsubscript{Bn}), 133.3 (ArC\textsubscript{2}CH\textsubscript{2}Ar), 129.5 (CH\textsubscript{Bn}), 128.9 (CH\textsubscript{Bn}), 128.6 (CH\textsubscript{Bn}), 125.2 (CH\textsubscript{Ar}), 123.6 (CH\textsubscript{triazole}), 122.9 (CH\textsubscript{triazole}), 96.8 (C-1), 77.1 (CH\textsubscript{2}Bn), 71.5 (CH\textsubscript{2}OAr), 69.4, 68.9, 68.7, 66.0 (C-5, C-4, C-3, C-2), 62.4 (C-6), 61.0 (CH\textsubscript{2}Otriazole), 50.2 (CH\textsubscript{2}N), 47.7
\((\text{CH}_2\text{N}), 42.3 \ (\text{CH}_2\text{N}\text{amide}), 33.8 \ (\text{C}(\text{CH}_3)_3), 32.0 \ (\text{CH}_2), 31.3 \ (\text{CH}_3), 30.9 \ (\text{CH}_2), 30.0 \ (\text{CH}_2), 29.6 \ (\text{CH}_2), 26.1 \ (\text{CH}_2), 23.6 \ (\text{CH}_2), 20.8 \ (\text{CH}_3), 20.8 \ (\text{CH}_3), 20.7 \ (\text{CH}_3)\). HRMS(ESI/Q-TOF) m/z: [M+Na]^+ \text{calcd for } C_{188}H_{244}O_{52}N_{28}Na_2 1885.8547; \text{found} \ 1885.8490.

Synthesis of \(\alpha\)-D-glucocluster based \(p\)-tBu-calix[4]arene 23. To a stirring solution of compound 15 (0.35 g, 0.68 mmol) with calix 20 (0.13 g, 0.13 mmol) in acetonitrile (3mL), copper iodide (0.0127 g, 0.069 mmol) and diisopropylethylamine (0.086 g, 0.67 mmol) were added. The mixture was placed under pressure and irradiated at 150 W in a microwave with stirring for 30 min at 80°C. After cooling for 5 min, the solvent was removed under reduced pressure and the residue was purified by reverse-phase chromatography with eluent gradient of H_2O/CH_3CN to afford 23 as white powder. Yield 0.286g (67%); \(R_f \ (\text{C}_18, \text{H}_2\text{O}/\text{CH}_3\text{CN}: 8/2) = 0.36; \ \text{ESI-MS: } m/z = 1550.8 \ [\text{M}+2\text{Na}]^{2+}/2); \ [\alpha]_D^{20} = + 38 \ (c = 0.5 \ \text{in MeOH}). 1^H\text{-RMN} (400 MHz, MeOD, 25 °C): \ \delta = 7.99 \ (s, 8\text{H}, \text{CH}_\text{triazole}), 7.42-7.24 \ (m, 20\text{H}, \text{CH}_\text{benzyl}), 6.79 \ (s, 8\text{H}, \text{CH}_\text{Ar}), 5.04-4.44 \ (m, 36\text{H}, \text{CH}_\text{2benzyl}/ \text{H-1}/ \text{CH}_\text{2Namide}/ \text{OCH}_\text{2sucrcr}/\text{CH}_\text{2Ntriazole}), 4.37-4.12 \ (m, 12\text{H}, \text{CH}_\text{2N}_{\text{triazole}}/ \text{ArCH}_\text{2Ar}), 3.89-3.23 \ (m, 24\text{H}, \text{H-6a}/\text{H-6b}/\text{H-5}/\text{H-4}/\text{H-3}/\text{H-2}), 3.04 \ (d, J = 12.6 \ \text{Hz}, 4\text{H}, \text{ArCH}_\text{2Ar}), 2.51 \ (t, J =7.18H, \text{CH}_2), 2.34 \ (m, 8\text{H}, \text{CH}_2), 1.77 \ (m, 8\text{H}, \text{CH}_2), 1.50 \ (m, 8\text{H}, \text{CH}_2), 1.24 \ (m, 8\text{H}, \text{CH}_2), 1.10 \ (s, 36\text{H}, \text{CH}_3). ^{13}\text{C}\text{-RMN} (100 MHz, MeOD, 25 °C): \ \delta = 177.2 \ (\text{C} = \text{Oamide}), 154.6 \ (\text{ArCOCH}_2), 146.5 \ (\text{ArCtBu}), 145.8 \ (\text{C}_{\text{triazole}}), 144.8 \ (\text{C}_{\text{triazole}}), 136.4 \ (\text{C}_{\text{benzyl}}), 135.2 \ (\text{ArCCH}_2\text{CAr}), 131.2 \ (\text{CH}_{\text{benzyl}}), 130.5 \ (\text{CH}_{\text{benzyl}}), 130.1 \ (\text{CH}_{\text{benzyl}}), 126.8 \ (\text{CHAr}), 125.6 \ (\text{CH}_{\text{triazole}}), 100.2 \ (\text{C-1}), 78.6 \ (\text{CH}_{2\text{benzyl}}), 75.4, 74.4, 73.9 \ (\text{CH}_2\text{OAr}), 73.4, 72.2 \ (\text{C-5,C-4,C-3, C-2}), 63.1 \ (\text{C-6}), 61.9 \ (\text{CH}_2\text{Otriazole}), 51.5 \ (\text{CH}_2\text{N}), 35.2 \ (\text{CH}_2\text{N}), 33.5 \ (\text{CH}(\text{CH}_3)_3), 32.4 \ (\text{CH}_2), 32.0 \ (\text{CH}_3), 27.4 \ (\text{CH}_2), 26.9 \ (\text{CH}_2), 25.2 \ (\text{CH}_2). \ \text{HRMS(ESI/Q-TOF) m/z: } [\text{M}+2\text{Na}]^{2+} \text{calcd for } C_{157}H_{210}O_{36}N_{28} 1549.7701, \text{found: } 1549.7739
Fuco-p-tBu-calix[4]arene benzylhydroxamate 24. Compound 21 (0.135 g, 0.0386 mmol) was dissolved in distilled MeOH, ultra-pure water and triethylamine (7.5 mL/0.64 mL/0.64 mL). The mixture was stirred under argon at room temperature until TLC (EtOAc/MeOH/H₂O: 6/2/0.8) monitoring showed the total disappearance of the starting material. Solvents were evaporated and co-evaporated with toluene until dryness. The crude product was purified by column chromatography (EtOAc/MeOH/H₂O: 6/2/0.6) to afford 24 as white solid. Yield 0.069 g (60%); Rₙ(SiO₂, EtOAc/MeOH/H₂O: 6/2/0.8) = 0.23; ESI-MS: m/z = 1518.6 [M+2Na⁺]²⁺. [α]D²₀ = -39 (c = 0.150 in MeOH). ¹H-NMR (600 MHz, MeOD, 25°C): δ = 7.97 (s, 4H, CH₅triazole), 7.96 (s, 4H, CH₅triazole), 7.32 (m, 20H, CH₂Bn), 6.77 (s, 8H, CH₂Ar), 4.94 (s, 8H, CH₂Namide), 4.89 (m, 12H, H-1/CH₂Bn), 4.77 (d, J = 12.5 Hz, 4H, OCH₂triazole), 4.63 (d, J = 12.5 Hz, 4H, OCH₂triazole), 4.53 (t, J = 6.6 Hz, 8H, CH₂Ntriazole), 4.29 (t, J = 7.1 Hz, 8H, CH₂Ntriazole), 4.20 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 3.95 (m, 4H, H-5), 3.77 (m, 16H, H-3/H-2/CH₂OAr), 3.66 (m, 4H, H-4), 3.02 (d, J = 12.4 Hz, 4H, ArCH₂Ar), 2.49 (m, 8H, CH₂), 2.31 (m, 8H, CH₂), 1.76 (m, 8H, CH₂), 1.48 (m, 8H, CH₂), 1.19 (d, J = 6.2 Hz, 12H, H-6), 1.07 (s, 36H, CH₃). ¹³C-NMR (150 MHz, MeOD, 25°C): δ = 176.5 (C=Oamide), 154.2 (ArCOCH₂), 146.0 (ArCtBu), 145.6 (C₅triazole), 144.3 (C₅triazole), 136.1 (C₂Bn), 134.8 (ArCCH₃C₂Ar), 130.8 (C₂Bn), 129.8 (C₂Bn), 126.4 (CH₂Ar), 125.3 (C₅triazole), 125.0 (C₅triazole), 100.1 (C-1), 77.6 (CH₂Bn), 73.5 (C-4), 72.9 (CH₂OAr), 71.5 (C-2), 69.9 (C-3), 67.8 (C-5), 61.7 (OCH₂triazole), 51.1 (CH₂N), 34.7 (C(CH₃)₃), 32.0 (CH₃), 30.9 (CH₂), 26.9 (CH₂), 24.7 (CH₂), 16.7 (C-6). HRMS(ESI/Q-TOF) m/z : [M+2Na⁺]²⁺ calcd for C₁₅₆H₂₁₂N₂₈O₃₂Na₂ 1517.7809; found: 1517.7837.

Manno-p-tBu-calix[4]arene benzylhydroxamate 25. Compound 22 (0.217 g, 0.057 mmol) was dissolved in distilled MeOH, ultra-pure water and ultra-pure triethylamine (8 mL, 1.29 mL, 1.29 mL). The mixture was stirred under argon at room temperature until total consumption of the
starting material. Solvents were evaporated and co-evaporated with toluene until dryness. The crude product was purified by reverse-phase chromatography with eluent gradient of H$_2$O/CH$_3$CN to afford 25 as yellow solid. Yield 0.088 g (50 %); R$_f$ (C$_{18}$, H$_2$O/CH$_3$CN: 8/2) = 0.26; ESI-MS: m/z = 1550.8 [M+2Na$^+$]$^{2+}$; [α]$_D$:20 = +32 (c = 0.06 in MeOH). 1H-NMR (300 MHz, MeOD, 25°C): δ = 7.98 (s, 8H, CH$_3$triazole), 7.41-7.21 (m, 20H, CH$_7$Bn), 6.78 (s, 8H, CH$_7$Ar), 5.05-4.49 (m, 36H, CH$_2$Bn/ H-1/ CH$_2$Namide/ OCH$_2$ sugar/CH$_2$Ntriazole), 4.38-4.11 (m, 12H, CH$_2$Ntriazole/ArCH$_3$Ar), 3.99-3.53 (m, 24H, H-6a/H-6b/H-5/H-4/H-3/H-2), 3.04 (d, J = 12.6 Hz, 4H, ArCH$_2$Ar), 2.5 (m, 8H, CH$_2$), 2.32 (m, 8H, CH$_2$), 1.77 (m, 8H, CH$_2$), 1.48 (m, 8H, CH$_2$), 1.19 (m, 8H, CH$_2$), 1.08 (s, 36H, CH$_3$). 13C-NMR(75 MHz, MeOD, 25 °C): δ = 176.7 (C=Oamide), 154.2 (ArCOCH$_2$), 146.1 (ArClBu), 145.1 (C$_3$triazole), 144.0 (C$_2$triazole), 135.9 (C$_8$Bn), 134.8 (ArC$_8$H$_7$C$_2$Ar), 130.8 (CH$_7$Bn), 130.0 (CH$_7$Bn), 129.7 (CH$_7$Bn), 126.4 (CH$_7$Ar), 125.3 (CH$_3$triazole), 100.7 (C-1), 77.6 (CH$_2$Bn), 74.9, 72.9 (CH$_2$OAr), 72.5, 72.0, 68.6 (C-5,C-4,C-3, C-2), 62.9 (C-6), 60.7 (CH$_2$Otriazole), 51.1 (CH$_2$N), 48.7 (CH$_2$N), 34.7 (C(CH$_3$)$_3$), 33.0 (CH$_3$), 32.0 (CH$_3$), 30.9 (CH$_2$), 26.9 (CH$_2$), 24.5 (CH$_2$). HRMS(ESI/Q-TOF) m/z : [M+2Na$^+$]$^{2+}$ calcd for C$_{156}$H$_{212}$O$_{36}$N$_{28}$Na$_2$ 1549.7701; found 1549.7639.

6''-(4'-(α-L-fucopyranosyloxymethyl)-1'H-1',2',3'-triazole-1'-yl]-N-benzyloxy-hexanamide (26). Obtained by conventional acetolysis of 9 with MeONa in MeOH at rt and reaction was monitored by TLC on silica gel with 6/1: EtOAc/MeOH as eluant until completion. After workup 26 was obtained quantitavely as a white solid. R$_f$(SiO$_2$, EtOAc/MeOH: 6/1) = 0.24; ESI-MS: m/z = 487.0 [M+Na]$^+$; [α]$_D$:20 = -59 (c 0.16, MeOH). 1H-NMR (MeOD, 300 MHz), δ en ppm: 7.96 (s, 1H, CH$_3$triazole), 7.43- 7.28 (m, 5H, CH$_7$benzyl), 4.98-4.54 (m, 5H, H-1/CH$_2$benzyl/ OCH$_2$triazole), 4.36 (t,2H, CH$_2$N, J = 7.0 Hz), 3.95 (m, 1H, H-5), 3.75 (s, 2H, H-2/ H-3), 3.66 (s, 1H, H-4),2.05 (t, 2H$_a$CH$_2$, J = 7.3 Hz), 1.89 (m, 2H$_a$CH$_2$), 1.61 (m, 2H, βCH$_2$), 1.28 (m,
2H, CH₂), 1.19 (d, 3H, H-6, J₆,₅ = 6.4 Hz). ¹³C-NMR (MeOD, 75 MHz), δ en ppm: 172.2 (C=O), 136.6 (C benzyl), 130.0 (CH benzyl), 129.4 (CH benzyl), 129.2 (CH benzyl), 124.9 (CH triazole), 99.8 (C-1), 78.7 (CH₂ benzyl), 73.2 (C-4), 71.3, 69.7 (C-2/ C-3), 67.5 (C-5), 61.6 (OCH₃ triazole), 50.9 (CH₂), 33.2 (α CH₂), 30.6 (β CH₂), 26.5 (γ CH₂), 25.6 (δ CH₂), 16.5 (β CH₂). HRMS(ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₂H₃₂N₄O₇Na 487.2271; found 487.2162.

6''-(4’-(α-D-mannopyranosyloxymethyl)-1’H-1’,2’,3’-triazole-1’-yl)-N-benzyloxy-hexanamide (27). Compound 10 (0.1 g, 0.154 mmol) was dissolved in MeOH (8 mL) and a catalytic amount of sodium was added. The reaction was then stirred overnight at room temperature. After workup, 27 was obtained quantitatively as a yellow powder. ESI-MS: m/z = 503.3 [M+Na]⁺. ¹H-NMR (300 MHz, MeOD, 25 °C): δ = 8.05 (s, 1H, CH triazole), 7.46-7.37 (m, 5H, CH₃), 4.99-4.79 (m, 7H, H-4/ H-3/ H-2/ H-1, CH₂ CH₂O), 4.68 (d, J = 12.3 Hz, 1H, CH₂O), 4.42 (t, J = 7.0 Hz, 2H, CH₂N), 3.90 (dd, J = 11.7 Hz, J = 5.4 Hz, 1H, H-6a), 3.84 (m, 1H, H-5), 3.77 (dd, J = 11.7 Hz, J = 5.4 Hz, 1H, H-6a), 2.09 (t, J = 7.3 Hz, 2H, CH₂), 1.93 (m, 2H, CH₂), 1.64 (m, 2H, CH₂), 1.29 (m, 4H, CH₂). ¹³C-NMR(75 MHz, MeOD, 25°C): δ = 171.1 (C=O amide), 143.8 (C₅ₗ), 135.6 (C₃ₗ triazole), 128.9 (C₃ₗ benzyl), 128.2 (CH₂ benzyl), 128.1(CH₃ benzyl), 123.9 (CH₃ triazole), 99.3 (C-1), 77.5 (CH₂ benzyl), 73.5, 71.1, 70.6, 67.2 (C-2, C-3, C-4, C-5), 61.5 (C-6), 59.3 (CH₂O), 49.7 (CH₃N), 32.0 (CH₂), 29.4 (CH₂), 25.3 (CH₂), 24.4 (CH₂). HRMS(ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₂H₃₂O₇N₄Na 503.2118, found 503.2115.

Biological assessment

In vitro determination of Minimum Inhibitory Concentrations (MICs). P. aeruginosa DSM 1117 was grown overnight at 35°C in Tryptic Soy Broth and streaked on Tryptic Soy Agar (TSA) (AES, Bruz, France). From these isolation plates, inoculums were prepared according to
CLSI recommendations and the broth microdilution technique carried out in cation-adjusted Mueller-Hinton broth using drug concentrations ranging from 0.250 to 512 µg.ml\(^{-1}\). Ciprofloxacin and deferoxamine mesylate (DFO) were purchased from Sigma-Aldrich (Saint Quentin-Fallavier, France) and used in each series of experiments as controls for antibiotics and iron chelators, respectively. MICs were determined as the highest dilution at which wells remained visually clear (i.e. devoid of bacterial growth). The growth of \(P. \text{aeruginosa}\) PAO1 and PAD07\(^3^4\) was monitored in Succinate Minimum Medium (SMM)\(^6^6\) supplemented with a fixed amount of \(\text{Fe}^{3+}\) through addition of iron trichloride (Sigma-Aldrich). Products 1 and 2 were added to the culture medium in varying amounts (final [product]/[iron] ratios from 1:128 to 8:1). A stock solution (3200 µg.mL\(^{-1}\)) of each product in sterile DMSO (Sigma-Aldrich) was prepared and two-fold serially diluted in the same solvent down to 25 µg.mL\(^{-1}\). These product concentrations correspond to 0.0078 to 8 times the amount theoretically required for chelating the amount of iron introduced in the SMM culture medium. In a 96-well plate, 5µL of each product dilution were distributed to which 5µL of the \(\text{FeCl}_3\) solution in sterile water were added. Each well was then filled with 220 µL of SMM and 20 µL of a bacterial suspension of the required strain at 0.5 McFarland. A growth control was added to each series of experiments in which 5 µL of pure DMSO was added in place of the 5 µL of either product 1 or 2 dilutions. Plates were incubated for 24h at 37°C. Absorbance (OD) was then read on a Multiskan EX multiplate reader (Thermo Labsystems, Issy les Moulineaux, France) at 600 nm to monitor bacterial growth after a 24h incubation at 35°C and at 405 nm to assess the amount of free pyoverdin in PAO1 cultures.\(^6^7\) The amount of iron-free pyoverdin was also evaluated by fluorescence measurement (FP-8500 Spectrofluorometer, JASCO, Bouguenais, France) in each well (\(\lambda_{\text{exc}} = 400\) nm; \(\lambda_{\text{em}} = 447\) nm).\(^2^9\) Baselines were made with solvent alone and with the same
varying amounts of products 1 and 2 in the medium, without the bacterial inoculums, to assess the absorbance generated by our compounds. Experiments were carried out at least in duplicate. Results are given as mean + Standard Deviation (SD).

Statistical analysis. The statistical analysis was carried out using the Mann-Whitney signed rank test page of Vassarstats website. A p value inferior to 0.05 was considered as significant.

LecB interaction assay. Material and methods. Recombinant expression and purification of LecB. The protein was expressed and purified as described previously. E. coli BL21(DE3) carrying the plasmid were grown in 1 L LB supplemented with ampicillin (100 μg/mL) to an OD600 = 0.5-0.6 at 37 °C and 180 rpm. The expression was induced with IPTG (0.5 mM final concentration) and bacteria were cultured for 4 h at 30 °C and 180 rpm. The cells were then harvested by centrifugation (3000 x g, 10 min) and the pellet was washed with PBS. The cells were resuspended in 20 mL TBS/Ca (20 mM Tris, 137 mM NaCl, 2.6 mM KCl at pH 7.4 supplemented with 100 μM CaCl2), PMSF (1 mM) and lysozyme (0.4 mg/mL) and subsequently disrupted using a sonicator on ice (5 cycles of 10 s). Cell debris was removed by centrifugation (10 min, 10000 x g) and the supernatant was loaded on mannosylated sepharose CL-6B. The column was washed with TBS/Ca and LecB was eluted by addition of 100 mM D-mannose to the buffer. The eluted fractions were extensively dialyzed against distilled water and then, the protein was lyophilized. The protein was dissolved in TBS/Ca before use and the concentration was determined by UV spectroscopy at 280 nm using a molar extinction coefficient of 6990 M-1 cm-1.

Fluorescence polarization assay. The assay was performed as described by Hauck et al. Typically, to 20 μL of a stock solution of LecB (225 nM) and fluorescent reporter ligand (1.5 nM) in TBS/Ca were added 10 μL serial dilutions of testing compounds in TBS/Ca in triplicates. After addition of the reagents, the microtiter plates were incubated for 4-21 h at room temperature with shaking. The fluorescence was measured on a BMG Labtech PHERAstar FS plate reader (BMG Labtech, Germany) with excitation filters at 485 nm and emission filters at
535 nm in black 384-well microtiter plates (Greiner Bio-One, Germany, cat no 781900). The measured intensities were reduced by buffer values. The data were analyzed with the MARS 2.41 software package (BMG Labtech, Germany) and fitted according to the four parameter variable slope model. Bottom and top plateaus were defined by the standard compounds L-fucose and methyl α-D-mannoside respectively and the data was reanalyzed with these values fixed.

Biofilm inhibition assays. Material and methods

First method reported by Diggle et al. A modified version of the method described by Diggle et al. was employed. 96-well sterile, U-bottomed polystyrene microtiter plates (TPP Switzerland) were prepared by adding 200 μL of sterile deionized water to the peripheral wells to decrease evaporation from test wells. Aliquots of 180 μL of culture medium (0.25% (w/v) nutrient broth No. 2, Oxoid) containing desired concentration of the test compound were added to the internal wells. Inoculum of *P. aeruginosa* strain PAO1 was prepared from 5 mL overnight culture grown in LB broth. Aliquots of 20 μL of overnight cultures, pre-washed in 0.25% (w/v) nutrient broth and normalized to an OD$_{600}$ of 1, were inoculated into the test wells. Plates were incubated in a humid environment for 24-25 hours at 37 °C. Wells were washed twice with 200 μL sterile deionized water before staining with 200 μL 0.25% (w/v) nutrient broth containing 0.5 mM WST-8 and 20 μM phenazine ethosulfate for 3 hours at 37 °C. Afterwards, the well supernatants were transferred to a polystyrene flat bottomed 96-well plate (TPP Switzerland) and the absorbance was measured at 450 nm with a plate reader (SpectraMax250 from Molecular Devices). For OD$_{600}$ measurements, the 200 μL of the supernatant prior to washing were added to 5 mL of LB medium and shaked at 37°C for 7-8 hours. The OD$_{600}$ was measured and compared to the w/o supernatant. For CFU plating, the 200 μL of the supernatant was added to the first well of a 96-wells-F-bottomed microtiter plate (TPP, untreated) and diluted serially by ½
(raw 1 to 6) in 180 μL NaCl 0.9%. 4 μL of the raw 6 were plated on LB agar and incubated at 37°C for 24 hours. It is for the toxicity determination under the biofilm conditions.

Second method reported by O'Toole.⁵⁶ PAO1 biofilm inhibition at 20 μM with 1, 2 and 3. Biofilm Assays were performed in 96 well plates as described previously. Briefly, P. aeruginosa PAO1 was grown in M63 minimal medium supplemented with arginine (0.4%) and magnesium sulfate (1 mM). The indicated compounds were tested at 20 μM, or an equal volume of the vehicle control (water) was added as a control. The indicated compounds were added at the time of inoculation of the medium, and the biofilm assays were then incubated for 8 hrs at 37°C. At the end of the incubation period, 100 ul of the medium was removed from the biofilm assay plate to a fresh flat bottom, 96 well plate and the wells measured at 550 nm to determine bacterial growth. The original biofilm plate was stained with crystal violet (0.1%) and the biofilm quantified as described previously.

Cytotoxicity on host cells. Cytotoxicity of the CF-derived bronchial epithelial (CFBEΔF cells) cells was determined as reported previously.⁴⁸ Briefly, the indicated compounds were applied at 20 uM to a monolayer of CBFE cells and incubated for 24 hrs. An equal volume of the vehicle control (water) was added to a set of wells to serve as a control. After the incubation, an aliquot of the medium overlaying the CFBE cells was removed and cytotoxicity was assessed as a function of released lactate dehydrogenase (LDH) activity. LDH was measured with the CytoTox 96 Non-radioactive Cytotoxicity Kit (Promega).

Molecular mechanics (MMFF) prediction. The distance of 50 Å between two discarded mannose was determined using molecular mechanics (MMFF) in presence of LecB pdb with frozen atoms (from protein data bank (pdb)).⁴² Two orthogonal CRD sites are separated by 40 Å.⁴³ For the output data see Tables S2 and S3 of SI.
ASSOCIATED CONTENT

Supporting Information. The Supporting Information including: NMR spectra, LC-MS data, Minimum inhibitory concentrations (MIC) table, well plates showing Pvd-I fluorescence at high concentration of 1 or 2, well plates of inhibition of PAO1 biofilm assays, MMFF calculations, is available free of charge on the ACS Publications website at DOI:

AUTHOR INFORMATION

Corresponding Author

* E-mail: mohammed.benazza@u-picardie.fr

* E-Mail: George.A.O'Toole.Jr@dartmouth.edu

‡ Should be considered as corresponding authors

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. ‡These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

Support from the “Conseil Régional de Picardie" and the LG2A-UMR7378-CNRS research group is gratefully acknowledged. M. Taouai and K. Chakroun were financially supported by the Tunisian government and the European Cooperation of Science and Technology (eCOST). We
are grateful to the Chemical Biology of Carbohydrates, Helmholtz, Institute for Pharmaceutical Research Saarland, 66123 Saarbrücken, Germany for the Lectin inhibition assays.

ABBREVIATIONS

HAG, hydroxamic acid; Pvd-I, pyoverdine I; CF, cystic fibrosis; CFBE, cystic fibrosis derived bronchial epithelial; LDH, lactate dehydrogenase; Tb, tobramycin; MMFF, molecular mechanics force fields; MBL, mannose binding ligand; DC-SIGN, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin; pdb, protein data bank.

REFERENCES

Marchetti, G.; Gori, A. Nosocomial bacterial pneumonia in HIV-infected patients: risk factors
for adverse outcome and implications for rational empiric antibiotic therapy. *Infect. Immun.*
2006, 34, 9-16.

8. Nair, N.; Biswas, R.; Götz, F.; Biswas, L. Impact of Staphylococcus aureus on

9. European Centre of Disease Prevention and Control. Antimicrobial resistance

10. Antoniu, S. Novel inhaled combined antibiotic formulations in the treatment of
Pseudomonas aeruginosa airways infections in cystic fibrosis. *Exp. Rev. Anti-Infect. Ther.* 2015,
13, 897-905.

biofilm biology to drug development—can a new approach be developed? *Nat. Rev. Drug
Discov.* 2013, 12, 791-808.

M.; Gilboa-Garber, N.; Imberty, A. Structural basis for oligosaccharide-mediated adhesion of
Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. *Nat. Struct. Mol. Biol.* 2002, 9,
918-921.

F.; Jaeger, K.-E. *Pseudomonas aeruginosa* lectin LecB is located in the outer membrane and is

33. Wikler, M. *Clinical and Laboratory Standards Institute Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard; Report: 2009*.

68. Lowry, R. Concepts and applications of inferential statistics. **2014**.

TABLE OF CONTENTS GRAPHIC