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Statistical methods constitute a useful approach
to understand and quantify the uncertainty that
governs complex tsunami mechanisms. Numerical
experiments may often have a high computational
cost. This forms a limiting factor for performing
uncertainty and sensitivity analyses, where numerous
simulations are required. Statistical emulators,
as surrogates of these simulators, can provide
predictions of the physical process in a much faster
and computationally inexpensive way. They can
form a prominent solution to explore thousands
of scenarios that would be otherwise numerically
expensive and difficult to achieve. In this work, we
build a statistical emulator of the deterministic codes
used to simulate submarine sliding and tsunami
generation at the Rockall Bank, NE Atlantic Ocean,
in two stages. First we calibrate, against observations
of the landslide deposits, the parameters used in the
landslide simulations. This calibration is performed
under a Bayesian framework using Gaussian Process
(GP) emulators to approximate the landslide model,
and the discrepancy function between model and
observations. Distributions of the calibrated input
parameters are obtained as a result of the calibration.
In a second step, a GP emulator is built to mimic
the coupled landslide-tsunami numerical process.
The emulator propagates the uncertainties in the
distributions of the calibrated input parameters
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inferred from the first step to the outputs. As a result, a quantification of the uncertainty of the
maximum free surface elevation at specified locations is obtained.

1. Introduction
Nowadays, submarine landslides are recognized as one of the principal tsunami-triggering
mechanisms [1–3]. Marine surveys conducted during the last century have shed light on the
extensive submarine landslide deposits lying on the seabed of continental slopes and the slopes of
volcanic islands [4,5]. Known examples of tsunamigenic landslides in the North Atlantic Ocean
have been extensively studied in the past decades under the framework of numerical models
[6–13]. The characteristics of landslide tsunamis may vary depending on the type of the slide
mechanism and the slide parameters [14]. Some critical parameters affecting tsunami generation
are the volume of the sliding material, the nature of the failure mechanism, the initial acceleration
and maximum velocity of the landslide [1,3,14]. The complexity of submarine landslides and the
lack of direct observations add to the uncertainty of the related tsunami hazard and render the
modelling of the phenomenon a complicated task.

The numerical codes used for landslide and tsunami modelling may vary depending on
several features like the physics, the numerical scheme and the dimensions [15]. The shallow
water theory constitutes the most common theory that has been applied so far in the research of
landslide tsunamis [15]. Despite the simplifications in the physics, the applicability of the shallow
water equation (SWE) solvers renders them a popular choice [15]. Known SWE solvers have been
used for simulations of landslide tsunamis [16–18] and there are many other events where the
shallow water theory was employed [7–9,16,19–21]. Nonetheless, in cases where the frequency
dispersion of the landslide tsunami becomes important, the SWE solvers do not capture some of
the changes in the wave characteristics [22].

To account for dispersive effects during landslide tsunami propagation, the Boussinesq
approximation can be employed and state-of-art Boussinesq solvers have been used for
operational tsunami research [11,17,23,24]. To capture adequately the interaction between the
landslide and the water, numerical codes that solve the three-dimensional Navier–Stokes (NS)
equations or the three-dimensional potential flow equations can also be used [25–27]. NS codes are
especially useful for the modelling of sub-aerial landslide tsunamis where the physical processes
can become very complex. Albeit, the high computational costs of the NS solvers may render their
applicability challenging [15]. To counterbalance for that, NS solvers can be used in conjunction
with Boussinesq solvers to study the far-field potential of landslide tsunamis [11,12,28,29].

In cases where large numbers of numerical simulations become cumbersome, statistical
techniques can be employed to shed light on the way that the mechanical processes can influence
the results. Up to present, various statistical methods have been implemented to quantify and
minimize the degree of uncertainty in tsunami science [30]. The use of statistical emulators, also
referred to as statistical surrogates, in place of the deterministic codes, constitutes a prominent
solution [30]. Statistical emulators actually form stochastic representations of the deterministic
computer models used to simulate a physical process. The objective of the emulators is not to
entirely replace the deterministic codes but to act in a complementary way, by assessing the results
of numerous scenarios in only a few moments of time. As tsunami models can be computationally
expensive to run, building statistical surrogates can be used instead, to assess uncertainty and
conduct sensitivity analyses in shorter computational times.

Emulators lead to inexpensive probabilistic predictions of the examined system and contribute
towards a better understanding of the system’s behaviour. Some recent examples of building
statistical surrogates of tsunami numerical codes exist in the literature [31–33]. Sarri et al. [31]
have built a statistical surrogate of the analytical model for landslide tsunamis developed by
Sammarco & Renzi [34]. The emulator was constructed using a Gaussian Process (GP) and was
validated with the Leave-One-Out diagnostics (LOO). Sraj et al. [32] used Polynomial Chaos (PC)
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Figure 1. Multibeambathymetrymap of the Rockall Trough based on the Irish National Seabed Survey (INSS) dataset. The RBSC
scarps and lobe limits are indicated with red lines. Arrows show the general oceanographic circulation. Bathymetric contours
are shown with thin black lines. The map on the right-bottom corner shows the position of the RBSC with respect to Ireland
and the UK. Adapted from Georgiopoulou et al. [35]. (Online version in colour.)

methods to build a statistical surrogate based on measurements of the free surface elevation for
the 2011 Japanese tsunami and quantify the uncertainty in bottom friction parametrization. Beck
& Guillas [33] developed an algorithm for sequential experimental design to efficiently build the
statistical surrogate of a tsunami code.

The tsunami mechanism under study in this work is the slope failure at the Rockall Bank
Slide Complex (RBSC), a region of extensive submarine landslide deposits, in the Northeast
Atlantic Ocean (figure 1). To simulate submarine sliding and tsunami generation in the
region, the landslide code VolcFlow [36] and the tsunami code VOLNA [37] are used. The
statistical emulation of the one-way coupled numerical process is ultimately performed to
quantify uncertainties. The numerical codes imply simplifications that should be further explored
for a comprehensive geophysical analysis of the event. The main objective of this paper
is to demonstrate the applicability of statistical emulation to assess thousands of otherwise
computationally intensive simulations in a realistic setting, rather than claiming generality of
the hazard assessment.

We concentrate our attention on statistical methods as a means to enhance the numerical
simulations of a real event, with Rockall Bank as an illustration. In particular, we incorporate
data of ongoing research on the landslide deposits in order to assess the uncertainties of the
landslide characteristics, this is done with the Bayesian calibration. To our knowledge, this is
the first use of Bayesian calibration in deposit modelling. With the aid of the built-in emulator,
we can finally make predictions of the maximum tsunami amplitudes that result from varying
landslide scenarios and quantify the uncertainty of the tsunami amplification.

Prior to the propagation of uncertainties through statistical emulation, the uncertainties in
the landslide characteristics need to be estimated by comparing modelled deposits against
observations. The objective is to infer the characteristics of the landslide that yield the observed
run-out distance, the inference of other tsunamigenic characteristics unrelated to the parameters
present in this study is not possible here. The Bayesian calibration used here is based on the
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framework of Kennedy & O’Hagan [38]. We follow a similar approach to the one described in
Guillas et al. [39], where the statistical surrogate of a computational fluid dynamics (CFD) model
was calibrated against observations. In this Bayesian framework, Markov Chain Monte Carlo
(MCMC) methods and the Metropolis–Hastings algorithm [40] are utilized to find the optimal
ranges, and distributions over these ranges, of the parameters.

To propagate the uncertainty from the landslide characteristics identified in the calibration
to the resulting tsunamis, we build a statistical emulator of the combined landslide–tsunami
numerical process, based on a GP. The prediction as well as the associated uncertainties are
performed using the kriging equations. The emulator enables us to make predictions of the
maximum tsunami wave amplitudes that would result from different sets of input landslide
parameters, in a computationally fast, efficient and inexpensive way. Indeed, the possible values
of the calibration parameters, i.e. their distributions are fed into the emulator to produce the
probabilistic distributions of the maximum tsunami wave amplitudes at specified locations.

2. Submarine sliding in the Rockall Bank Slide Complex
The RBSC is located 350–400 km offshore the northwest Irish shoreline, in the NE Atlantic Ocean
(figure 1). The failure escarpments of the complex are identified on the eastern margin of the
Rockall Bank, an almost flat-topped, underwater plateau (figure 1). The depositional area of the
RBSC spreads on the seabed of the Rockall Trough, a steep-sided elongate depression 300–3000 m
deep in the study area. The complex forms the largest region of submarine slope failure scarps in
the Irish Atlantic margin, exhibiting an irregular width-to-length aspect ratio of 120 × 150 km [41].

Until recently, the RBSC had been considered as one single event mass flow [41]. New
sedimentary and seismic data taken from the depositional lobes of the RBSC demonstrate that
the RBSC morphology is the result of multiple phases of slope failure, at least three, that were
separated by long periods of slope stability [42]. Radiocarbon dating showed that the most recent
event took place 21 ka, which is 3000 years post Last Glacial Maximum (LGM), when the British
Irish Ice Sheet (BIIS) was still at maximum extent and was only just starting to destabilize [42].
One hypothesis for the triggering mechanism suggests that sedimentation on the upper part of
the slope enhanced by strong bottom current activity removed support from the base-of-slope,
leading to slope instability and subsequently failure [35,41]. Updated research supports that
bottom currents would have still been weak at the time of the slide and therefore an earthquake
is considered as the most likely triggering mechanism [42].

Reconstruction of the preslide slope morphology yielded a sediment volume of 265–765 km3

[35]. The slope was divided into two main areas of failure scarps: the upper and the lower
slope regions [35]. Based on an early interpretation of seismic data collected in the area in
2011 [43] and the INSS bathymetry at least three phases of collapse were distinguished, with
the most recent episode initiating from the lower slope region. The volume of the event was
estimated to be approximately 400 km3. The continuous activity of contour currents in the area
implies that the slope scars may have formed rapidly, due to a large part of the slope collapsing
simultaneously [41].

The failure mechanism and the large volume of the sediments raise questions for the
tsunamigenic potential of the failure. Any generated tsunamis, chronologically near the LGM,
would probably not have affected Ireland, because the western shelf and coast were still covered
by ice [44]. Nevertheless, the tsunamigenic potential of similar volume sliding episodes nowadays
could pose a significant risk to the Irish shoreline. To address this possibility and the magnitude
of the generated tsunamis, some preliminary numerical simulations were conducted, focusing on
the modelling of the event [45]. The results show that sliding in the RBSC can lead to tsunami
generation of an uncertain size as parametric variability is large and thus requires tightening via
calibration against observations as we do here. For the parameter calibration and for the set-up
of the statistical emulator, we turn our attention to numerical simulations of landslide initiation
and tsunami generation in the lower slope region. We use as reference the depositional area of the
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latest episode as it forms the most voluminous and chronologically most recent failure episode in
the RBSC.

3. Numerical algorithms
To study submarine sliding and tsunami generation in the RBSC, the one-way coupling of
two numerical models is performed. We make use of the VolcFlow code [36] for the landslide
modelling. The code is not too computationally demanding and has been efficiently used to study
several cases. The VOLNA code [37] is then used for the simulations of the landslide tsunamis.
Both codes solve the depth-averaged shallow water equations and can thus be considered as
simplified representations of reality when compared with more sophisticated codes. The rationale
behind the choice of the two codes is their feasibility in the two-dimensional domain.

The two-dimensional code VolcFlow was initially developed for the simulation of dense-
isothermal volcanic-geophysical flows [36]. The code has been used to model various situations
ranging from rock avalanches [36] and pyroclastic surges [46] to submarine landslides and
tsunami generation [20]. VolcFlow is a finite-difference code that solves the depth-averaged
equations of mass and momentum using a shock-capturing numerical method based on a double
upwind Eulerian scheme [36]. For the full derivation of the equations that govern landslide
motion and deposition in VolcFlow we refer the reader to [36].

In VolcFlow, the sliding mass spreads during motion and the landslide deposition follows the
topography of the grid [36].The code also accounts for the simulation of various rheological flow
regimes [47]. Common regimes to simulate sliding in the submarine domain are the Herschel–
Bulkley and the Bingham rheology or an extension of it [48–50]. A simplified Bingham rheology
can be modelled with the code where neither layering nor additional mechanisms such as
hydroplanning and remoulding are incorporated. Based on the selection of the input parameters
for the calculations of the shear retarding stress, the flow properties can vary representing
different flow types. For our cases, we make use of a rheological model that incorporates the
viscoplastic and frictional properties of the sliding material plus a velocity-dependent term. We
use the Cartesian coordinate system, where the x- and y-axes represent the EW and NS horizontal
directions, respectively, and the z-axis the vertical direction. The retarding stress T = (Tx, Ty) is
then given by

T = T0
u

‖u‖ + μ
du
dh

+ ρh

(
g cos ϕ + ‖u‖2

r

)
tan φbed

u
‖u‖ + ξρ‖u‖u, (3.1)

where T0 is the yield strength, u(ux, uy) the depth-averaged velocity, μ the dynamic viscosity,
du/dh the shear rate, ρ the apparent density of the mixture, h(x, y) the slide thickness, g the
acceleration due to gravity, ϕ the slope angle, r the slope curvature, φbed the basal friction angle
and ξ a non-dimensional coefficient used to represent the effect of turbulence and/or collisions.

The first three terms of the equation resemble the model introduced by Norem et al. [51] to
describe the mobility of subaqueous flows. The last term of the equation is making use of the
coefficient of turbulence introduced by Voellmy [52]. This term can be useful in the modelling
of submarine landslides as ξ can account for the hydrodynamic drag, one of the most critical
forces resisting motion in the submarine domain [14]. The added mass coefficient, which also
forms an important parameter affecting landslide acceleration and tsunamigenesis [9,14,53], was
not incorporated in this study. As we perform one-way coupling with the tsunami model, to
partially account for motion in the submarine domain we incorporate the drag term in addition
to a reduced landslide density (§5). Preliminary simulations show that neglecting or choosing
very small values for ξ results in large peak velocities of the landslide and consequently high free
surface elevations [45].

We model tsunami generation, propagation and run-up with VOLNA. The current version of
the code can be run on both CPU and GPU processors. The Nonlinear Shallow Water Equations
(NSWE) are solved with a finite volume method. To capture the complexity of the bathymetry
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and the surrounding coastlines in a specified location, the code employs unstructured triangular
meshes. VOLNA has been efficiently used to model tsunami generation in different cases and
in various settings [45,54,55]. For landslide tsunami propagation, dispersive effects are not
accounted for by the code, a brief discussion is given in §6c. The exposition of the equations
and in depth details about the numerical methodology in VOLNA can be found in [37].

4. Statistical calibration
In numerical modelling, the issue of assigning the appropriate parameter values to model a
physical process forms a common challenge. Statistical calibration can reduce the uncertainty
in the input parameters by confronting model outputs to observations [38]. In particular,
Bayesian calibration allows the acknowledgement of all sources of uncertainty (typically model
inadequacies, observation errors) and enables experts to encapsulate current knowledge in prior
distributions of the parameters. Posterior distributions of the input parameters are then obtained
in the Bayesian paradigm. The inference of the parameters’ posterior distributions is carried
out by balancing prior information, reflecting the current knowledge, against the information
from the observations. The statistical approach introduced by Kennedy & O’Hagan [38] is the
mainstream method used to perform a Bayesian calibration of a deterministic code, which we
follow here.

Let us denote the true physical system, ζ (x), with x the observable inputs. The input
parameters can be subdivided into two groups: the inputs x whose values are observed (e.g.
location, conditions) and thus known, and the calibration parameters θ whose values are
unobserved, and thus unknown (typically numerical constants required for the simulations, such
as initial conditions and parameters of physical processes). To accurately simulate the physical
system in the future, we must first estimate the optimal values of the unknown calibration
parameters. As for each numerical experiment both parameter groups have to be specified,
the observable inputs are assigned values of x = (x1, . . . , xm) and the calibration parameters are
assigned values of I = (I1, . . . , Im), where x and I are known, and m stands for the total number of
the numerical computations. The computed output from the simulations can then be written as
a function of the input variables and the calibration parameters

YC
i = η(xi, Ii) + eη, (4.1)

where YC
i is the output of the code and η(xi, Ii) the expected output (these would be equal if

the results were not subject to intrinsic numerical error, eη, typically small). For an appropriate
choice of I = θ the numerical output η(xi, θ ) would be the best numerical representation of the
physical process, but can still be different from it due to a discrepancy caused by the lack of
physical representation in the model or a low resolution for instance. The relationship between
the n observations of the physical system in the field YF

i = (YF
1 , . . . , YF

n) and the model outputs
η(xi, Ii) can be expressed as

YF
i = ζ (xi) + ei = η(xi, θ ) + δ(xi) + ei, (4.2)

where ei is the observation error at the ith observation and δ(xi) denotes the bias, or model
inadequacy function, meaning the discrepancy between the optimal value of the physical process
and the computer output when the inputs are assigned optimal values. Note that, due to the
bias, the deterministic code can never truly reproduce the physical system, even if the best
values of the parameters were used for the simulations. Accounting for model inadequacy is,
thus, of critical importance as it helps avoiding a possible overestimation or underestimation
of the calibration parameters when the statistical model tries to unreasonably fit the results of
the computations with the observations. To perform the calibration, prior information for the
calibration parameters is required. It is derived from previous field experiments, general scientific
knowledge or numerical simulations, and represented in the form of prior distributions on these
parameters.
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For two vectors, x and I, which belong to a computational design DM, the simulator output at
the design points is defined as η(x, I). If x ∈ Rp and I ∈ Rl, then the function η(., .) maps R(p+l) to
R. The output of the code is unknown for inputs that differ from the specified design points and
therefore, has to be approximated. To do so, we assume that the unknown function is a GP, and
its outputs are realized as such. The random function is certain at the design points and uncertain
at other points.

To specify a GP prior model for η(x, I), a mean function μ(x, I) and a covariance
function Cov((x, I), (x′, I′)) are required. We choose the commonly used product exponential
covariance function. It is given by a product of individual terms, per parameter, of the form
exp(−γk|xk − x′

k|α) for k = 1, . . . , p, and exp(−γk|Ik − I′k|α) for k = p + 1, . . . , p + l. The γ ’s act as
correlation lengths parameters because they characterize the strength of the relationship between
outputs with respect to the proximity between inputs. The covariance function is reparametrized
for computational convenience in the following form:

Cov((x, I), (x′, I′)) = 1
λη

p∏
k=1

(ρη

k )2|xk−x′
k|α ×

l∏
k=1

(ρη

p+k)2|Ik−I′k|α , (4.3)

with ρ
η

k = exp (−β
η

k /4), where the (p + l)-vector ρη controls the strength of the dependence in
each of the component directions of x and I; λη and βη are the precision and correlation
hyperparameters of η(., .), and α controls the smoothness of η(., .). For a smooth representation
of the results, we use α = 2; smaller values of α result in rougher representations, and might be
beneficial in some cases (combination of analysis and experience in other settings [39] did not
show any benefit here).

A GP model is also specified for the discrepancy term δ(xi). The observation error ei and the
numerical error eη are modelled as independent normal distributions: ei ∼ N(0, 1/λe) and eη ∼
N(0, 1/λeη

), where λe and λeη
are the respective precision hyperparameters for ei and eη. Finally, the

likelihood for a n + m-joint vector with values YF = (x1, θ ), . . . , (xn, θ ) for its first n components and
YC = (x1, I1), . . . , (xm, Im) for its final m components is given by a multivariate normal distribution(

YF

YC

)
= MVN(0, Σy), (4.4)

where

Σy = Ση +
(

Σδ 0
0 0

)
+
(

Σe 0
0 Σeη

)
, (4.5)

where Ση is the product exponential correlation matrix for η(x, I) from (4.3), Σδ is the product
exponential correlation matrix for δ(xi), similarly derived, and Σe, Σeη

are the independent
normal noises for the observation and the numerical errors. In this study, we have n = 9 field
observations of the landslide extent and m = 100 numerical experiments.

A mean function of μ = 0 is employed as preliminary analyses showed no benefits in using
more advanced functions here. To standardize the entire set of the responses, the variability in
the simulator (1/λη) is set to 1. The design space for the observable inputs is scaled to [0, 1]p,
and the design space for the calibration parameters is scaled to [0, 1]l. To complete the Bayesian
formulation, independent prior distributions π (.) are specified for each of the parameters of (4.3),
for η(., .) and similarly for δ(.). A MCMC method can then be employed to explore the posterior
distributions and estimate the calibration parameters. The model makes use of the Metropolis–
Hastings algorithm which generates a sequence of samples [40].

In order to obtain the posterior distributions, prior assumptions for the distributions of the
parameters are required. For the calibration parameters θ , we define a prior parameter range,
based on the literature and past numerical simulations, and perform Latin Hypercube Sampling
(LHS) to select the values for the numerical experiments. We specify the prior distributions of
the correlation and precision hyperparameters following the approach of Guillas et al. [39]. The
prior distributions of the correlation hyperparameters β

η

k and βδ
k are selected so that the expected
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values of the corresponding correlations (ρη and ρδ) are lower than 1 (resulting in an insignificant
effect). The precision hyperparameters λη, λδ , λe and λeη

are assigned Γ prior distributions of
λη ∼ Γ (10, 10) (as the set of the responses is standardized λη approximates 1), λδ ∼ Γ (10, 0.3),
λe ∼ Γ (10, 0.03) and λeη

∼ Γ (10, 0.001) meaning that the standard deviation is expected to be 3%,
0.3% and 0.01% of the standardized responses. Note that very recent papers have mentioned the
challenges and issues in this Bayesian calibration set-up, with possible generic solutions [56,57].

Based on the prior information and the MCMC implementation, posterior distributions are
sampled numerically for all the calibration parameters. The posterior distributions will be
used as a tool to reach conclusions for the optimal values of the parameters and quantify
their uncertainties. The posterior realizations of the parameters, characterizing empirically the
distributions, will be utilized in the next step, which is to propagate these uncertainties in the
resulting tsunami wave amplitudes through the use of a statistical surrogate of the tsunami
model.

5. Ranges of the calibration parameters
First, we allocate prior distributions regarding the unknown input parameters θ , as a necessary
step for the calibration. In this study, we select six calibration parameters to vary, one is
geomorphological and the other five rheological. From a geomorphological perspective, the
maximum thickness of the landslide, hmax, at t = 0 s considers the headwall scarp height and
the thickness of the slide to be the same. Consequently, this has an impact on the volume, V, of
the landslide. The rheological parameters are: the yield strength of the landslide, T0, the basal
friction angle, φbed, the dynamic viscosity, μ, and the apparent density, ρ. Finally, we introduce
and vary the coefficient of turbulence, ξ , which is used to represent the hydrodynamic drag.

The slide thickness range derives from measurements of the scarp heights on the slope
region. The lower slope region is dominated by smaller scarp heights ranging between 60 and
120 m [35]. The scarp height distribution of each event comes in contrast with the attributed
volume distribution, which possibly indicates that the landslide was of an erosive nature and had
embodied a large amount of the basal sediments during motion. As such complex flow behaviour
cannot be easily captured numerically, in our simulations we model the initial volume of the
landslide to represent the estimated volume of the event. We simulate a landslide of Gaussian
shape, keeping the spatial extent fixed to match closely the extent of the scarps on the slope.
The width-to-length aspect ratio of the landslide is 0.84, a range of hmax = 60–120 m is selected
for the maximum thickness of the landslide corresponding, respectively to a volume range of
V = 198–396 km3.

As measurements for the rheological parameters are not available, the selection of the input
ranges was mostly based on the literature and the results of numerical experiments [45]. The
yield strength of large-scale muddy debris flows in the submarine domain may vary between
4000 and 15 000 Pa [50]. Numerical simulations of clay and silt-rich landslides have used a yield
strength varying between 10 000 and 25 000 Pa [58]. Elverhoi et al. [59] have provided numerical
simulations of the less cohesive (low clay sediment content) Grand Banks landslide with yield
strengths of 3000 Pa. The best-fit solution in the simulations of the BIG’95 debris flow results from
a flow with yield strength of 800 Pa, possibly due to the effect of hydroplanning or entrapment
of mobile materials under the flow [60]. The current numerical simulations show that small yield
strengths are required for the simulated flow to reach the observed run-out distance. A range of
100–10 000 Pa was initially selected for the yield strength of the landslide. After the first batch of
numerical experiments, the range of the yield strength was further reduced to 100–5000 Pa in an
attempt to optimize the results of the simulations by generating deposits that were in agreement
with the observed deposits and decrease the computational time.

Common values of basal friction angles of underwater landslides may range from 0◦ to 5–7◦
(for purely frictional models) [20]. Preliminary results of the numerical simulations in the RBSC
show that when the coefficient of turbulence is negligible, the best fit values for the approximation
of the run-out distance vary from 0◦ (for a Bingham fluid behaviour) to approximately 1.3◦ (for
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less cohesive landslides); apart from the yield strength the values of the other parameters do not
affect as significantly the flow run-out. A range of 0–1◦ was initially selected for the basal friction.
The range was further reduced to φbed = 0.0–0.5◦ for similar reasons as in the case of the yield
strength.

Numerical simulations of submarine flows indicate that when the landslide material is
characterized by high yield strength, the effect of the dynamic viscosity on the velocity and run-
out distance of the landslide during the post-failure stage is negligible [61,62]. Dynamic viscosity
may have a more significant effect on the velocity and the run-out length when the yield strength
is low. De Blasio et al. [50] give a range of dynamic viscosity μ = 100–1000 Pa s for large-scale
landslide deposits with run-out lengths ranging from 10 to 200 km. Common values used in the
numerical simulations of visco-plastic submarine flows do not exceed the value of 300 Pa s and
normally range from 30 to 300 Pa s for the simulation of clay and silt-rich sediments [58,61,63].
Considering that the sediment composition in the RBSC is a mixture of clay, silt and sand material
[42] a range of 10–300 Pa s was selected for the dynamic viscosity.

Iverson [64] notes that the recorded bulk densities of debris flows rarely fall outside a range
of 1800–2300 kg m−3. To account for a submerged landslide we use the apparent density of the
mixture: ρ = (ρls − ρw), where ρls is the bulk landslide density and ρw is the water density (see
also [20,65]). For the numerical simulations, we use a reduced density, ρ, for the landslide mass
where ρls ranges between 1800 and 2300 kg m−3 and ρw = 1000 kg m−3.

Drag can reduce the landslide velocities up to 25% and thus its contribution is significant in
the landslide process and tsunami generation [51,62]. As submarine landslides constitute complex
processes their maximum velocities are difficult to measure. Fine et al. [8] demonstrated that the
Grand Banks landslide transformed into a turbidity current that travelled as fast as 17–28 m s−1.
Numerical simulations of the Storegga Slide show best fit scenarios with maximum velocities
below 35 m s−1, likely ranging between 25 and 30 m s−1 [7]. Simulations of debris flows with the
rheology of a Bingham fluid can reach maximum velocities of 70 m s−1 [66]. Energetic landslides
in the Canary Islands may reach maximum velocities of approximately 150 m s−1, however, a
large part of the kinetic energy of the landslide evolves above water [12]. In the Hawaiian
archipelagos debris flows with peak velocities in the order of 80 m s−1 would be required for
the long run-outs [5].

A turbulence term leads to reduced maximum velocities and landslide acceleration and
can be of great use in the simulations with VolcFlow where the effect of the water drag is
not incorporated. In the code, ξ is a non-dimensional coefficient [47] related to the turbulence
coefficient initially introduced by Voellmy [52]. The turbulence coefficient has a large impact
on the run-out distance and the duration of the landslide. Increased values of ξ can result in
decreased run-out lengths and increased duration of the motion. Consequently, some of the
input rheological parameters such as the yield strength of the landslide and the basal friction
have to be significantly decreased to get a best-fit run-out length. The appropriate value of this
coefficient is not known with certainty and the range cannot be easily defined. Some sensitivity
analysis tests were implemented to select a range for the turbulence coefficient (figure 2a).
A range of ξ = 0.01–0.08 is selected that roughly corresponds to maximum flow velocities
of 30–80 m s−1.

The selected intervals of each individual calibration parameter are shown in table 1. In this
study, we present the results of 100 numerical experiments computed initially with VolcFlow to
simulate the slide and then one-way coupled with VOLNA to model the generated tsunami in
§6. To select the input parameters of each scenario the LHS design was used. The advantage
of the LHS is that it requires a small number of samples to explore the input space efficiently,
contrarily to grids for instance. The space-filling properties of LHS allow for more uniform
sampling of the parameters with a smaller number of samples. As a rule of thumb, about 10
values (well sampled) per parameter in a design are sufficient to get a good approximation
[67]. In this case, we are using the ‘maximin’ LHS design to select the input parameter values.
This space-filling technique maximizes the minimum distance between the points to optimize
sampling (figure 2b,c).
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Figure 2. (a) Computedmaximumvelocities forξ = 0.001, 0.0025, 0.02, 0.05, 0.07 and0.1 and varying yield strength andbasal
friction (μ = 10 Pa s and ρ = 1200 kg m−3). (b,c) Two-dimensional projections of the design points of the parameter values
from the LHS design. The colour scale represents individual index of the scenarios (from 1 to 100 scenarios). (Online version in
colour.)

Table 1. Input parameter ranges.

parameters hmax (m) T0 (Pa) φbed(◦) μ (Pa s) ρ (kg m−3) ξ

range 60–120 100–5000 0–0.5 10–300 800–1300 0.01–0.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. Numerical simulations and posterior distributions

(a) Simulations set-up for VolcFlow and VOLNA
For the numerical modelling, we combine data from two datasets. The bathymetry data are
retrieved from the EMODnet Bathymetry portal and the land elevation data from the GEBCO_08
GRID terrain model. For the landslide modelling, we make use of a digital elevation model (DEM)
with dimensions of 200 × 250 km and spatial resolution �x = 320 m, �y = 500 m. The landslide
simulations have a final time of Tfin = 5 h, with a stopping criterion when the maximum velocity
falls beneath the rate of 4 m s−1. Below that threshold the toe of the landslide stops advancing
and as the velocity decays, motion is constrained in the internal part of the flow. To simulate
5 h of landslide motion a timestep that may vary (�t = 2.5–5 s) to ensure numerical stability is
initially used and the results are saved every 5 s. These simulations are used in the calibration
against observations of the landslide deposits.

To model the complete tsunami life cycle, we use a larger DEM than for the landslide modelling
with dimensions of 800 × 1000 km. The data are smoothed and interpolated onto an unstructured
triangular grid. Varying mesh sizes have been tested for mesh convergence leading to an optimal
choice of a mesh with a spatial resolution of �x = �y = 450 m and 5 112 958 nodes. In the tsunami
simulations, we incorporate the first hour of the landslide motion as the first moments of sliding
are often the most critical for tsunami generation [3]. So, for a refined representation of the motion,
in the combined landslide–tsunami modelling, we rerun the numerical simulations in VolcFlow
with a timestep of 1 s as inputs to the tsunami model. The tsunami simulations have a duration of
2 h and �t = 0.1 s. To measure the free surface elevation, we introduce 80 gauges in the domain,
almost half of which are located offshore and the rest of them onshore, close to the coastline
(figure 3). We concentrate the vast majority of the gauges in the area around Belmullet in Co. Mayo
(figure 3b), as it is expected to be the first and probably most inundated area by the propagating
tsunami waves [45].

(b) Calibration results
The results of the landslide simulations show that there exists a large variation across the
computed run-out lengths of each landslide scenario (figure 4a). It is observed that a few of
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Figure 4. (a) Extent of the deposits of the numerical simulations with VolcFlow (blue lines) with respect to the observations of
the deposits on the bathymetric data from INSS (black line). The simulated deposits of some of the best fitting scenarios in terms
of run-out length are depicted (scenarios 45, 51 and 68, see also table 2). (b) Nine lines are considered (indicatedwith red colour)
parallel to the line between the centre of the landslide and the extent of the deposits. The kilometric distance of the simulated
deposits is measured along these lines. (c) The kilometric distance of the simulated deposits from the points in the slope region
(ζ (x) denotes the distance of the deposits from the slope and xi denotes the distance between the points on the slope). The
blue circles indicate the observations (distance of the field deposits from the slope). (Online version in colour.)

the computed run-out lengths fall roughly in agreement with the length of the deposits on the
seabed of the Rockall Trough (e.g. scenarios 45, 51, 68, figure 4a, table 2). The southern limit
of the deposits is relatively well represented. However, the vast majority of the simulations
fail to represent the northern lateral limit of the observed deposits. The simulated deposits
that exhibit a substantial run-out length spread much further than the limits of the observed
deposition, towards a northeast direction, without exceeding, though, the depositional limits of
older episodes of collapse (figure 4a).

For the Bayesian calibration, in addition to the selected values ti of the calibration parameters,
the input and output variables xi, YC

i , YF
i have to be supplied in the model as described in

equations (4.1) and (4.2). To do so, we consider the length of the depositional lobes. A set of nine
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Figure 5. The sample paths of the yield strength (a) and the turbulence coefficient (b) for 3 chains, 2500 MCMC iterations were
performed. (Online version in colour.)

Table 2. Parameters of a few best-fit scenarios.

scenario hmax (m) T0 (Pa) φbed (◦) μ (Pa s) ρ (kg m−3) ξ

45 93 794 0.12 133 1069 0.067
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51 111 539 0.21 52 1081 0.012
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68 95 170 0.26 219 1142 0.039
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

points on the grid, representing the true extent of the field deposits is used (figure 4b,c). From
those points we take nine lines of extent parallel to the bisector of the deposits. The distance of
those points from nine fixed points, xi, that fall on the perpendicular with the bisector line on
the slope region, represents the response observed in the field, YF

i . The distance of the simulated
deposits along the same lines of extent corresponds to YC

i . We note that the results of the model
may be sensitive to a different selection strategy, or different priors for the parameters (here
chosen uniform over the selected intervals as there is little scientific evidence that such parameters
ought to take particular values within these intervals in the first place). To obtain the posterior
distributions of the parameter space, we have specified 2500 MCMC iterations, using an initial
burn-in period of 1000 iterations.

Figure 5 shows the sample paths for three chains, with the MCMC iterations, corresponding
to two out of six calibration parameters. Convergence of the chains is observed mostly for two of
the calibration parameters: the yield strength and the basal friction but also to a certain degree for
density and thickness. For the rest of the parameters, convergence of the chains is not observed
with visual inspection, even when using more chains (10 chains) or running the chains for more
iterations (5000 MCMC iterations). The resulting posterior distributions (represented in figure 6,
in the form of histograms) allow us to deduce the optimal ranges of the calibration parameters.

The histogram of the yield strength, T0, is positively skewed and appears to be very
constrained, with values located in the lower part of the interval. The posterior distribution
shows that the optimal values are lower than 1000 Pa (figure 6a). Values above this range do
not appear to be optimal for obtaining run-out lengths that match with the observations. The
posterior distribution of the basal friction also appears constrained within the interval (figure 6b).
The shape of the histogram indicates that the optimal values range around the value of 0.2◦ and
within a broader range of nearly 0.1–0.3◦ (figure 6b).

From the posterior distributions of the turbulence coefficient, ξ , and the dynamic viscosity, μ,
optimal value ranges cannot be drawn with certainty. Indeed, the distributions of the variables
exhibit a relatively uniform pattern (figure 6d,e). The posterior distributions of the apparent
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density, ρ, and the maximum thickness of the landslide, hmax, appear to be negatively skewed
(figure 6e,f ). The optimal values for both cases are concentrated towards the upper boundary of
the intervals (figure 6f ). The shape of the histograms yield that the optimal values for the density
are larger than 1000 kg m−3 and for the thickness larger than 90 m.

The predictions of the real process, ζ (xi) = η(xi, θ ) + δ(xi), are shown in figure 7a. The
predictions derived only from the emulation of the model are denoted with red colour, the
predictions including as well the estimated bias are also displayed (green colour). Furthermore,
95% credible intervals are plotted as black dashed lines. They capture the overall uncertainty
arising from the uncertainties in the inputs of the simulations and the various uncertainties in the
fit of the emulator. The credible intervals of the predictions are rather wide around some of the
observation points. A few observation points, especially the ones located on the lateral extent of
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the deposits, are not captured by the predictions. The unbiased prediction of the process, which
is the sum of the best fit of the model for the optimal values of the input parameter and the bias,
appears also to interpolate the observations. Note that there is no clear improvement due to the
addition of the bias here. There are two possible explanations. Either there is no bias due to no
clear pattern in the difference between the model and the observations after calibration or there
is a lack of information that prevents the estimation of the discrepancy. The inclusion of more
depositional extents may not help because these are not informative enough due an underlying
lack of physical conditions and rather large observation errors.

As we actually infer a joint multivariate distribution of the input parameters (in six
dimensions), we now inspect some two-dimensional projections of some combinations of inputs.
The density plot of the basal friction is presented as a function of two other calibration parameters:
yield strength and landslide thickness (figure 7b,c). There is an inversely proportional relationship
between the basal friction and the yield strength in comparison with the rest of the parameters.
It appears that to simulate the observed length of the landslide deposits, the yield strength
must decrease when the basal friction increases and vice versa. Indeed, this physically makes
sense as the two parameters influence the resulting landslide extent in a similar way. Regarding
the thickness of the landslide, the density of the plot accumulates in the higher boundary of the
thickness interval and particularly in values between 110 and 120 m. The density plots of the
remaining calibration parameters (ξ , μ and ρ) are also constrained by the optimal range of φbed.

(c) Tsunami simulations
The results of the numerical simulations of the generated tsunamis, using the uncalibrated set of
100 runs from the LHS, show a large variability in the amplitude of the waves (figure 8). When
the tsunamis start propagating away from the source, the wave forms tend to follow a similar
pattern and the wave peak arrival times seem to converge (gauges 04; 62). This is explained by
the dependency of the tsunami wave speed on the depth of the basin, which remains constant
during the simulations. The wave gauges located close to Belmullet are the first onshore gauges
to measure the free surface elevation, approximately 50 minutes after the tsunami generation
(figure 8c). The maximum water surface elevation varies over a range of 2.7 to 24.4 m at gauge
1, whereas the tsunami run-up at gauge 62 ranges between 0 and 15.4 m. The landslide scenario
resulting in the maximum recorded tsunami amplitudes is scenario 51. The wave amplitudes
resulting from landslide scenarios 45, 51 and 68, which are the ones closer to the observed
deposition, are also shown (figure 8).

As VOLNA is an NSWE solver, frequency dispersion of landslide tsunamis is not accounted
for. The impact of frequency dispersion is typically visible on landslide tsunami propagation
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[11,12,22,68]. Dispersive effects often influence the form of the wave train and the coastal run-
up [14,22,24,27,68]. During generation, the length-to-depth ratio of the landslide influences the
wave components of the tsunamis [14]. Dispersive effects are enhanced by the shorter wave
components of landslide tsunamis and the frequently dipole shape of the source which leads
to radial spreading of the tsunamis during propagation [14,22,69,70].

Computations of landslide tsunamis at the Ormen Lange/Storegga area made with a non-
dispersive code show good correlation between the maximum free-surface elevations, and the
product of the landside volume with the initial acceleration, or the product of the volume with
the maximum velocity [9]. On the other hand, another case study in the same area shows that
for a landslide of smaller volume the dispersive effects are much larger. The results show a 25%
difference in the maximum surface elevation which decreases immediately after the landslide has
stopped [9,71].

The effect of dispersion is also influenced by main landslide characteristics such as the
landslide acceleration and velocity, and the landslide length [71]. Dispersive effects become more
important with increasing landslide acceleration and velocity; on the other hand, dispersive
effects become less important with increasing landslide lengths [71]. For long landslides (as
opposed to short, impulsive events), the time evolution of the landslide is controlled by the
landslide acceleration which in sequence influences the tsunami generation and the degree of
dispersion [14]. During large, strongly subcritical motion the dispersive effects can become minor
[71]. Such an example is the Storegga slide where the slide characteristics may render the effect of
dispersion insignificant for distances much larger than 200 km away from the source [7,22,71].

Given the variety of conclusions on dispersion, Glimsdal et al. [22] have introduced
a dispersive parameter, τ , to assess the importance of dispersion on the tsunami wave
characteristics. The dispersive parameter can be used as a tool for indication rather than an exact
calculation. It is given by

τ = 6z2
oL

λ3 (6.1)

where zo is the equilibrium depth, L the distance from the source and λ the wavelength.
For earthquake tsunamis, the source width (described as the width of the fault when the point

of observation is lateral to the fault) can be used to characterize the importance of dispersive
effects on the waves. For landslide tsunamis, the landslide transformation during motion and
uncertainties linked with the nature of the failure, complicate the process. Thus, λ, in that case
can be derived from the newly generated wave as twice the distance between the first crest of the
wave and the point in the front of the wave where the elevation is at 10% of the crest’s height [22].
The strong influence of the source width/initial wavelength on the value of τ and thus on the
dispersive effects becomes clear from equation (6.1). Based on observations from different cases,
Glimsdal et al. [22] have concluded that for τ < 0.01 the effect of dispersion is small but it becomes
non-negligible when τ is greater than 0.1.

The estimated volume of collapse in the RBSC is 400 km3, the width of the failure area in the
slope region is approximately 70–80 km [42]. The collapse can be considered of large dimensions
and we thus attempt to provide a rough estimation of the dispersive parameter as described
in equation (6.1). To do so, we take a transect from the source region up to the first point of
inundation in the Mullet peninsula (figure 9a). This distance is approximately 350 km and the
average depth between the two points is found zo ≈ −2 km (figure 9c). Following [22], we consider
scenario 68 at t = 240 s, the wavelength is estimated ∼60 km (figure 9b). At a distance of L = 100 km
from the source region, the dispersive parameter becomes 0.01 and for L = 350 km τ becomes
0.039. These values reveal that the effect of dispersion in the beginning of the wave generation is
small and becomes moderate as the waves propagate towards the shoreline.

The primary aim of this work focuses on the methodology that can be used to account
for uncertainty quantification and sensitivity analysis on a real case study. As a consequence
dispersive effects were not further investigated. However, comparative studies will be the focus
of future work to accurately assess the geophysical aspects of landslide tsunamis in the region.
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Figure 9. (a) The computational domain at t = 240 s, the white line indicates the distance between the source region and the
first point of inundation on the coast. (b) Transect of the free surface elevation. (c) Transect of the bathymetry (black) and the
free surface elevation (blue). (Online version in colour.)

7. Statistical emulation of the coupled process
One of the advantages of using a statistical emulator as a substitute for a deterministic model is
the ability to access in a faster and less computationally expensive way the results of otherwise
costly numerical simulators. Although a statistical surrogate should not be treated as a complete
replacement of the simulator, it has an indisputable value for uncertainty quantification purposes.
In this study, we emulate the coupled process of submarine sliding and tsunami generation in
the RBSC. We utilize known data from computer experiments to build a GP that can be then
used as a surrogate of the computational process. Kriging methods are used in geostatistics for
interpolation and used here to predict the values of the GP outputs as well as corresponding
uncertainties, with many implementations (here [72]). The principal concept of kriging is to use
the weighted average of the neighbouring points (in space for geostatistics, or here in the input
space of the computer model) in order to estimate the value at any desired point in the input
space. The set of the responses corresponds to the maximum tsunami amplitude computed for a
selected wave gauge: we carry out this study gauge by gauge. Our main objective is to use the
emulator in order to make predictions of the maximum water surface elevations at a specific wave
gauge for any set of unknown parameter values that fall within the selected range.

Consider a set of m design sites in the input space x = [x1 . . . xm]T and y = [y1 . . . ym]T responses
with xi ∈ Rn, yi ∈ Rq. Using the design points in the input space and the corresponding response,
a GP is tuned to mimic the input–output relationship and the kriging model is able to calculate
predictions anywhere in the input space using the GP structure. Both the mean function (which is
in general a regression onto other functions) and the correlation function have to be set to fix the
GP. However, the mean is often set to zero when there is not enough evidence of a link to other
functions; in that case the correlation satisfactorily captures the variability. The key objective is,
based on the provided information, to build a GP approximation model which can be later used
to predict the physical process using kriging. We give a brief description of the approach. Given
a n-dimensional input x, subset of Rn, the deterministic response y(x) ∈ R can be written as

y(x) = F(β, x) + z(x), (7.1)

where F(β, x) = [f (x)]Tβ, f (x) = [f1(x) . . . fp(x)] is the regression model. The approximation error is
denoted by z. The approximation error is assumed to behave as a GP in the region of interest; its
probability distribution has zero mean and finite variance with a particular covariance structure.
The approximation model of the fitted response ŷ(x) can be described as a function of the
regression model F and a fitted random process ẑ that models z

ŷ(x) = F(β̂, x) + ẑ(x). (7.2)
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A mean function of F = 0 is chosen here: no regression term F is present. Indeed, we found that
trying to include such terms was not beneficial here; note that it could be beneficial in other
settings [31]. The covariance function between two n-dimensional trial sites x and x′ is given
by

E[z(x)z(x′)] = σ 2R(ϑ , x, x′), (7.3)

where σ 2 is the process variance and R(ϑ , x, x′) is the correlation model of the fitted GP, which is
a function of the correlation function parameters ϑ .

For the set of x = [x1 . . . xm]T design sites and Y responses, the vector of correlations between
inputs and the predicted location x becomes

r(x) = [R(ϑ , x1, x) . . . R(ϑ , xm, x)]T, (7.4)

whereas the matrix of correlations across the input space, using the initial design, is simply

R = [R(ϑ , xi, xj)], i, j = 1, . . . , m. (7.5)

To build the model and make predictions for our case, we use a set of m input parameters
corresponding to m = 100 scenarios and Ym responses. The set of the inputs consists of the
values of the six parameters (hmax, T0, φbed, ξ , μ and ρ) used in the simulation of the numerical
experiments and the Bayesian calibration. To build the predictor, a correlation model and the
appropriate choice of correlation function parameters ϑ are required. We select a Gaussian
correlation model, R(ϑ , x, x′) =∏n

i=1 exp(−ϑi(xi − x′
i)

2), where i runs across six dimensions of
inputs. The model was chosen for its flexibility, broad generality, and evidence of a satisfactory
behaviour in various contexts. Our preliminary analyses showed little influence of these choices
here. In our case with no regression function, the kriging predictor is simply given by

ŷ(x) = r(x)TR−1Y. (7.6)

The mean squared error (MSE) of the kriging predictor can be also computed as

MSE = E[(ŷ(x) − y(x))2] = σ 2(1 − rTR−1r). (7.7)

For the selection of the optimal values of the correlation parameters, the lower and upper
boundaries of ϑ are selected to be 0.001 and 10 (as all parameters are normalized). We
use a maximum-likelihood (ML) approach to estimate ϑ . As numerical maximization can be
challenging, we carry out this maximization for several initial starting points. To homogeneously
draw the initial starting points for ϑ , we use a small LHS to create a different set of 20 initial
scenarios. The comparisons show that there is some variability in the absolute difference between
the predictions and the true response influenced by these starting points for ϑ if we had chosen
these starting points as guesses.

Hence, we run ML to obtain a final estimate for ϑ∗ repeatedly picking the 20 starting points ϑ ,
in order to allow the maximization under an exploration–exploitation paradigm. After a limited
number of runs, the final estimate ϑ∗ converges towards a certain value for all starting points
(most of them yield a similar value). To evaluate each of these final estimates, we do cross-
validation tests with the implementation of LOO diagnostics. The governing principle in LOO
is to estimate ϑ∗ each time neglecting one out of 100 design sites and compare the stochastic
predictions with the true deterministic response of the process. We compute our LOO diagnostics
by comparing the absolute difference between the predictions and the true process. We select the
value of ϑ∗ that results in the best LOO prediction (smaller absolute difference between stochastic
predictions and deterministic response for a fixed set of inputs) among our 20 possible values.
We eventually pick ϑ = [0.0321, 0.0139, 1.2427, 0.001, 0.001, 0.1498].

By setting all the above parameters, the emulator is built and can be therefore used for
predictions. To quantify the uncertainty governing the tsunami amplitudes generated by the
examined landslide example in the RBSC, we make use of the results of the Bayesian calibration.
Taking as input the values of the calibrated parameters from the posterior distributions (figure 6),
we make predictions for 4500 scenarios. The predictions take a very small amount of time (t ≈ 1 s)
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Figure 10. (a,b) Distributions of the emulated (fast surrogate predictions) maximum free surface elevation in gauges 01 and 62
(gauge locations shown in figure 3b). Emulated predictions for n = 4500 scenarios whose distributions are specified from the
calibration of the landslide simulations against observations of deposits. (Online version in colour.)
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Figure 11. (a–f ) Scatter plot projections of the maximum tsunami amplitudes at gauge 01 with respect to the increase or
decrease in the value of each individual calibration parameter. The black squares represent the results of the 100 numerical
simulations at gauge 01. The red dots denote the results of the 4500 emulated predictions at the same gauge. (Online version
in colour.)

to yield 4500 expected maximum tsunami elevations at each desired wave gauge. The results
constitute a probabilistic statement about the maximum water surface elevation at this specific
location. The distributions of the predictions are presented in the form of histograms for the
offshore gauge 01 and the onshore gauge 62 (figure 10, see also figure 3).

The histograms of the maximum free surface elevation in gauges 01 and 62 exhibit a positively
skewed probabilistic distribution. At gauge 01, the majority of the predictions give maximum
tsunami amplitudes ranging between 7 and 12 m (figure 10a). The highest predicted tsunami
amplitudes may exceed 15 m in more infrequent cases. At gauge 62, the most probable maximum
run-up is approximately 8 m. The majority of the predicted maximum run-up heights range
between 7 and 10 m and they rarely exceed a value of 16 m (figure 10b). Following the same
process, predictions and assumptions for the rest of the gauges can be made with the aid of the
statistical emulator.
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The emulation allows some further exploration of the sensitivity of the maximum tsunami
amplitudes to the varying input parameters due to the possibility of running the model at
many more locations in the input space. Gauge 01 is selected to illustrate the sensitivity analysis
(figure 11). The maximum tsunami amplitude variations with respect to variations in the values
of the calibration parameters are plotted, deriving from the 100 numerical simulations, the
emulation, and the 4500 predictions. Note that in comparison with the initial 100 numerical
simulations, the kriging predictions are constrained within the optimal ranges of the parameters
as seen clearly in figure 11a,b.

The plots show an almost linear relationship between the maximum free surface elevation and
the maximum landslide thickness (figure 11f ). However, the relationship between the maximum
free surface elevation and the turbulence coefficient appears to be slightly nonlinear (figure 11c).
We note that the tsunami amplitude increases when hmax increases and ξ decreases. It is likely
that a similar pattern would be observed for the added mass coefficient as it also contributes to
the kinetic energy of the landslide. These results are in agreement with the up-to-date scientific
knowledge that the features of landslide tsunamis depend, among other, on the thickness and the
kinetic energy of the landslide [1]. The rest of the calibration parameters appear to be much less
influential.

8. Conclusion
In this study, we implemented a Bayesian calibration to explore the optimal values of the landslide
parameters used in the numerical modelling of submarine sliding and tsunami generation in
the RBSC. A comprehensive statistical emulation of the one-way coupled numerical process was
then employed to explore the probabilistic maximum tsunami elevation at specific locations. The
possible tsunami amplitudes generated by a submarine slope collapse in the lower slope region
of the Rockall Bank were estimated with the use of the emulator.

The posterior distributions of the parameters, resulting from the calibration, show that the
yield strength and the basal friction of the landslide can affect critically the run-out length
of the flow. The optimal values of both parameters appear to be very constrained within the
initially attributed range (T0 < 1000 Pa and φbed ∼ 0.2◦) in order to match the observed run-
out. The density plots show an inversely proportional relationship between the yield strength
and the basal friction. The calibrated maximum slide thickness is likely to be within the higher
values of the initial range: hmax > 100 m are likely to help match modelled landslides to the
desired run-out length. The apparent density is also negatively skewed with optimal values
higher than 1000 kg m−3. The posterior distributions of the turbulence coefficient and the dynamic
viscosity show a relatively uniform distribution. No significant effect of the two parameters on
the simulated run-out of the flow can be deduced from the calibration.

Within the limitations of our modelling assumptions, we employed the emulator to make
predictions of the maximum tsunami amplitudes using the posterior distributions of the
calibration parameters. In total, predictions of 4500 cases were made in only a few moments of
time (t ≈ 1 s). The time of the predictions is excessively fast when compared to the computational
speed of one run of the combined models (roughly 11–13 h for each VOLNA run with 2
GPUs). The probabilistic distributions of the predicted maximum tsunami amplitudes were
presented for two locations: an offshore gauge close to the generation region (gauge 01) and
an onshore gauge in the Mullet Peninsula (gauge 62). The predictions at gauge 01 show
that the tsunami amplitudes of a similar landslide would more likely vary between 7 and
12 m. Likewise, at gauge 62 the predictions show that although cases of higher tsunami run-
up (>10 m) are not excluded, they exhibit a less common occurrence rate in comparison to
lower run-up heights (between 7 and 10 m). Similar predictions can be made for the rest of
the gauges.

Thanks to the large number of fast and accurate predictions the emulator can be used to
perform sensitivity tests. A sensitivity analysis of the maximum water surface elevation with
respect to the varying parameters shows that variations in the simulated and predicted tsunami
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amplitudes are strongly linked to two calibration parameters: the landslide thickness and the
turbulence coefficient. In more detail, the tsunami amplitude increases when the landslide
thickness increases and the turbulence coefficient, hence the maximum velocity and possibly
initial acceleration of the landslide, decreases. The rest of the calibration parameters (yield
strength, basal friction, dynamic viscosity and apparent density) do not appear to have a
significant effect on the magnitude of the tsunami amplitudes. As so, to achieve the optimal run-
out length of the flow the yield strength and the basal friction are critical whereas the turbulence
coefficient does not hold such an important role. Different rheological parameters can thus affect
the magnitude of different processes and their influence should not be disregarded.

We note that building a statistical surrogate of a deterministic code is not a replacement
for scientifically sound simulations of a physical process in the first place. It forms a verified,
fast and inexpensive technique to make predictions of the process and quantify uncertainty,
particularly in cases where a large number of simulations has to be considered and it is difficult or
computationally expensive to run the codes. In most instances, the results are only applicable for
the specific case examined. A diverse parameter selection, or an alternative scientific approach
to the problem, will possibly generate different results and another calibration and emulation
should be performed on a case-by-case situation.

To perform the calibration and the emulation, we used data from the RBSC which were
available to us during the process. As scientific research advances day by day with technological
progress and the results of new studies, new information for the event can be revealed. Ongoing
research in the subject shows that the deposits of the most recent event have a slightly different
shape than the one we used in this study [42]. As the main objective was to focus on the statistical
process used for the calibration and emulation of a real case, such data are not yet incorporated.
A future research topic would be to incorporate these uncertainties; there is scope for deepening
our investigation to include the latest updates.

This work forms one of the first attempts to study numerically slope failure in the RBSC,
and built a statistical emulator of a real case study for uncertainty quantification and sensitivity
analysis. Driven by this, future research endeavours may focus on different approaches to study
parametric variability. In addition, to adequately account for the physics of the phenomenon, a
comparison and verification of the modelling strategy employed here with the results of fully
coupled modelling of the event, including incorporation of the landslide tsunami dispersive
features, should also be considered. The construction of extended hazard maps for the area
could also be useful for future hazard assessments. To do so, a slope stability assessment and
a different meshing strategy in the modelling, with mesh refinement on the coastal areas, would
be of critical importance. Overall, the approach followed in this study forms a tool to study a
certain parametric variability to understand the uncertainty governing submarine sliding and
tsunami generation in the RBSC. It can be used as the basis for future probabilistic assessments of
landslide-generated tsunamis in other regions of the world prone to such events.
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