
Unprecedented thiacalixarene fucoclusters strong 

inhibitors of Ebola cis-cell infection and HCMV-gB 

glycoprotein/DC-SIGN C-type lectin interaction

Marwa Taouai,†,§,£ Vanessa Porkolab,††,£ Khouloud Chakroun,†,§,£ Coraline Cheneau,‡,£  Joanna 

Luczkowiak,¥,£ Rym Abidi,§ David Lesur,† Peter J. Cragg,π Franck Halary,‡ Rafael Delgado,¥ Franck 

Fieschi, ††* Mohammed Benazza†*

†Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), 

Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens Cédex, France. E-mail: 

mohammed.benazza@u-picardie.fr. 

§Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances 

Naturelles et à l’Environnement (LACReSNE) Unité «Interactions Moléculaires Spécifiques», Université 

de Carthage Zarzouna-Bizerte, TN 7021, Tunisia. 

††Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France. E-mail: 

franck.fieschi@ibs.fr

‡1. Centre de Recherche en Transplantation et Immunologie (ou CRTI) UMR 1064, Inserm, Université 

de Nantes, Nantes, France; 2. Institut de Transplantation Urologie Néphrologie (ou ITUN), CHU Nantes, 

Nantes, France

¥Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), 

Madrid 28041, Spain

π School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, UK.

KEYWORDS. Ebola virus, EBOV, HCMV, DC-SIGN, Thiacalixarene, Calixarene, Ugi-4CR.

Page 1 of 31

ACS Paragon Plus Environment

Bioconjugate Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Peter Cragg


Peter Cragg


Peter Cragg




ABSTRACT: Glycan–protein interactions control numerous biological events from cell-cell recognition 

and signaling to pathogen host cell attachment for infections. To infect cells, some viruses bind to immune 

cells thanks to DC-SIGN (dendritic cell [DC]-specific ICAM3-grabbing non-integrin) C-type lectin 

expressed on dendritic and macrophage cell membrane, via their envelope protein. Prevention of this 

infectious interaction is a serious therapeutic option. Here, we describe the synthesis of first water-soluble 

tetravalent fucocluster pseudopeptide-based thiacalixarene 1,3-alternate as viral antigen mimics designed 

for the inhibition of DC-SIGN, to prevent viral particle uptake. Their preparation exploits straightforward 

convergent strategies involving one pot Ugi four-component (Ugi-4CR) and azido-alkyne click chemistry 

reactions as key steps. Surface plasmon resonance showed strong inhibition of DC-SIGN interaction 

properties by tetravalent ligands designed with high relative potencies and β avidity factors. All ligands 

block DC-SIGN active sites at nanomolar IC50 preventing cis-cell infection by Ebola viral particles 

pseudotyped with EBOV glycoprotein (Zaïre species of Ebola virus) on Jurkat cells that express DC-

SIGN. In addition, we observed strong inhibition of DC-SIGN/human cytomegalovirus (HCMV)-gB 

recombinant glycoprotein interaction. This finding opens the way to the simple development of new 

models of water-soluble glycocluster-based thia-calixarene with wide-range antimicrobial activities.

INTRODUCTION

The ability of viruses to resist traditional drugs is a crucial problem in current antiviral therapy.1,2 The 

widely approved antiviral drugs act intracellularly. Unfortunately, their toxicity and the rapid mutation of 

viruses lie behind the development of viral drug-resistance, strongly decreases therapeutic relevance.3 

This dramatic crisis in health control is exacerbated by severe co-infections by different germs in 

immunocompromised patients (e.g. Mycobacterium/HIV-1,4 HCMV/HIV-1,5 etc.). Consequently, the 

design and straightforward access to novel efficient drugs with a broad spectrum of antimicrobial action 

regardless of the pathogen's structural nature or resistance range, is urgently required. It is possible to 

develop such drugs by targeting the neutralization of common extracellular infectious mechanisms such 
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as glycan-protein interactions.6,7 Viruses (e.g. HIV-1,8 HCMV,9 Ebola,10 SARS coronavirus, dengue11), 

along with some bacteria and parasites (e.g. Mycobacterium,12 Leishmania13), use this kind of interaction 

for their attachment to host cells, a preliminary step for their uptake with the view of subverting 

intracellular biosynthetic processes to their replication.14 Typically, the tetrameric transmembrane DC-

SIGN C-type-lectin (dendritic cell [DC]-specific ICAM3-grabbing non-integrin) that is expressed at 

innate immune system macrophage and DC membranes, serves as a key receptor for viral antigen-

containing carbohydrates (e.g. DC-SIGN/viral glycoproteins such as HIV-1-gp120, HCMV-gB, Ebola-

GP etc.).6,7,14,15 It is a key target that has stimulate the design of inhibitors as new tools to overcome 

attachment of pathogen to host cells to hinder the infectious process. Inspired by some effective 

monomeric inhibitors of enzymes (e.g. Glycosidases, glycosyltransferases etc.),16, 17,18,19 small non-

carbohydrate molecules as µ-molar IC50 inhibitors of DC-SIGN have emerged (e.g. Quinoxalinone 

inhibitors…).20,21 Glycomimetics compounds, mimicking natural ligand but having better stability, 

represent also popular alternative extensively explored now to target C-type lectin.22,23,24 As wide range 

of lectins,25,26 DC-SIGN is a multimeric protein naturally endowed with moderate affinity for specific 

monovalent sugars (e.g. only millimolar IC50 inhibition with L-fucose).27,28 However, suitable 

multipresentation of sugars create synergistic multiple binding events that enhance the avidity (apparent 

affinity).28,29 Thus, the use of multivalent viral glycan mimics to target DC-SIGN is a virustatic option 

that has triggered the design and assessment of a large panel of potentially relevant multivalent scaffolds 

such as mannosylated polymers,30 proteins,31 peptides,32 dendrimers,33,34,28 gold nanoparticles,35 

fullerene,36 and recently, carbon nanotube hybridized fullerene.37 The models designed strongly inhibit 

DC-SIGN but their development often uses uncommon and sophisticated building blocks that are difficult 

to handle. p-tBu-thiacalixarene is one of the cheapest platforms used for many applications including the 

detection and separation of biologically important ions, and the synthesis of self-assembled coordination cages 

or multinuclear complexes.38 However, this molecule is under-exploited in the multivalent glycocluster field, 

despite its availability and simple transformation.39 Here, we describe the first method for straightforward 

synthesis of fucocluster 1 and 2 based on p-tBu-thiacalixarene 1,3-alternate (Figure 1A). We rationalized 
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their design following data in the literature related to the structure of DC-SIGN, the preference basis of 

L-fucose rather than that of the widely used D-mannose epitope, and water-solubility. The last point is 

particularly important as it represents a challenging problem when thiacalixarene and their congeners are 

used as scaffolds. First, we assessed both fucoclusters 1 and 2 as DC-SIGN inhibitors by surface plasmon 

resonance (SPR) technology using BSA-mannotriose functionalized surface (BSA-manα1-3[manα1-

6]man). Such surface allows addressing DC-SIGN/polymannose surface interaction and is a mimic of the 

DC-SIGN binding to HIV-1-gp120, which harbor high mannose glycans. Then, we evaluated binding 

inhibition of DC-SIGN/HCMV gB recombinant glycoproteins. Finally we assessed both ligands with 

respect to DC-SIGN-dependent host cell entry and infection by experimental Ebola virus viral particles 

pseudotyped with the recently emerged Zaïre species (EBOV). For impact evaluation of the scaffold 

topology, we synthesized and similarly assessed p-tBu-calix[4]arene fucocluster 3, which has a cone 

conformation (Figure 1B).

RESULTS AND DISCUSSION

Rationalized design and synthesis of glycoclusters 1, 2 and 3. Like its calixarene congener,40 

thiacalixarene is highly hydrophobic.41 This compromises biological assessment in aqueous media.42 

Using calixarene analogues, this problem could be solved when a glycoconjugated alkyl spacer was linked 

to p-tBu-calix[4]arene via a peptide moiety.43 Consequently, we targeted glycoconjugate 1 and 2 based 

p-tBu-thiacalix[4]arene 1,3-alternate linked to a pseudopeptide-bearing spacer (Figure 1). The four 

pseudopeptide sequences and the four fucose units should be synergistically favorable to the water-

solubility of glycocluster 1, and largely to that of glycocluster 2, due to the hydrophilic 

glycylglycylhydroxamic acid groups. As for iron chelation, the hydroxamic acid groups could also play a 

role in iron depletion, as another therapeutic attack strategy, against iron-dependent microbes.44 In 

contrast, DC-SIGN have affinity for D-mannose and L-fucose in a Ca2+-dependent multivalent fashion, 

and both sugars could be considered natural epitope of DC-SIGN. Two adjacent sites of the four 

carbohydrate recognition domains (CRDs) of DC-SIGN arranged on a single face are separated by about 
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38 to 40 Å, whereas opposite sites lie about 61 Å apart (Figure 2A).45 Following the interactions of L-

fucose in fucosylated glycans, and mannose in high mannose with DC-SIGN, the predominant binding 

could be chelation and/or statistical binding rebinding. This ensure a high density of sugars around CRDs. 

Hydroxyl groups in position 3 and 4 of L-fucose or D-mannose are the main contributor to binding 

interactions,8 which probably explains non-selective L-fucose and D-mannose recognition. To avoid, or 

at least diminish, the inhibition of some mannose specific lectins, such as langerin,46 involved in the 

vaginal mucosa in the defense against HIV-1 infection, we decided to investigate L-fucose. Without a 

cooperative effect of other neighboring sugars in heteroglycocluster systems, langerin only recognizes 

this sugar inefficiently. Other mannophilic lectins of the innate defense system, such as the mannose 

binding lectin (MBL),47 could also be saved from inappropriate inhibition. Further reasons to advocate L-

fucose use include its possible synergistic involvement as a carbohydrate-specific signaling molecule 

through specific binding to DC-SIGN. This provides action against invading pathogens via the initiation 

of T-helper cell differentiation.48 Finally, the length of the spacer arm was rationalized via molecular 

mechanic (MMFF) prediction of the greatest possible separation between two fucose units (See SI, Figure 

S31). We stated that approximately 50 to 55 Å should be enough to cover the highest distance of about 

40 Å between two adjacent CRDs by folding, in the event of the chelation mechanism.45 Furthermore, 

fucoclusters 1 and 2 could be considered an assembly of two bivalent systems separated by a rigid core 

(Thiacalixarene). This echoes other reported rigid multivalent glycoclusters (e.g. the rods of Bernardi et 

al49). Both ligands also have the possibility of addressing two directional binding approaches toward DC-

SIGN (Figure 2B), which should be favorable statistically for efficient interaction with DC-SIGN. Taking 

into account all these structural considerations, we targeted cooperative effects to increase the strength of 

binding to DC-SIGN of the ligands we examined.
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A. Targeted thiacalix fucoclusters 1,3-alternate 1 and 2
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Figure 1. New designed fucoclusters 1, 2 and 3 for inhibition of DC-SIGN dependent viral infections.

Figure 2. A. Distances between CRDs in DC-SIGN; B. Binding approaches to DC-SIGN of thiacalixarene 

fucoclusters 1 and 2; Distances between two fucose units were estimated via molecular mechanic 

(MMFF) prediction (See SI, Figure S31).

We synthesized fucocluster 1 and its tetrahydroxamic acid derivative 2 following the convergent strategy 

described in scheme 1. For the multivalent presentation of L-fucoside moieties, we used the previously 

described tetrachloroalkyloxy-p-tBu-thiacalixarene 1,3-alternate 5 that is readily obtained in 93 % yield 

from the commercially available cone conformation of p-tBu-thiacalix[4]arene 4 (path 1).50 The 
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7

conventional azidation of molecule 5 gives the tetra-alkoxyazido-p-tBu-thiacalix[4]arene derivative 6 (in 

94% yield) as the sugar acceptor. This can easily be transformed into a glycoconjugate via a click 

chemistry reaction.39 To tailor the required distance between two sugars in an elongated conformation, 

we used a coupling association of propargyl amine and the commercially available 6-bromo-hexanoic 

acid obtained via the Ugi four-component reaction (Ugi-4CR). Following pathway 2, the one pot Ugi-

4CR took place in methanol at room temperature by mixing together amine and paraformaldehyde to form 

an imine intermediate. This reacts subsequently with bromo-carboxylic acid and isocyanatoacetate to give 

the propargyl-glycylglycinate derivative 7 in 67% yield following a well-known mechanism.51 The latter 

was fully characterized to be a mixture of rotamers identified by 13C NMR spectroscopy using three pairs 

of signals that are representative of carbonyl groups in a ratio of about 1/0.5 at 173.59/173.22, 

170.05/169.89 and 169.07/168.53 ppm.

The subsequent click chemistry of the tetraazido-thiacalixarene 6 with the Ugi adduct 7 was carried out 

successfully under CuSO4.5H2O/Na-ascorbate with a mixture of THF/MeOH/tBuOH under conventional 

heating, to give tetrabrominated glycylglycinate thiacalixarene 8. Due to the four glycylglycinate peptide 

moieties, this hybridized thiacalixarene seemed to demonstrate a strong interaction with acidic silica gel 

for migration. Consequently, neutralization with 1% NEt3 as the base was necessary to separate molecule 

8 in a 58% yield using an acetone/ethylacetate/cyclohexane mixture as the eluent. Subsequent azidation 

under conventional conditions (NaN3, DMF, 90 °C) gave an excellent yield (92%) of the tetrazido 

pseudopeptide derivative 9. To obtain the desired compound, we tried two pathways: firstly, we gathered 

the known per-O-acetylated-1-O-propargyl-α-L-fucoside 10 and the tetraazidothiacalixarene 9 under 

click chemistry conditions using CuSO4.5H2O/Na-ascorbate in a mixture of THF/H2O/tBuOH under 

conventional heating or using CuI/DIEA in acetonitrile under heating by microwaves. The last conditions 

are the preferred ones, since the reaction was rapid and gave a clean crude product containing 

fucoconjugate 11 as the main compound. This was separated in good isolated yield (62%), upon 

chromatography on neutralized silica gel. This fuco-tetramer is well-characterized by MS-ESI (m/z = 
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1853.1 [M+2Na]2+) and NMR spectroscopy. The 13C NMR spectroscopy for instance shows as main 

feature, the existence of rotamers, a consequence of conformational equilibrium that is widely 

encountered in peptoïde derivatives.52 This behavior has no magnetic impact on fucose carbon atoms, 

whose signals are all represented by a single peak in the 13C-spectrum. This facilitates their analysis (See 

SI, Figure S9). Unfortunately, a subsequent acetolysis reaction gave an unexpected mixture. This negative 

result arose from the second alternative reaction that uses the free O-propargyl α-L-fucoside 12 in the 

click chemistry step. Using CuI/DIEA in acetonitrile under microwave heat for 30 min, we obtained the 

targeted glycocluster 1 at a yield of 53 % from C18-reverse-phase chromatography with a suitable 

H2O/CH3CN eluent gradient. To transform the attached ester functions into hydroxamic acid groups that 

are more favorable to solubility in water, we reacted cluster 1 with a large excess of aqueous 

hydroxylamine and a catalytic amount of potassium cyanide in methanol, at room temperature. The cluster 

2, which derived from this was easily obtained at a yield of 54% after C18-reverse-phase chromatography 

with an H2O/CH3CN eluent gradient. Both compounds were characterized by NMR (See SI) and LC-MS 

that shows high purities and respective parent ions at m/z = 1578.98 [M+2H]2+ and m/z =1053.39 

[M+3H]3+ for molecule 1, and m/z = 1581.52 [M+2H]2+ and m/z = 1054.45 [M+3H]3+ for molecule 2 

(See SI, Figures 25-28). 

To evaluate the topological impact on DC-SIGN inhibition, we subsequently synthesized p-tBu-

calix[4]arene fucocluster 3 using the same strategy (Schema 2). We started with the well-known cone 

conformation of tetraazido-propyloxy-p-tBu-calix[4]arene 1353 and the click chemistry reaction with Ugi-

adduct 7. We obtained tetrabromoalkyl-pseudopolypeptide 14 at a yield of 57%. Subsequent azidation 

gave the tethered azidoalkylpolypseudopeptide 15 in an almost quantitative amount. After click chemistry 

with propargyl fucoside 12, the latter gave the expected fucocluster 3 at a yield of 49%. The structure of 

3 was fully characterized by LC-MS using two parent ions at m/z = 1542.61 [M+2H]2+ and m/z = 1028.92 

[M+3H]3+ (See SI, Figures 29-30), and in 1H-NMR the cone conformation was characterized by the AB 

system of bridged ArCH2Ar. This gave two doublet signals at 3.15 and 4.32 ppm with a JAB coupling 
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constant of about 12 Hz. As expected, all three glycocluster-based thiacalixarene and calixarenes 1, 2 and 

3 obtained respectively in overall yields of 25% (5 steps), 13% (6 steps) and 15% (5 steps), are highly 

water soluble, which allows their biological assessment in aqueous media.
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Scheme 1. Convergent strategy for synthesis of fucoclusters 1 and 2 using two key component, the Ugi 

adduct 7 and the tetraazido-thiacalixarene 6. i. 1-Bromo-3-chloro-propane, K2CO3, refluxed acetone; ii. 

NaN3, DMF, 90 °C; iii. MeOH, rt, 24h; iv. CuSO4.5H2O/Na-ascorbate, H2O/THF/tBuOH, 60 °C, 3h, or 

CuI/DIEA, CH3CN, MW, 30 min; v. MeONa, MeOH, rt; vi. NH2OHaq, KCNcat, MeOH/THF, rt.
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Schema 2. Synthesis of p-tBu-calix[4]arene fucocluster 3 via click-chemistry of UGI adduct 7 and 

tetraazidopropyloxy-p-tBu-calix[4]arene 13. i. CuSO4.5H2O/Na-ascorbate, H2O/THF/tBuOH, 60 °C, 3h, 

or CuI/DIEA, CH3CN, MW, 30 min; ii. NaN3, DMF, 90 °C.

Biological assessment

SPR measurement of DC-SIGN/BSA-man interaction in the presence of clusters 1, 2 and 3. Here we 

report the examination of the recognition behavior of ligands 1, 2 and 3, as well as the efficiency of the 

scaffold, for the inhibition of the extracellular domain (ECD) of DC-SIGN binding using a SPR 

competition assay. The sensor surface was grafted by bovine serum albumin protein bearing man1-

3α[man1-6]man trisaccharide as a high mannose mimic of the HIV-1-gp120 glycoprotein (BSA-man).42 

Glycoconjugate affinities were determined by competition experiments following the reported 

procedure54 by co-injection of 20 µM of DC-SIGN ECD and increasing concentrations of compounds 1, 

2 or 3 onto BSA-man. For sensorgrams of L-fucose as a positive monovalent control and for the three 

fucoclusters, see respectively tables 1, 2, 3, and 4 in SI. Figures 3A and 3B, respectively, show the 

inhibition curves and the corresponding IC50. These demonstrated better apparent affinities with CRDs of 

DC-SIGN for fucocluster 1, with an IC50 = 17 µM and multivalent power amplification represented by 

relative potency (rp = IC50(α-L-fucose)/IC50(1)) of about 120, with a high β avidity factor (β = IC50(1)/Valency = 4) 

of about 30 compared to L-fucose (Table 1). The attachment of glycylglycyl-hydroxamic acid groups in 

fuco derivative 2 also keeps a favorable binding interaction with DC-SIGN. The IC50 is also strong (23.9 
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µM) and rp (IC50(α-L-fucose)/IC50(Ligand 2)) and β avidity factors (β = rp/Valency = 4) remain high (85 and 21 

respectively), indicating a tight interaction compared to that of monovalent L-fucose. This finding 

evidenced a highly favorable topology impact compared to similar recent fucosylated dendrimers 

displaying higher level of multivalency.55,56 For a better understanding of the phenomenon, we 

investigated water-soluble fucocluster 3 with the cone conformation that concentrates the four ligands at 

the down-rim of the calixarene ring. We observed a slight difference in IC50 values between clusters 1 (17 

µM), 2 (23.9 µM) and 3 (26.5 µM), suggesting that both scaffold conformation impact similarly on the 

binding interaction. The high avidity observed, is due to the interaction of the sugar cap with DC-SIGN 

in solution via chelating and/or statistical binding rebinding mechanisms. Thiacalixarene or calixarene 

moieties contribute to the interaction with DC-SIGN by inducing high sugar densities via directional 

orientation of the sugar within a given set of distances between L-fucose units. Such results are reached 

with only four natural sugar units grafted onto the unusual thiacalixarene scaffold through an easy 

synthetic strategy that could be of interest in drug development. Importantly, inhibitory potencies towards 

DC-SIGN using fucoclusters 1 and 2 are around twenty times higher than other scaffolds with four natural 

ligands (D-Mann) or than highly O-fucosylated dendrimers.57,58 We have demonstrated that DC-SIGN 

can be strongly inhibited, suggesting that a new generation of antiviral glycocluster-based thiacalixarene 

and calixarene scaffolds is possible. Results obtained with recombinant gB of the human cytomegalovirus 

(HCMV) envelope and against cis-infection of EBOV, the Zaïre species of Ebola virus (see below) 

supported this conclusion.
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Figure 3. A. Inhibition curves of DC-SIGN binding to immobilized BSA-man (acting as an HIV-1-gp120 

mimic) with L-Fucose (�) and clusters 1 (�), 2 (�), or 3 (�), using surface plasmon resonance (SPR). 

B. Histograms and the IC50 values of inhibition of DC-SIGN activity calculated for monovalent L-fucose 

and tetravalent fucoclusters 1, 2 and 3.

Table 1. IC50 of fucoclusters 1, 2 and 3 for inhibition of DC-SIGN/BSA-man interaction. The results 

highlight the weak impact of topology, supporting the statistical rebinding or chelation interaction with 

the three ligands.

Compound Valency IC50 (µM) Relative potency (rp) β avidity factor

L-fucose 1 2048 ± 17.3 - -

1 4 17 ± 0.4 120 30.12

2 4 23.9 ± 0.5 85.69 21.4

3 4 26.5 ± 0.5 93.58 19.32

rp = IC50(L-fucose)/IC50(Ligand 1, 2 or 3); β avidity factor = rp/n

Inhibition of HCMV recombinant gB /DC-SIGN-expressing U937 cell line by fucoclusters 1, 2 and 

3. Although HCMV is not as lethal as HIV-1(both viruses have spherical forms and highly mannosylated 

antigens) it causes lifelong infection in world population, serious congenital disease in new-borns and is 

responsible for dramatic chronic infections in immunocompromised individuals such as transplanted 

patients and those suffering from AIDS. As fin the case of HIV-1, there is no vaccine against HCMV, 

which in addition exhibits a growing resistance to existing treatments.59 It is also known that HCMV 

requires iron for its cytomegaly development60 and has the ability to penetrate a number of host cells and 

hijack their biochemical process for its replication.61 One of the most important glycoprotein antigen in 

this respect is the highly mannosylated envelope glycoprotein B (gB)62 used by HCMV to cross the 

external host cell membranes. Glycoprotein B is involved in two main ways: by interaction with DC-

SIGN as the main mechanism for DCs infection62,9 and by interaction with the host cell walls heparane 

sulfate to infect DCs and other cells.61,63 Here, we focused on DC-SIGN which interacts with gB64 in a 

similar manner as with the GP glycoprotein of Ebola virus or gp120 of HIV-1 during adhesion to host 
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cells, a step prior to infection. We demonstrated that gB/DC-SIGN binding is a fundamental interaction 

of the whole virus with DC-SIGN+ cells, ie monocyte-derived DCs (MDDC) or U937 transfectants 

harboring DC-SIGN,62 consequently its inhibition could be a serious mean to hinder HCMV trans-

infection. The 1, 2 and 3 fucoclusters seem to have the potential to inhibit HCMV trans-infection. The 

test used was based on the measurement of the interaction between human MDDC and one of their viral 

ligands, the recombinant form of gB. The inhibitors were tested with mannan as a positive control (Figure 

4A). Our expectations were met since the HCMV recombinant gB/DC-SIGN interaction was inhibited at 

micromolar IC50 for fucocluster 1 (1 µM) and at submicromolar IC50 for cluster 3 (0.777 µM). We can 

consider these two activities as being similar. In contrast, a striking nanomolar IC50 (34 nM) was reached 

with cluster 2-bearing hydroxamic acid groups (HAGs) (Figure 4A, Table 2). The three ligands show 

better inhibition than polymeric mannan, a known inhibitor of this interaction.64 However, cluster 2 with 

the hydroxamic acid bearing linker deserves special mention, with inhibition that is 144-fold higher than 

mannan, and respectively 29- and 22-fold than fucocounterpart 1 and calix cone 3 (Table 2). Another 

striking observations is the efficient activity of 2 compared to the recently reported weak inhibitors 

harboring mannose units such tetravalent mannocluster based mannose as scaffold (higher than millimolar 

IC50)65 or highly mannosylated polymer (89 mannose units, IC50 = 4.2 µM);65 Cluster 2 is a 123-fold 

stronger inhibitor than the latter. Blocking HCMV gB/DC-SIGN binding in the nanomolar range is 

exceptional and shows that 1, 3, and to a large extent the fucocluster 2 prototype, have good spatial 

distributions that efficiently block the CRD sites of DC-SIGN. This reflects the intrinsic pre-organization 

of the thiacalixarene scaffold that acts synergistically through the contribution of the sugar units and the 

linkers carrying hydroxamic acid groups in 2. The improved efficiency of glycocluster 2 might find its 

origin in another interaction, in addition to the one with DC-SIGN, with HCMV-gB itself thanks to the 

anionogenic property of the multiple hydroxamic acid assemblies. Indeed, It could mimick the HCMV-

gB interaction with the negatively charge glycosaminoglycan sulfates of host cell walls..61,63
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Figure 4. A. Inhibition curves of DC-SIGN/HCMV recombinant gB interaction obtained by flow 

cytometry with: a. Mannan, b. Fucocluster 1, c. Fucocluster 2 and d. Fucocluster 3. Duplicate experiment 

gave comparable results. B. Inhibition of EBOV pseudotyped virus cis-infection (�) using Jurkat cells 

expressing DC-SIGN. As reference VSV-GP (Vescicular Stomatitis virus envelope glycoprotein) (�) was 

used. Cells that do not express DC-SIGN were used as a negative control. EBOV inhibition by 

compounds: a. 1; b. 2; c. 3 are shown. The three graphs a, b and c correspond to the mean of two 

independent experiments performed in triplicate with error bars corresponding to the standard errors of 

the mean.

Table 2. Summary of IC50 obtained for Inhibition of Interactions of DC-SIGN/clusters 1, 2 and 3, DC-

SIGN/HCMV Recombinant gB and EBOV cis-Infection.

Compound Valency DC-SIGN/gB-HCMV 
interaction inhibition 
IC50 

Relative 
Inhibition/Mannan

Relative Inhibition 
of 2/1 and 2/3

EBOV 
IC50 (nM)

Mannan 15.5 µg/mL - -
1 4 1000 nM (3.155 µg/ml) 4.91 29/1 601.5
2 4 34 nM (0.107 µg/ml) 144 - 253.5
3 4 777 nM (2.400 µg/ml) 6.45 22/3 218
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Inhibition of EBOV cis-infection by clusters 1, 2 and 3. The Ebola filovirus that is responsible for 

severe hemorrhagic fever66,67 is dreaded worldwide due to its lethal action and the absence of efficient 

vaccines68 and efficacious anti-infection strategies.69,70 Of the five species identified by their region of 

origin, we were interested in the Zaire variant, now named Ebola virus (or EBOV) that causes up to 90% 

mortality and was responsible for the recent Ebola outbreak in West Africa.71,72 Several therapeutic 

approaches have been attempted against Ebola virus infections such as the use of monoclonal antibodies73 

or small molecules that interfere with viral replication. However, despite some success of these molecules 

in preclinical models using non-human primates, there are currently no data to support their clinical 

efficacy.74,75 The strategy of targeting an intracellular process is still threatened by the development of 

viral resistance, and the search for alternative strategies that would avoid such resistance remains limited. 

One possible unconventional approach is to prevent adhesion, communication and other infectious 

processes used by the virus, by acting exogenously. As DC-SIGN has been designed as a lead lectin with 

a function that is hijacked by EBOV for the recognition and subsequent infection of DC cells,76  much 

work has been focused on the development of efficient multivalent inhibitors of this lectin to hinder 

binding of the virus to DCs. Several molecules have been assessed for their activity against EBOV,36,58 

and the best of these were highlighted in a recent perspective article.36 However none was a glycocluster-

based thiacalixarene or calixarene. Thus, we assessed glycoclusters 1, 2 and 3 described in this paper 

against EBOV. Infection was performed on Jurkat cells (a T-lymphocyte cell line) expressing the DC-

SIGN receptor. Since Ebola virus does not infect T-lymphocytes, its entry into Jurkat cells is absolutely 

dependent on DC-SIGN.77 Jurkat DC-SIGN+ cells were plated in 96-well plates and incubated at room 

temperature for 20 min with one of the three glycoclusters, and then challenged with 10000 TCID (Tissue 

culture infectious dose) of a recombinant virus pseudotyped with the Ebola virus envelope glycoprotein 

that expresses firefly luciferase.78,79 After 48h, the cells were washed and lysed for a luciferase assay. The 

range of concentrations tested for the compounds was 1 nM–100 µM. As a control, an infection with 

VSV-G pseudo viruses (Vesicular stomatitis virus) was carried out under the same conditions. The 

infection with VSV-G is independent of the presence of the DC-SIGN receptor. The results of EBOV 
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inhibition by fucoclusters 1, 2 and 3 are shown in figure 4B. Interestingly, all of compounds 1, 2 and 3 

exhibited strong inhibition of EBOV infection at an IC50 in the nanomolar scale (601.5, 253.5 and 218 nM 

respectively). It should be noted that fucocluster 3 is twice as effective as cluster 1 but acts quasi-equally 

to cluster 2. Also, molecules 2 and 3 that only have four fucose units are more potent and stronger 

inhibitors of DC-SIGN-mediated EBOV infection than dendrimers with high densities of mannose units 

(e.g. the Boltorn dendrimer with 32 mannose units, IC50 = 337 nM).76 This opens the way for further 

development of fucose-based antiviral thiacalixarene drugs against Ebola infection.

Conclusions

In conclusion, we have synthesized the first water-soluble thiacalix[4]arenes fucoclusters 1 and 2, which 

are potent inhibitors of DC-SIGN. The evaluation in SPR competition experiments showed a unique 

affinity of soluble DC-SIGN for these clusters that is stronger than those reported for some manno or 

fuco-dendrimers with higher densities of mannose or fucose units. This supports the importance of the 

inherent directional presentation of sugars by the thiacalixarene scaffold. Nevertheless, the 1,3-alternate 

conformation seems not to be decisive since a similar result was obtained with the cone conformation of 

fucocluster 3. This indifference with respect to conformation supports the possible occurrence of 

statistical association and/or chelation interaction with the possible existence of secondary interaction due 

to the functionalised linker. The latter interaction is probably responsible for the strong inhibition of both 

cis-infection by EBOV and of the interaction between recombinant HCMV gB and primary human cells 

like MDDC known to express DC-SIGN. The reached nanomolar avidity level in both cases may find its 

origin in a clustering binding mode, with the trans-membrane DC-SIGNs, in addition to the chelation 

and/or statistical rebinding observed in solution assays. Moreover, internalization of DC-SIGN upon 

binding, and its disappearance from the surface, may be also an enhancer of the inhibitory effect observed. 

Although these results need further investigation, it opens the way for further development of antiviral 

drugs based on these newly designed prototypes. The results of our research support also the conclusion 
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that anti-multi microbial treatment with a single drug is possible. We will investigated this in depth in our 

future program.

EXPERIMENTAL SECTION

1. Organic chemistry.

General methods. All chemical reagents were purchased from Sigma, Fisher (France) or TCI-Europe. 1H 

and DeptQ NMR spectra were recorded on 600 MHz Bruker spectrometers in appropriate deuterated 

solvents; chemical shifts are reported on the δ scale. All 13C NMR signals were assigned through C–H 

correlated HSQC spectra. TLC was performed on Silica Gel 60 F254, 230 mesh (E. Merck) with 

cyclohexane-EtOAc or EtOAc-MeOH, and spots were detected by vanillin–H2SO4 reagent. Preparative 

column chromatography was performed using 230–400 mesh Merck silica gel (purchased from Sigma). 

Flash chromatography was performed with Reveleris-Flash System apparatus with cartridge SiO2-normal 

phase or C18-reverse phase. Low resolution electrospray mass spectra (ESI-MS) in the positive or 

negative ion mode were obtained on Waters ZQ 4000 quadrupole instrument equipped with an 

electrospray (Z-spray) ion source. High resolution electrospray experiments (ESI-HRMS) were 

performed on a Waters Q-TOF Ultima Global hybrid quadrupole time-of-flight instrument, equipped with 

an electro-spray (Z-spray) ion source.

Methyl N-(6-bromohexanoyl)-N-(prop-2-yn-1-yl)glycylglycinate (7). Formaldehyde (0.145 g; 4.84 

mmol) and propargylamine (0.266 g; 4.84 mmol) in methanol (4 mL) were stirred at room temperature 

for 30 min. Then, methyl isocyanoacetate  (0.4 g; 4.036 mmol) and 6-bromohexanoic acid (0.944 g; 4.84 

mmol) were added. The resulted mixture was stirred at room temperature and followed by TLC until 

completion (36 h). After concentration, the residue was purified by flash chromatography 

(EtOAc/cyclohexane) affording the desired compound 7 as a yellow solid. Yield 0.973 g (67%); Rf = 0.25 

(SiO2, Cyclohexane/EtOAc : 3/2); ESI-MS: m/z = 385.0 [M+Na]+. 1H-NMR (CDCl3, 600 MHz), δ (ppm): 

-6.94-6.78 (m, 1H, NH), 4.17-4.08 (m, 4H, CH2C≡CH/NCH2CO), 4.04-3.96 (m, 2H, NHCH2CO), 3.70(s, 
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3H, OCH3), 3.49-3.25 (m, 2H, CH2Br), 2.51-2.22 ( m, 3H, CH2/ CH2C≡CH), 1.84 (m, 2H, CH2), 1.66 (m, 

2H, CH2), 1.46 (m, 2H, CH2). 13C-NMR (CDCl3, 150 MHz), δ (ppm): 173.5/173.2 (C=O), 170.0/169.8 

(C=O), 169.0/168.5 (C=O), 77.9 (CH2C≡CH), 73.3 (CH2C≡CH), 52.3 (OCH3), 49.4 (NCH2CO), 41.0 

(NHCH2CO), 38.7 (CH2), 36.0 (CH2), 33.6 (CH2), 32.5 (CH2), 27.7 (CH2), 23.9 (CH2). HRMS(ESI/Q-

TOF) m/z: [M + Na]+ calcd for C14H21BrN2O4Na 383.0582; found 383.0594.

Tetrabromo-tetramethylglycylglycinate pseudopeptide p-tBu-thiacalixarene 1,3-alternate 

derivative 8. To a stirred solution of compound 7 (0.48g; 1.32 mmol) and tetraazidopropyl-p-tBu-

thiacalix[4]arene 639 (0.318g; 0.301 mmol) in THF/tBuOH (7.5mL/15mL) was added a freshly prepared 

solution of Cu(I) (from CuSO4.5H2O (0.15 g) and sodium ascorbate (0.239 g) in H2O (15 mL)). The 

mixture was stirred for 3h at 60 °C. After solvent evaporation, the crude product was extracted with 

CH2Cl2 and washed with brine. The organic layer was dried on MgSO4 and concentrated. Compound 8 

was obtained after purification by column chromatography on silica gel (3/3/2: 

acetone/EtOAc/Cyclohexane, 1% N(Et)3) as a white solid. Yield 0.396 g (58%); Rf  = 0.43 (SiO2, 

acetone/EtOAc/Cyclohexane : 2/2/1 + 1% N(Et)3); ESI-MS: m/z = 1272.3 [M+2Na]2+. 1H-NMR (CDCl3, 

600 MHz), δ(ppm): 7.95-7.55 ( m, 8H , NH/CHtriazole), 7.27-7.21 (m, 8H, CHAr), 4.73-4.56 (m, 8H, CH2), 

4.28-3,90 (m, 40H, CH2), 3.70 (s, 12H, OCH3), 3.36 (t, 8H, CH2Br, J = 6.7 Hz ), 2.60-2.25 (m, 8H,CH2), 

1.87-1.79 (m, 8H, CH2), 1.74-1.54 (m, 16H, CH2), 1.54-1.39 (m, 8H,CH2), 1.01 (s, 36H, CH3). 13C-NMR 

(CDCl3, 150 MHz), δ(ppm): 174.0-168.8 (C=O), 156.3 (ArCOCH2), 146.3 (ArC(C(CH3)3)), 143.4 

(Ctriazole), 128.1 (ArCSCAr), 127.3 (CHAr), 122.9 (CHtriazole), 66.0 (CH2OAr), 52.3 ( OCH3), 51.6 (CH2), 

50.1 (CH2),47.8 (CH2), 44.6 (CH2), 42.5 (CH2), 41.0 (CH2), 34.1 (C(CH3)3), 32.5 (CH2), 31.0 (CH3), 30.0 

(CH2), 27.7 (CH2), 24.0 (CH2). HRMS(ESI/Q-TOF) m/z: [M+2Na]2+ calcd for C108H152Br4N20Na2O20S4 

1269.3451 found: 1269.3447.

Tetrazido-tetramethylglycylglycinate-pseudopeptide p-tBu-thiacalixarene 1,3-alternate derivative 

9. To a stirred solution of compound 8 (0.375g; 0.15 mmol) in DMF (12 mL) was added NaN3 (0.117g; 

1.79 mmol). After 12 h at 90 °C and evaporation, the crude product was extracted with CH2Cl2 and washed 
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with brine. The organic layer was dried on MgSO4 and concentrated. Compound 9 was obtained after 

purification by column chromatography on silica gel (3/3/2: acetone/EtOAc/Cyclohexane, 1% N(Et)3) as 

a yellow solid. Yield 0.324 g (92 %); Rf = 0.43 (SiO2, acetone/EtOAc/Cyclohexane : 2/2/1 + 1% N(Et)3); 

ESI-MS: m/z = 1196.0 [M+Na]2+. 1H-NMR (CDCl3, 600 MHz), δ (ppm): 8.00-7.56 ( m, 8H , 

NH/CHtriazole), 7.26-7.20 (s, 8H, CHAr), 4.71-4.49 (m, 8H, CH2), 4.28-3.89 (m, 40H, CH2), 3.69 (s, 12H, 

OCH3), 3.23(m, 8H, CH2N3), 2.64-2.22 (m, 8H,CH2), 1.87-1.79 (m, 8H, CH2), 1.74-1.56 (m, 16H, CH2), 

1.47-1.33 (m, 8H,CH2), 0.98 (s, 36H, CH3). 13C-NMR (CDCl3, 150 MHz), δ (ppm): 174.1-173.4 (C=O), 

170.4- 168.7 (C=O), 156.3 (ArCOCH2), 146.3 (ArC(C(CH3)3)), 143.6 (Ctriazole), 128.1 (ArCSCAr), 127.3 

(CHAr), 123.07 (CHtriazole), 66.1 (CH2OAr), 52.2 ( OCH3), 51.4 (CH2N3), 50.1 (CH2),47.5 (CH2), 44.5 

(CH2), 42.5 (CH2), 41.0 (CH2), 34.1 (C(CH3)3), 32.7 (CH2), 31.2 (CH3), 29.8 (CH2), 28.6 (CH2), 26.3 

(CH2). HRMS(ESI/Q-TOF) m/z: [M+2Na]2+ calcd for C108H152N32O20S4Na2 1195.5264, found: 

1195.5250.

Peracetylated tetramethylglycylglycinate-pseudopeptide p-tBu-thiacalixarene 1,3-alternate 

derivative 11. To a stirred solution of thiacalix 9 (0.2 g; 0.085 mmol) and acetylated α-L-fucose 10 (0.123 

g; 0.374 mmol) in THF/tBuOH (8mL/16mL) was added a freshly prepared solution of Cu(I) (from 

CuSO4.5H2O (0.042g) and sodium ascorbate (0.067g) in H2O (16 mL)). The mixture was stirred for 3h at 

60 °C. After solvent evaporation, the crude product was extracted with CH2Cl2 and washed with brine. 

The organic layer was dried on MgSO4 and concentrated. Compound 11 was obtained after purification 

by column chromatography on silica gel (3/3/1.5: acetone/EtOAc/cyclohexane, 1% N(Et)3) as a white 

solid. Yield 0.193 g (62%); Rf = 0.2 (SiO2, acetone/EtOAc/Cyclohexane : 3/3/1.5 + 1% N(Et)3); ESI-MS: 

m/z = 1853.1 [M+2Na]2+. 13C-NMR (CDCl3, 150 MHz), δ (ppm): 174.9-174.4 (C=O), 171.9-169.7 (C=O), 

143.7 (Ctriazole), 123.6 (CHtriazole), 122.8 (CHAr), 95.6 (C-1), 71.1, 68.0, 64.7(C-2, C-3, C-4, C-5), 61.2 

(CH2OAr/CH2Otriazole) 51.8 ( OCH3), 50.1 (CH2N3), 41.0 (CH2), 32.7 (CH2), 31.2 (CH3), 29.3 (CH2), 

25.9 (CH2), 24.3 (CH2), 20.7 (CH2),15.8 (C-6). HRMS(ESI/Q-TOF) m/z: [M+2Na]2+ calcd for 

C168H232N32Na2O52S4 1851.7586, found 1851.7592
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Tetramethylglycylglycinate-pseudopeptide p-tBu-thiacalixarene fucocluster 1,3-alternate 1. To a 

stirred solution of thiacalix 9 (0.320 g; 0.136 mmol) and compound 12 (0.121 g; 0.59 mmol) in 

THF/tBuOH/MeOH (5mL/5mL/5mL) was added a freshly prepared solution of Cu(I) (from CuSO4.5H2O 

(0.073 g) and sodium ascorbate (0.116 g) in H2O (5 mL)). The mixture was stirred for 3h at 60 °C. The 

resulting crude was purified by reverse-phase chromatography with eluent gradient of H2O/CH3CN to 

afford 1 as a yellow solid. Yield 0.229 g (53%); ESI-MS: m/z = 1600.7 [M+2Na]2+. 1H-NMR (MeOD, 

600 MHz), δ (ppm): 7.96-7.74 ( m, 8H , NH/CHtriazole), 7.27 (s, 8H, CHAr),4.79-7.70 (m, 4H, H-1), 4.69-

4.50 (m, 16H, OCH2triazole /CH2), 4.28 (m, 8H, CH2), 4.25-3.98 (m, 16H, CH2/CHFuc), 3.97-3.74 (m, 

12H, CH2/HFuc), 3.66-3.55 (m, 24H, CH2), 3.25 (s, 12H, OCH3), 3.21 (s, 4H,HFuc), 2.58-2.12 (m, 8H,CH2), 

1.98-1.71 (m, 8H,CH2), 1.67-1.46 (m, 16H, CH2), 1.30-1.16 (m, 8H, CH2), 1.07 (d, 12H, H-6, J = 5.9 Hz), 

0.99 (s, 36H, CH3). 13C-NMR (MeOD, 150 MHz), δ (ppm): 174.5-174.3 (C=O), 170.4-169.8 (C=O), 156.4 

(ArCOCH2), 146.5 (ArC(C(CH3)3)), 144.2 (Ctriazole), 128.1 (ArCSCAr), 127.2 (CHAr), 123.70 (CHtriazole), 

98.7 (C-1), 72.2, 70.2, 68.5, 66.5 (C-2, C-3, C-4, C-5), 65.8 (CH2OAr), 60.3 (OCH2triazole), 51.4 (OCH3), 

50.2 (CH2), 49.2 (CH2), 43.7 (CH2), 41.7 (CH2), 40.5(CH2), 33.8 (C(CH3)3), 32.1 (CH2), 30.3 (CH3), 29.6 

(CH2), 25.6 (CH2), 24.0 (CH2),15.3 (C-6). HRMS(ESI/Q-TOF) m/z: [M+2Na]2+ calcd for 

C144H208N32O40S4Na2 1599.6952, found: 1599.6948.

Tetrahydroxamic acid glycylglycinate-pseudopeptide p-tBu-thiacalixarene fucocluster 1,3-

alternate 2. Compound 1 (0.100g; 0.031 mmol), NH2OH (50%) (0.012 g; 0.38 mmol) and KCN (0.003 

g; 0.05 mmol) were dissolved in THF/MeOH (0.3 mL/0.3 mL) solvent mixture and stirred 7h at room 

temperature. The resulting crude was purified by reverse-phase chromatography with eluent gradient of 

H2O/CH3CN to afford 2 as a yellow solid. Yield 0.054 g (54%); ESI-MS: m/z = 1602.8 [M+2Na]2+. 1H-

NMR (MeOD, 600 MHz), δ (ppm): 8.22-7.9 ( m, 8H , NH/CHtriazole), 6.86 (s, 8H, CHAr), 4.93-4.52 (m, 

28H, H-1/OCH2triazole/CH2), 4.40-4.27 (m, 24H, CH2), 4.03-3.85 (m, 48H, CHFuc/CH2), 2.71-2.40 (m, 

16H, CH2), 2.35 (m, 4H, CH2), 1.91(m, 8H, CH2), 1.64 (m, 8H, CH2), 1.35 (m, 8H,CH2), 1.19 (d, 12H, 

H-6, J = 6.1 Hz), 1.10 (s, 36H, CH3). 13C-NMR (MeOD,, 150 MHz), δ (ppm): 175.9 (C=O), 171.7-171.0 

(C=O), 154.3 (ArCOCH2), 146.1 (ArC(C(CH3)3)), 134.8 (ArCSCAr), 126.4 (CHAr), 125.2 (CHtriazole), 
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100.1 (C-1), 73.3 , 73.0(CH2OAr), 71.5, 69.9, 67.8(C-2, C-3, C-4, C-5), 61.7 (OCH2triazole), 51.6 (CH2), 

51.2 (CH2), 45.2 (CH2), 41.8 (CH2), 41.8 (CH2), 34.8 (C(CH3)3), 33.6 (CH2), 32.0 (CH2), 30.97 (CH3), 

27.0 (CH2), 25.3 (CH2), 16.7 (C-6). HRMS(ESI/Q-TOF) m/z: [M+2Na]2+ calcd for C140H204N36Na2O40S4 

1601.6857, found 1601.6855.

Tetrabromo-tetramethylglycylglycinate-pseudopeptide p-tBu-calix[4]arene derivative 14. To a 

stirred solution of compound 7 (0.291g; 0.807 mmol) and tetraazidocalix 13 (0.180 g; 0.183 mmol) in 

THF/tBuOH (7.5mL/15mL) was added a freshly prepared solution of Cu(I) (from CuSO4.5H2O (0.091 g) 

and sodium ascorbate (0.145 g) in H2O (15 mL)). The mixture was stirred for 3h at 60 °C. After solvent 

evaporation, the crude product was extracted with CH2Cl2 and washed with brine. The organic layer was 

dried on MgSO4 and concentrated. Compound 14 was obtained after purification by column 

chromatography on silica gel (2/2/1: acetone/EtOAc/Cyclohexane, 1% N(Et)3) as a white solid. Yield 

0.253 g (57%); Rf  = 0.12 (SiO2, acetone/EtOAc/Cyclohexane, 2/2/1 + 1% N(Et)3); ESI-MS: m/z = 1235.9 

[M+2Na]2+. 1H-NMR (CDCl3, 300 MHz), δ (ppm): 8.1-7.6 (m, 8H, NH/ CHtriazole), 6.77 ( m, 8H, CHAr), 

4.52-4.34 (m, 8H, CH2), 4.30-4.11 (m, 12H, CH2/ArCH2Ar), 4.01 (m, 8H, CH2), 3.91 (m, 8H, CH2), 3.73-

3.63 (m, 12H, OCH3), 3.38 (m, 8H, CH2), 3.15 (dd, 4H, ArCH2Ar , J = 12,3 Hz), 2.61-2.44 (m, 12H, 

CH2), 2.32 (m, 4H, CH2), 1.83 (m, 8H, CH2), 1.58 (m, 8H, CH2), 1.41 (m, 8H, CH2), 1.05 (m, 36H, CH3). 

13C-NMR (CDCl3, 75 MHz), δ (ppm) : 174.1-173.7 (C=O), 170.4-169.1 (C=O), 152.8 (ArCOCH2), 145.3 

(ArC(C(CH3)3)), 143.7 (Ctriazole), 133.2 (ArCCH2CAr), 125.4 (CHAr), 123.52 (CHtriazole), 71.8 (OCH2), 

51.9(OCH3), 47.8 (CH2), 44.5 (CH2), 41.1 (CH2), 33.8 (CH2), 32.8 (CH2), 32.6 (CH2Br), 31.4(CH3), 31.1 

(CH2), 27.8 (CH2), 24.1 (CH2). HRMS(ESI/Q-TOF) m/z: [M+2Na]2+ calcd for C112H160Br4N20Na2O20 

1233.4324, found 1233.4350.

Tetraazido-tetramethylglycylglycinate-pseudopeptide p-tBu-calix[4]arene derivative 15. To a stirred 

solution of compound 14 (0.240 g; 0.099 mmol) in DMF (12 mL) was added NaN3 (0.077g; 1.186 mmol). 

After 12 h at 90 °C and evaporation, the crude product was extracted with CH2Cl2 and washed with brine. 

The organic layer was dried on MgSO4 and concentrated. Compound 15 was obtained after purification 

by column chromatography on silica gel (2/2/1 : acetone/EtOAc/Cyclohexane, 1% N(Et)3) as a yellow 
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solid.  Yield 0.213 g (95 %); Rf = 0.14 (SiO2, acetone/ EtOAc/ Cyclohexane : 2/2/1 + 1% N(Et)3). ESI-

MS: m/z = 1160.1 [M+Na]2+. 1H-NMR (CDCl3, 300 MHz), δ (ppm): 8.30-7.3 (m, 8H, CHtriazole/ NH), 

6.74 (m, 8H, CH Ar), 4.54-4.31 (m, 8H, CH2), 4.28-4.11 (m, 12H, ArCH2Ar/CH2), 4.08-3.94 (m, 8H, 

CH2), 3.96-3.78 (m, 8H, CH2O), 3.63(m, 12H,OCH3), 3.28-3.02 (m, 12H , CH2/ArCH2Ar), 2.65-2.22 (m, 

8H, CH2),1.72-1.44(m, 8H, CH2), 1.49-1.25 (m, 8H, CH2), 1.03 (m, 36H, CH3). 13C-NMR (CDCl3, 75 

MHz), δ (ppm) : 174.0/173.8 (C=O), 170.2/170.0 (C=O), 169.7/169.2 (C=O), 158.0 (ArCOCH2), 145.2 

(ArC(C(CH3)3)), 143.2 (Ctriazole), 133.1 (ArCCH2CAr), 125.3 (CHAr), 123.21 (CHtriazole), 71.8 (OCH2), 

52.2 (OCH3), 51.2 (CH2N3), 47.7 (CH2), 46.0 (CH2), 41.0 (CH2), 33.8 (C(CH3)3), 32.7 (CH2), 31.3 (CH3), 

31.0 (CH2), 29.6 (CH2), 28.4 (CH2), 26.3 (CH2), 24.4 (CH2). HRMS(ESI/Q-TOF) m/z: [M+2Na]2+ calcd 

for C112H160Br4N32O20Na2 1159.6135, found: 1159.6150.

Tetramethylglycylglycinate-pseudopeptide p-tBu-calix[4]arene fucocluster 3. To a stirred solution of 

calix 15 (0.32 g; 0.140 mmol) and compound 12 (0.125 g; 0.618 mmol) in THF/tBuOH/MeOH 

(5mL/5Ml/5mL) was added a freshly prepared solution of Cu(I) (from CuSO4.5H2O (0.070g) and sodium 

ascorbate (0.111g) in H2O (5 mL)). The mixture was stirred for 3h at 60 °C. The resulting crude was 

purified by reverse-phase chromatography with eluent gradient of H2O/CH3CN to afford 3 as a yellow 

solid. Yield 0.211 g (49%); ESI-MS: m/z = 1564.8 [M+2Na]2+. 1H-NMR (MeOD, 600 MHz), δ (ppm): 

8.19-8.00 (m, 8H, CHtriazole/NH), 6.86 (m, 8H, CH Ar), 4.81-4.55 (m, 20H, H-1/OCH2triazole /CH2), 4.45-

4.28 (m, 12H, CH2/ArCH2Ar), 4.18 (m, 8H, CH2), 3.99-3.94 (m, 12H, CH2/HFuc), 3.90 (m, 8H, CH2OAr), 

3.76 (s, 2H, HFuc), 3.72-3.65 (m, 16H, OCH3/HFuc ), 3.15 (d, 4H, ArCH2Ar, J =11.9 Hz), 2.54 (m, 16H, 

CH2), 1.89 (m, 8H, CH2), 1.64 (m, 8H, CH2), 1.34 (m, 8H, CH2), 1.19 (d, 12H, H-6, J = 6.1 Hz), 1.10 (m, 

42H, CH3/CH2). 13C-NMR (MeOD, 150 MHz), δ (ppm): 175.6 (C=O), 171.6-171.0 (C=O), 154.0 

(ArCOCH2), 145.9 (ArC(C(CH3)3)), 134.6 (ArCCH2CAr), 126.2 (CHAr), 124.9 (CHtriazole), 99.9 (C-1), 

73.4, 72.8 (CH2OAr), 71.3, 69.7, 67.6 (C-2, C-3, C-4, C-5), 61.5 (OCH2triazole), 52.5 (CH2), 51.4 (CH2), 

50.9 (CH2), 41.6 (CH2), 34.5 (C(CH3)3), 33.4 (CH2), 33.3 (CH2), 31.8 (CH2), 31.7 (CH3), 30.7 (CH2), 26.7 

(CH2), 25.1 (CH2), 16.4 (C-6). HRMS(ESI/Q-TOF) m/z: [M+2Na]2+ calcd for C148H216N32Na2O40 

1563.7824, found 1563.7870.
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2. Biological assessments.

SPR experiments measurement of DC-SIGN/ligands 1, 2 and 3 interaction. DC-SIGN ECD 

production and purification. DC-SIGN extracellular domain (DC-SIGN ECD) construct was produced 

and purified as described previously.54 Surface Plasmon Resonance analysis (SPR). competition assay. 

SPR experiments were performed on a Biacore 3000 using a CM4 chip, functionalized at 5 μL/min. BSA 

or BSA-Man were immobilized on flow cells using amine-coupling method. Fc1 was prepared as 

reference surface. Flow cell (Fc) 1, 2, 3 and 4 were acti- vated with 50 µL of a 0.2 M EDC/0.05 M NHS 

mixture. Fc1 was functionalized with bovine serum albumine (BSA), while Fc2, Fc3 and Fc4 were 

functionalized with mannosylated bovine serum albumine (BSA-(Manα1-3[Manα1-6]Man) from Dextra 

laboratories. Remaining activated groups were blocked with 30 µL of 1 M ethanolamine. After blocking, 

the four Fc were treated with 5 µL of 10 mM HCl to remove unspecific bound protein and 5 µL of 50 mM 

Na2EDTA to expose surface to regeneration protocol. The final immobilization levels for the Fc1, 2, 3 

and 4 are respectively 1541 RU, 1664 RU, 1376 RU and 1847 RU. For inhibition studies, 20 µM of DC-

SIGN ECD mixed with increasing concentrations of inhibiting compounds were prepared in a running 

buffer composed of 25 mM Tris pH 8, 150 mM NaCl, 4 mM CaCl2, 0.005% P20 surfactant, and 13 µL of 

each sample was injected onto the surfaces at a 5 μL/min flow rate. The resulting sensorgrams were 

reference surface corrected. The DC-SIGN binding responses were extracted from sensorgrams, converted 

to percent residual activity values (y) with respect to lectin alone binding, and plotted against 

corresponding compound concentration. The 4-parameter logistic model (See SI equation 1) was fitted to 

the plots, and the IC50 values were calculated using the values of fitted parameters (Rhi, Rlo, A1 and A2) 

(See SI equation 2).
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Inhibition of DC-SIGN/HCMV recombinant gB glycoprotein interaction. U937 parental cells 

(ATCC® CRL-1593.2™, LGC Standards, UK) or stably expressing the full length DC-SIGN lectin were 

propagated in RPMI 1640, 2mM glutamine, 10% FCS (HyClone/GE Healthcare, Wauwatosa, WI). Cells 

were resuspended in the binding buffer, TBS, 1 mM CaCl2, 2mM MgCl2, 0.1% bovine serum albumin 

(BSA) and then seeded in 96-well plates at 1.105 cells per well and Alexa 488®-conjugated recombinant 

HCMV gB (2 µg/ml) was then added to cells for 20 min at 4°C. Cells were washed thoroughly with cold 

binding buffer before being analyzed on a LSR II flow cytometer (BD Biosciences, Franklin Lakes, NJ) 

and the Flow Jo software (Tree Star, Ashland, OR).

Inhibition of EBOV cell line trans-infection. Recombinant viruses were produced in 293T cells by 

transfection with Lipofectamine 2000 (Life Technologies) following the manufacturer´s protocol. The 

viral construction was pseudotyped with Ebola virus (EBOV) envelope glycoprotein (GP) or Vesicular 

Stomatitis virus envelope GP (VSV-G) and expressed luciferase as a reporter of the infection.78,79 One 

day (18-24 h) before transfection, 5 x 106 293T were seeded onto 10 cm plates. Cells were cultured in 

DMEM medium supplemented with 10% heat-inactivated FBS, 25 mg Gentamycin, 2 mM L-glutamine. 

Supernatants containing GP-pseudotyped viruses were harvested 48h later, centrifuged to remove cell 

debris and stored in aliquots at -80º C. Infectious titers were estimated as tissue culture infectious dose 

per mL by limiting dilution of the lentivirus-containing supernatants on HeLa cells. Luciferase activity 

was determined by luciferase assay (Luciferase Assay System, Promega, Madison, WI) in a GloMax®-

Multi+ Detection System (Promega, Madison, WI, USA).

3. MMFF computational calculation. Spartan ’14 software was used to generate 6561 conformers of the 2 

thiacalix[4]arene repeat unit (O-alkylated 4-(tert-butyl)-2-mercaptophenol) in the gas phase. The relative steric 

energy of each conformer was determined by molecular mechanics using the Merck Molecular Force Field (MMFF) 

and the lowest 100 conformers were retained. The lowest energy conformer was replicated four times and linked to 

reform the thiacalix[4]arene. MMFF was used to optimize the geometry of the macrocycle. The resulting structure 

is as shown. It is notable that the most stable substituent conformer is very compact with dimensions down the axis 

of the thiacalixarene cavity of about 17 Å with dimensions perpendicular to the thiacalix[4]arene axis of 31 Å x 31 
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Å. None of the 100 lowest energy structures retained during analysis represented an extended conformer of the 

single repeat unit so one was constructed through forced bond rotation. Following geometry optimisation (MMFF) 

the structure was replicated and the extended form of the thiacalix[4]arene generated. Final geometry optimisation 

by MMFF gave the extended structure shown. Here the length of the thiacalixarene down the thiacalix[4]arene axis 

was approximately 55 Å (See SI, Figure S31) with perpendicular dimensions of 12 Å x 12 Å at the macrocycle’s 

annulus and 21 Å x 4 Å where the hydroxamic acid side arms emerge from the lower rim substituents.

ASSOCIATED CONTENT

Supporting Information. NMR and LC-MS data; Figure obtained from SPR; Figure obtained from 

MMFF; This material is available free of charge via the Internet at http://pubs.acs.org.”
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