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Key Points: 15 

• Large-scale submarine landslides observed on open slopes are more likely the composite 16 

of smaller-scale more frequent slope collapses. 17 

• Slides originating from the same source area can display different types of deposits 18 

indicating that the flows had different rheologies. 19 

• To distinguish separate slide events in a slide complex an extensive and diverse high-20 

resolution dataset is necessary.  21 
  22 
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Abstract 23 

One of the most challenging tasks when studying large submarine landslides is determining 24 

whether the landslide was initiated as a single large event, a chain of events closely spaced in 25 

time or multiple events separated by long periods of time as all have implications in risk 26 

assessments. In this study we combine new multichannel seismic profiles and new sediment 27 

cores with bathymetric data to test whether the Rockall Bank Slide Complex, offshore western 28 

Ireland, is the composite of multiple slope collapse events and, if so, to differentiate them. We 29 

conclude that there have been at least three voluminous episodes of slope collapse separated by 30 

long periods of slope stability, a fourth, less voluminous event, and possibly a fifth more 31 

localized event. The oldest event, Slide A (200km3), is estimated to be several hundred thousand 32 

years old. The second event, Slide B (125km3), took place at the same location as slide A, 33 

reactivating the same scar, nearly 200 ka ago, possibly through retrogression of the scarp. Slide 34 

C (400km3) took place 22 ka ago and occurred further north from the other slides. Slide D was a 35 

much smaller event that happened 10 ka ago, while the most recent event, albeit very small-36 

scale, took place within the last 1000 years. This study highlights the need to thoroughly 37 

investigate large slide complexes to evaluate event sequencing, as seismic studies may hide 38 

multiple small-scale events. This work also reveals that the same slide scarps can be reactivated 39 

and generate slides with different flow behaviors.  40 

 41 

Plain Language Summary 42 

When studying large underwater landslides, determining whether what we see in our data was 43 

created by one large landslide event or several smaller events is very difficult due to the 44 

inaccessibility of the deep sea. But, being able to distinguish between different events and their 45 

frequency allows for more accurate risk assessments. 40 years ago, a large landslide was 46 

discovered in the northeast Atlantic, on the flank of an underwater plateau offshore of western 47 

Ireland. Studies since its discovery have interpreted it as one large event. With present-day 48 

technology and a higher resolution dataset, we have discovered that it is composed of several 49 

landslides. The most recent, but very small and localized event, happened in the last 1000 years. 50 

The one before is happened 10,000 years ago and it was the size of 680,000 Olympic-size 51 

swimming pools. Around 22,000 years ago, a landslide 250 times bigger slid down the slope. 52 

Two more similar size events happened more than 200,000 years ago, but the further back in 53 

time we go the data resolution gets poorer. We think that the sizes of large underwater landslides 54 

found in the world’s oceans and lakes may have been significantly over-estimated, but their 55 

frequency may have actually been under-estimated. 56 

 57 

1 Introduction 58 

Passive margins are often punctuated by large submarine landslides involving several 10s to 59 

100s km3 of sediment affecting 1000s of km2 of seafloor. Due to resolution limitations of seabed 60 

bathymetric and seismic data and depth below seafloor restrictions of shallow coring systems, it 61 

is often challenging to distinguish whether such large landslides took place as single large events 62 
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or as several phases that occurred sequentially over a period of time. Imaged slide scars and slide 63 

deposits may be the cumulative effect of several episodes of slope instability in the same 64 

location, but this can be especially difficult to determine if there are no obvious cross-cutting 65 

relationships in the scarps or variable scarp degradation and sediment remoulding in the 66 

bathymetric data and/or resolvable time in the seismic data between depositional lobes. 67 

However, distinguishing between events and being able to calculate the volumes involved in 68 

each episode, together with the interval between discrete failures, are of paramount importance 69 

in geohazard risk assessment and in particular in modelling landslide-generated tsunamis. For 70 

example, Ward and Day [2001] predicted tsunamigenic waves generated by a potential single 71 

catastrophic failure of the west flank of the Cumbre Vieja volcano on La Palma in the Canaries 72 

that could transit the Atlantic Basin and arrive at the American coasts with wave heights of up to 73 

8 m. However, Hunt et al. [2011], using sedimentary records, demonstrated that collapses on the 74 

northern flank of the adjacent island of Tenerife occurred as separate smaller events. They 75 

showed that there is a markedly lower tsunamigenic potential where multistage retrogressive 76 

failures occur, even where the time interval between individual failures is very short, in the order 77 

of a few days [Hunt et al., 2011]. 78 

This study focuses on the Rockall Bank Slide Complex (RBSC), a submarine slide complex 79 

which lies on the eastern slope of the Rockall Bank offshore western Ireland, facing NW Europe 80 

(Fig. 1). Bottom current activity and contourite deposition have been invoked as partially 81 

responsible for the slope collapses here [Elliott et al., 2010]. Buried basement scarps of the 82 

Rockall Bank and contouritic deposition atop the scarps has been suggested to play an important 83 

role in slope instability by generating differential compaction and pressure gradients, and  84 
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Figure 1. a) Shaded relief bathymetry map of the northern Rockall Trough offshore western 86 

Ireland and data used in this study. The seismic profiles are shown in black and are numbered 87 

P01-P13. The locations of CE11011 cores are indicated with green circles and of the CE14011 in 88 

white circles. The turquoise circles show the locations of the Øvrebø et al. (2005) study. The red 89 

lines show scarps associated with the RBSC, the yellow lines scarps associated with the moat 90 

and the blue dashed lines depict the depositional lobes. White dashed boxes indicate the Upper 91 

and Lower Slope regions after Georgiopoulou et al. (2013). PAP = Porcupine Abyssal Plain; RB 92 

= Rockall Bank; RT = Rockall Trough; WTR = Wyville Thomson Ridge; b) A zoom in 93 

bathymetric map on the location of the lower slope scarps and cores. Bathymetric data from the 94 

INSS programme. 95 

 96 

 97 
potentially directing fluid escape towards the seafloor [Georgiopoulou et al., 2013]. A study 98 

using a traverse of four gravity cores across the RBSC determined with radiocarbon dating that 99 

sliding took place during the last glaciation (~21.7 ka) [Øvrebø et al., 2005]. Georgiopoulou et 100 

al. [2013] suggested that the RBSC probably occurred as a multiphase slope collapse involving 101 

at least three episodes, with a potentially incipient or aborted fourth episode. That study relied on 102 

indirect evidence from legacy 2D seismic reflection and the INSS (Irish National Seabed Survey) 103 

bathymetric data from the scar area. In this paper we use the same bathymetric dataset but we 104 

combine it with newly-acquired sediment cores, radiocarbon ages and newly-acquired 2D 105 

seismic data from further downslope, in the depositional area of the complex to test the 106 

hypothesis of Georgiopoulou et al. [2013] and distinguish the different slide episodes, evaluate 107 

the volumes involved in each, and determine their timing and recurrence interval.  108 

 109 

2 Regional Setting 110 

Rockall Trough is an elongate, steep-sided, NNE-SSW trending intracontinental sediment-111 

starved basin located west of Ireland and the UK (Fig. 1). It is 200-250 km wide, with water 112 
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depths ranging from nearly 3000 m in the northern part to over 4000 m in the south where it 113 

opens to the Porcupine Abyssal Plain (Fig. 1).  114 

To the west, Rockall Trough is bounded by Rockall Bank, a structural high with an almost flat 115 

plateau (0-2o slope) at <200-400 m water depths; Rockall Bank slopes to the east down to 2400 116 

m in less than 90 km with gradients of 5-10o, in places exceeding 15o (Fig. 1).  117 

The Irish continental margin lies at the boundary between the glaciated and the glacially-118 

influenced sectors of the European Atlantic margin [Weaver et al., 2000]. During the last 119 

glaciation the British Irish Ice Sheet (BIIS) was covering the entire island of Ireland and, at the 120 

Last Glacial Maximum (LGM), 24 ka, it extended and was grounded close to the shelf edge 121 

[Peters et al., 2016]. Retreat of the ice margin began at 22 ka, but the ice shelf persisted for the 122 

next 2500 years [Peters et al., 2016]. 123 

Deep water masses in Rockall Trough flow northwards along its eastern margin, deflecting 124 

anticlockwise at the steepening slopes of the Wyville Thomson Ridge and there flowing 125 

southwards along the base of the Rockall Bank, excavating a moat at the base of slope (Fig. 1). 126 

Bottom currents are responsible for the redistribution of sediments forming sediment drifts, most 127 

notably the Feni Drift that occupies the western side of the trough (Fig. 1) and is mostly active 128 

during interglacial periods  [Stoker, 1998; Stoker et al., 1998]. 129 

The floor of Rockall Trough is relatively smooth, gently getting deeper towards the southwest. 130 

Major depositional processes that have dominated Rockall Trough are: the late Miocene to early 131 

Pliocene contouritic Feni Drift; the Neogene to Pleistocene glaciogenic Donegal-Barra Fan 132 

(DBF), a glacial trough mouth fan that drained the BIIS and occupies the northeastern margin, 133 

with depositional lobes that extend towards the deeper parts of the Rockall Trough basin; the 134 
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RBSC that occupies the northwestern margin and truncates the Feni Drift and interacts with the 135 

DBF lobes; and a series of channels that dissect the Irish slope but were mostly active during 136 

glacial times [Elliott et al., 2010; Sacchetti et al., 2012a; Sacchetti et al., 2012b; Stoker et al., 137 

1998]. Shallow cores from the deeper basin floor contain coarse sandy turbidites and contourites 138 

alternating with hemipelagic layers [Georgiopoulou et al., 2012]. Turbidite provenance analysis 139 

suggests a switching of sources across the glacial-interglacial transition, with turbidites coming 140 

from the Irish margin during the last glacial, via the DBF and the Irish slope channels, probably 141 

generated by meltwater, and then, from Rockall Bank during the current interglacial, potentially 142 

as flow transformation products from the Rockall Bank slope collapses [ Georgiopoulou et al., 143 

2012]. The glacial hemipelagic intervals show the characteristic influence of ice rafted debris 144 

[Georgiopoulou et al., 2012].  145 

Sedimentation rates were as high as 17.1 cm ka-1 during the Holocene on the crest of the Feni 146 

Drift but were lower (14.6 cm ka-1) during the last glacial period, and significantly less prior to 147 

that, averaging 5 cm ka-1 for the Pleistocene [van Weering and de Rijk, 1991].  148 

The RBSC truncates a field of sediment waves associated with the Feni Drift (Fig. 1). It also 149 

excavated part of Rockall Bank and deposited sediment onto the floor of the trough [Elliott et al., 150 

2010; Flood et al., 1979; Georgiopoulou et al., 2013; Unnithan et al., 2001] (Fig. 1). Scarps 151 

associated with the RBSC have regional average gradients 30-35° and locally up to 70° 152 

[Georgiopoulou et al., 2013]. Volumes excavated from the entire scar have been estimated to be 153 

between 260 and 760 km3 [Georgiopoulou et al., 2013]. The glide plane for the RBSC is 154 

believed to be the regional intra-early Pliocene C10 unconformity [Elliott et al., 2010]. The 155 

sedimentary sequence between C10 and the present-day seafloor outside of the main area of 156 

failure (RTa in Stoker et al. [2001]) comprises alternating debris flow deposits and parallel- to 157 
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wavy-bedded drift accumulations, locally disrupted by slope failure deposits [Stoker et al., 158 

2001].  159 

 160 

3 Data and Methodology 161 

Our study is based on 13 new multi-channel high-resolution seismic profiles (a total of c. 700 162 

line-km), six new piston cores collected during RV Celtic Explorer cruise CE11011, five new 163 

gravity cores collected during the SORBEH (Slope Collapses on Rockall Bank and Escarpment 164 

Habitats) CE14011 expedition, four gravity cores from Øvrebø et al. [2005], and open-access 165 

bathymetric data that had been acquired as part of the INSS  programme  between 2000 and 2001 166 

on RV Bligh (Fig. 1). The multibeam bathymetry was collected using a Simrad EM120 167 

multibeam echo-sounder with frequencies of 11.75–12.75 kHz. A detailed account on the 168 

processing of the multibeam data can be found in Sacchetti et al. [2012a].  169 

The seismic source used for acquiring the seismic data was a Mini-GI Gun. The gun was shot in 170 

true GI-Gun mode with a volume of 0.2 l for the generator and 0.4 l for the injector. The 171 

dominant frequency is ~200 Hz. The injector was triggered with a delay of 20 ms after the 172 

generator to suppress the bubble signal in the recorded seismic data. The shooting rate was 9 173 

seconds resulting in a shot point distance of ~20m at 4.5 knots boat speed. The gun operation 174 

employed a high air pressure of 150 bar (2150 PSI). The data were received by a 187.5 m-long 175 

120-channel streamer (Geometrics GeoEel); channel spacing was 1.56 m. Positioning was based 176 

on GPS (Global Positioning System). 177 

The processing procedure included trace editing, setting up geometry, binning at 5 m bin 178 

distance, static corrections, normal moveout corrections, filtering, stacking, and finite-difference 179 

time migration. A common midpoint spacing of 5 m was applied throughout. A constant velocity 180 
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of 1500 m/s was chosen for the NMO-correction and migration as the streamer was too short for 181 

a velocity analysis. Poor weather conditions during acquisition caused a relatively high noise 182 

level in the data but the careful data processing allowed to produce images with a good signal to 183 

noise ratio. All seismic profiles are available in Supplement 1. The average depth of penetration 184 

was 0.5 s but the signal is very attenuated beyond 0.3 s. With a sediment velocity of 1800-2000 185 

m s-1 the vertical resolution within those top 0.3 s is approximately 2.5 m. Seismic reflections 186 

were picked and interpolated to produce surface maps in Kingdom Suite. The gridding algorithm 187 

selected was Flex Gridding. 188 

New cores from two different cruises are combined in this study (Supplement 3). The CE11011 189 

(CE11) cores were collected using a Geo-piston corer with 110 mm-diameter and 6 m-length 190 

barrels. Six cores were collected (Fig. 1) with average retrievals of 3.5 m, with the longest 191 

retrieval being 4.29 m below the seafloor. The CE14011 (CE14) cores were collected using a 192 

65mm diameter gravity corer with 3m and 6m-long barrels and average retrieval of 1 and 1.9 m 193 

respectively.  194 

The cores were first described visually for sediment structures, grain size, and colour 195 

(Supplement 2). They were then logged for physical properties (gamma ray, p-wave velocity, 196 

magnetic susceptibility and lightness) in a GeoTek Multi-Sensor Core Logger in split mode setup 197 

in the Irish Sediment Core Research Facility at Maynooth University (Supplement 4). Selected 198 

sandy samples were examined under a binocular microscope for bulk mineralogy comparisons of 199 

different sandy intervals.  200 

A total of 23 samples were taken for radiocarbon AMS (14C) dating and are supplemented by 201 

three more from Øvrebø et al. [2005] (Table 1). The analysis was performed on pristine 202 

planktonic foraminifera shells of mixed species as there was very little material for monospecific 203 
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picking. The dating was performed by the Poznań Radiocarbon Laboratory. The results were 204 

calibrated using Calib v7.0.4, based on the Marine 13 calibration dataset [Reimer et al., 2013] 205 

(Table 1). A marine reservoir correction was applied based on data from the nearest location of 206 

δR=53±50 (Castle Rock, North Channel – [Harkness, 1983]). Sedimentation rates are calculated 207 

between two samples taken from the same core or, where only one sample was taken from the 208 

core, between the top of the core taken to be Present Day, i.e. zero yrs BP and the depth of the 209 

sample. This was possible as there is no evidence of erosional features, no significant event beds 210 

or major facies changes between the sample depths and we are confident that the seafloor was 211 

recovered, usually obvious by the characteristic orange hue of oxidation.   212 

 213 

Table 1. Raw radiocarbon data, calibrated ages and resulting sedimentation rates. 214 

Core 

depth 

downcore 

(cm) Age 14C (BP) 

Calibrated (BP)*     

(min-max) 

Calibrated (BP) 

(average) 

post-glacial sedimentation 

rates cm ka-1 

CE11_02 210 15,200 ± 80 17,670 - 18,197 17,940 ± 260 11.7 

CE11_03 10 2165 ± 30 1545 - 1838 1690 ± 150 

2.45 

CE11_03 22 7360 ± 40 7643 - 7915 7780 ± 140 

CE11_03 42 13,010 ± 70 14,310 - 15,161 14,740 ± 430 

CE11_05 73 24,960 ± 190 28,049 - 28,941 28,500 ± 450 2.56 

CE11_06 134 13,830 ± 70 15,806 - 16,333 16,070 ± 260 

12.3 CE11_06 203 18,420 ± 100 21,420 - 22,087 21,750 ± 330 

CE14_07A 65 10,160 ± 50 8941-9268 9120 ± 178 7.12 

CE14_07A 129 19,590 ± 170 20,630-21,555 21,092 ± 462 
samples bracket an erosional 

event CE14_07A 156 25,020 ± 190 26,160-27,096 26,614 ± 454 

CE14_08B 20 19,150 ± 110 20,389-20,933 20,661 ± 272 sample within debrite clast 

CE14_08B 40 >46,000       

CE14_08B 64 >46,000       

CE14_08B 64 >46,000       

CE14_08B 187 >46,000       

CE14_08B 192 >46,000       

CE14_08B 237 >46,000       

CE14_12 69 20,400 ± 120 21,697-22,378 22,037 ±340 3.13 

CE14_12 121 >46,000     

  CE14_12 162 >46,000     
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CE14_13A 29 9820 ± 50 8550-8969 8760 ± 209 3.3 

CE14_13A 64 20,590 ± 120 21,928-22,569 22,248 ± 320 under erosional event 

8/9_sc1 90 9500 ± 55 10,099 - 10,305 10,202 ± 103 8.82 

8/9_sc1 120 >46,000       

9/7_sc1 160 20,540 ± 140 23,317 - 24,189 23,753 ± 436 6.75 

9/7_sc1 200 18,800 ± 120 21,383 - 22,106 21,744 ± 361 under erosional event 

      
* delR = 53 ± 50      
Calibration Stuiver et al 1998    
Between the lower two samples of CE14_07A there is a debrite, therefore no sedimentation 

rate between those two samples was calculated. 

The top sample of CE14_08B was aiming to sample the base of a turbidite but it appears to 

have sampled a clast of the underlying debrite, therefore it is not used to calculate a 

sedimentation rate  

The sample from CE14_13A at 64 cm dates the hemipelagic sediment at the base of a turbidite 

which was likely erosional, therefore it is not used to calculate a sedimentation rate. 

 215 

4 Results and interpretation 216 

4.1 Bathymetry 217 

The planform morphology of the RBSC has been described in several previous studies [Elliott et 218 

al., 2010; Flood et al., 1979; Georgiopoulou et al., 2013; Sacchetti et al., 2012a], so only a brief 219 

summary is provided here with an emphasis on the lower slope and insights from the newly-220 

acquired seismic data. On the basis of different degrees and styles of deformation, the upper 221 

slope where the scars of the RBSC are found, was divided into the Upper slope region and the 222 

Lower slope region which are separated by an alongslope moat that strikes parallel to the base of 223 

slope at approximately 1500 m waterdepth [Georgiopoulou et al., 2013]. The Upper slope region 224 

was further subdivided into the North, Central and South regions, which demonstrate very 225 

different scarp characteristics; the North has rough-edged, arcuate scarps up to 150 m high, 226 

whereas the South is dominated by cuspate, bite-shaped, smooth-edged scarps also up to 150 m 227 

high [Georgiopoulou et al., 2013]. Strikingly different is the Central area, where there are at least 228 
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three scars, much shallower, up to 20 m high, separated by flat-topped ridges [Georgiopoulou et 229 

al., 2013]. The total width of the upper slope area that is affected by scarps is 120 km (Fig. 1).  230 

Less than 5 km downslope of the moat, the Lower slope region is severely scarred by multiple 231 

intersecting scarps (Fig. 1) [Georgiopoulou et al., 2013]. Here, the RBSC is clearly still erosional 232 

and its margins are defined by truncations of the sediment wave fields of the Feni Drift, along the 233 

south and the north sidescarps (Fig. 1). Cores CE11_01 and _02 have targeted the northern 234 

sidescarp, with CE11_01 serving as a reference core from the undisturbed seafloor and CE11_02 235 

taken inboard of the scarp (Fig. 1a). There are a number of other sidescarps within this area, 236 

downslope of the Lower slope region. Planar terraces at different stratigraphic levels can be 237 

identified here and we observe a flow fabric downslope from them with elongate linear furrows, 238 

ridges defining a conical-shaped erosional region opening downslope (Fig. 1b).  The CE14 cores 239 

targeted these terraces (Fig. 1b). 240 

In the distal/depositional area the seafloor is occupied by a set of overlapping lobes, which at the 241 

toe of the complex have sharp, up to 25 m high, frontal margins. Cores CE11_03, CE11_04 and 242 

CE14_14 have targeted the terminations of these lobes (Fig. 1).   243 

4.2 Seismic facies and their distribution 244 

The newly-acquired multichannel seismic profiles provide a higher resolution of the sub-seafloor 245 

sequence than previously seen on the legacy industry seismic profiles [e.g. Elliott et al., 2010; 246 

Georgiopoulou et al., 2013]. The new data reveal that the acoustic character of the sediments is 247 

highly variable both laterally and vertically. Five seismic facies have been identified and mapped 248 

based on this newly-acquired dataset (Figs 2 and 3). 249 

• Facies 1 comprises parallel, wavy, continuous reflections of moderate to strong 250 

amplitude. The wavelength is between 1 and 2.6 km and the amplitude 5-10 m. This 251 
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facies, consisting of interbedded lithologies giving it its characteristic “striped” 252 

appearance, is interpreted as the deposits of sediment waves created by bottom currents. 253 

Their distribution coincides with sediment waves interpreted previously from bathymetric 254 

and seismic data [Elliott et al., 2010; Sacchetti et al., 2012a; Sacchetti et al., 2011], while 255 

the scale range of approximately 1 km wavelength and 20 m height generally agrees with 256 

the size of bottom current-related sediment waves [Wynn and Stow, 2002]. The sediment 257 

waves are part of the Feni contourite drift and are  258 
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 259 

Figure 2. Seismic facies identified on the 13 260 

seismic profiles. 261 

 262 

 263 

Figure 3. Distribution of the seismic facies 264 

on the profiles at different stratigraphic 265 

levels. The thin white lines show the scarps 266 

and depositional lobes of the RBSC. (a) 267 

Between the seafloor and Reflector 1, (b) 268 

between Reflector 1 and Reflector 2 and (c) 269 

between R2 (and where it missing R1) and 270 

reflector R3. The dashed and dotted line in 271 
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(b) and the dashed line in (c) show the 272 

mapped extent of R2 and R3 respectively 273 

(see also fig. 5).   274 

  275 
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sharply truncated by the RBSC scarps [Faugères et al., 1999; Flood et al., 1979; 276 

Sacchetti et al., 2011]. 277 

• Facies 2 is characterized acoustically by weak to moderate amplitudes, and contains 278 

parallel semi-continuous reflections. We interpret this facies also as generated by 279 

sediment waves but within the scarps in the northern RBSC-affected area in the deeper 280 

sedimentary sequence (Fig. 3c) which explains the weakening of the seismic amplitude. 281 

They are sharply truncated to the southwest by a scarp. This relationship has implications 282 

on the timing of the RBSC events and will be discussed further in section 4.5.  283 

• Facies 3 shows sub-parallel, partly discontinuous, irregular reflections with high 284 

amplitudes. We interpret facies 3 sediments as draping hemipelagic sediments, possibly 285 

punctuated by turbidites, healing the topography left by the RBSC, as in most cases it is 286 

found covering facies 4.  287 

• Facies 4 is acoustically chaotic to transparent with few discernible structures or 288 

reflections. Facies 4, which occupies mostly areas within the RBSC limits (scarps and 289 

lobes) near the surface and at depth, represents deformed slope sediments. The acoustic 290 

character demonstrated in this facies (transparent, chaotic reflections) is typical of slide 291 

deposits [e.g. Bull et al., 2009; Sacchetti et al., 2012b]. The extent of this seismic facies 292 

suggests that slide deposits are present beyond the confines of the RBSC limits as seen on 293 

the seafloor, to the east (Fig. 4). This is coincident with the southwestern reaches of the 294 

glacially-fed Donegal-Barra Fan that is sourced from the northeast Rockall Trough 295 

margin and is almost entirely composed of debrites and mass transport deposits 296 

[ Georgiopoulou et al., 2012b; Holmes et al., 1998; O'Reilly et al., 2007; Sacchetti et al., 297 

2011]. 298 
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 299 
 300 

Figure 4. Seismic profiles (a) P12 along the length of the RBSC lobes and (b) P07 across the 301 

RBSC lobes (for location see fig. 1). Reflectors R1-R3 are shown in magenta, green and blue 302 

respectively. White lines are showing the upper and lateral limits of slide bodies A, B1, B2 and 303 

C. The profiles cross where indicated in each figure with an arrow.  304 
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• Facies 5 shows parallel, mostly continuous reflections of high amplitude. Facies 5 is 305 

similar to facies 1 in that it is characterized by a continuous layered seismic character. 306 

However, it lacks the undulating character of facies 1. On the other hand, given the 307 

similarity of the acoustic character, the lithologies are likely to be similar to those of 308 

facies 1 and similarly with facies 3 are interpreted as hemipelagic sediments with 309 

interbedded turbidites.  Sediment cores from the near-surface that have been collected in 310 

the area of facies 5 distribution confirm the presence of intercalated hemipelagic 311 

sediments with sandy turbidite beds [Georgiopoulou et al., 2010; Georgiopoulou et al., 312 

2012]. 313 

Three seismic horizons (R1-R3) have been mapped on most seismic profiles (Fig. 4), based on 314 

their spatial continuity and their positioning relative to the acoustic facies distribution. Horizon 1 315 

(R1) defines the surface post-failure sediments and has been mapped about 20-30 ms below the 316 

seafloor throughout the survey. R1 is mostly continuous, only in places patchy, with low-to-317 

moderate amplitude. R1 is widespread and could be mapped on all profiles (Fig. 5a). The surface 318 

sediments that lie between R1 and the seafloor are mostly high-amplitude, continuous reflections 319 

of facies 1 and 5 outside the RBSC sidescarps, and mostly facies 3 within the scarps (Fig. 3a), 320 

with the exception of an area of facies 1 that stretches within the scar near the base of slope, 321 

along profiles P10 and P11 (Fig. 3a).  322 

Horizon 2 (R2) is a moderate-amplitude, continuous reflector that is found in the central and 323 

northern part of the survey (Fig. 5b). It is less widespread than R1, with clear terminations within 324 

the study area; it shallows upslope and downslope towards R1 (Fig. 5b) and is sharply truncated 325 

on profile P01 (Supplement 1). Between R1 and R2 the most prevalent facies is facies 4, at least 326 
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within the RBSC affected area, where it pinches out both upslope and downslope (Fig. 3b). 327 

Outside the sidescarps,  328 

 329 
 330 

Figure 5. Maps of the three reflectors. Note the widespread distribution of R1 in (a) and the 331 

limited distribution of R2 (b) relative to both R1 (a) and R3 (c).  332 
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facies 1 is continuous from the seafloor down to the level of R2 and below (Fig. 4b). Facies 4 is 333 

also found beyond the RBSC-affected area as seen on profile P1 which traverses the depositional 334 

lobes of the Donegal Barra Fan (Figs 3b and c).  335 

Horizon 3 (R3) is an irregular, moderate amplitude reflector that is fairly continuous and mapped 336 

throughout most of the survey (Figs 4 and 5c). On profile P12 the quality of the seismic 337 

deteriorates southeastwards and it is impossible to map the reflector. On profile P01 R3 is 338 

abruptly truncated against facies 4 (Supplement 1). Facies 4 and 2 are found between R3 and R2; 339 

facies 4 is located primarily in the central and southern area and facies 2 in the northern edge, 340 

against the northern sidescarp (Fig. 3c). Outside the limits of the RBSC, facies 1 continues to be 341 

dominant in the R2-R3 interval (Fig. 3c).  342 

4.3 Sedimentary facies 343 

The core data allow us to identify five main sedimentary facies. The criteria used are colour, 344 

foraminifera content, sedimentary structures and physical properties (Fig. 6).  345 

• HM are muds, further divided into two sub-facies; HM1, a light-coloured silty, 346 

foraminifera-bearing mud and HM2, a dark-coloured, mottled, foraminifera-poor, clayey 347 

mud. Their physical properties do not differ much; they show only very subtle differences 348 

in p-wave velocity and gamma-ray density, while magnetic susceptibility seems to be 349 

higher in HM2. Both subdivisions of Facies HM are found in all cores (Fig. 7).  350 

• CD are clast-supported debrites and can be found in cores CE11_05 and 06, CE14_12, 351 

_13A and 06A, and cores 8/9sc1 and 78/30sc1 (Fig. 7a). 352 

• Facies SD represents deformed layers that may be sheared, folded or disrupted. For 353 

example, there is a section of CE11_03, between about 80 cm to 175 cm downcore, 354 

which appears deformed (Fig. 7b). The deformation cannot be attributed to coring  355 
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 356 

Figure 6. Sedimentary facies identified in the cores. Photo on the left and x-ray on the right for 357 

each of the sedimentary facies. See text for more details. 358 

 359 
problems as it is not pervasive. However, it does not appear to be disintegrated and mixed 360 

as it maintains the original structures which in this facies appear deformed.  361 

• ST are sandy layers (fine to medium sand), often fining upwards. In several of the cores 362 

this facies sits directly on top of CD. In most cases, the sandy layers appear laminated, 363 

better visible in the x-rays (Fig.6). Where lamination is not present the layers appear 364 

disturbed and fluidized, which may suggest destruction of the original structures, possibly 365 

because of coring [Jutzeler et al., 2014]. They are characterized by increases in p-wave 366 

velocity, gamma-ray density, and magnetic susceptibility (Fig. 7).  367 
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• TB are thinly bedded silt-fine sand layers in dark clayey mud background (Fig. 6). Facies 368 

TB is only seen in cores near the axis of the trough CE11_03, CE11_04 and CE14_14, 369 

but is significantly thicker in CE11_03 (Fig. 7a). In this interval, the physical properties, 370 

particularly the gamma-ray density and magnetic susceptibility, appear erratic, but the 371 

pattern seems to suggest increases for both parameters in the coarser layers (Fig. 7a). 372 

We interpret facies HM as background hemipelagic sediments with different degrees of 373 

bioturbation, mostly by Zoophycos. The two subdivisions, HM1 and HM2, are similar to the GM  374 

and BM facies reported in deeper water by [Georgiopoulou et al. [2012]. Like that study, and 375 

based on radiocarbon dating (Fig. 7), we interpret HM1 to represent sediments deposited during 376 

the current interglacial, which explains the higher foraminifera content and the light colour, 377 

indicative of higher carbonate content and therefore higher productivity. The darker muds with 378 

the black staining and paucity of foraminifera were deposited during the last glacial, confirmed 379 

also by the dating (Fig.7). The age of the transition from the last glacial to the current interglacial 380 

according to the radiocarbon data is 13 ka (based on CE11_03). We attribute the high degree of 381 

bioturbation through HM1 is attributed to interglacial burrowing activity as evidenced by the 382 

light grey HM1 mud that has been mixed with the darker HM2 mud. 383 

 384 

  385 
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 388 
 389 

Figure 7. a) Correlation panel of the lower slope cores, parallel to the flow axis; b) correlation panel of the cores along the northern 390 

edge of the RBSC. For each core we show the photo, x-ray (where available), lithological log, facies interpretation and physical 391 

properties (where available). Solid lines show confident correlations whereas dashed lines are inferred correlations and extensively 392 

discussed in the text. The ages (italics) are shown in years Before Present (BP). Insets A-D are blow-ups of the photo and x-ray from 393 

core CE11_05, and show in more detail the internal deformation in the debrite. Note the very small increase in density at 240cm 394 
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downcore in CE11_05; if two separate debrites were stacked the density at their contact would be expected to show a significant 395 

increase to the right. The coring disturbance indicated in core CE11_04 took place during extraction of the core from the barrel. 396 
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Facies TB can be found only in CE11_03, _04 and CE14_14, which are the cores closest to the 397 

axis of the Rockall Trough and nearest the Irish margin (Fig. 1b). We interpret this facies as fine 398 

grained-turbidites originating from meltwater plumes from the BIIS that was covering the Irish 399 

shelf to the east of the study area at the time [Peters et al., 2016]. They correspond to the 400 

turbidites that are found as thicker and slightly coarser sequences in cores more proximal to the 401 

Irish slope [Georgiopoulou et al., 2012], but they are not found in cores closer to Rockall Bank. 402 

Rockall Bank was likely too distal for these turbidity currents and is also in shallower waters. 403 

The clast-supported character of facies CD indicates this is a debrite composed of clasts of 404 

multiple lithologies. This is the same character as reported by [Faugères et al., 1981; Øvrebø et 405 

al., 2005].  406 

The section 83-240 cm in CE11_05 that corresponds to facies SD is remarkably different when 407 

compared with the interval immediately below it in that it is not composed of multiple clasts. 408 

Instead it appears similar to the glacial background sediments, but the bioturbation is deformed 409 

there are some small (1-2cm dimeter) clasts floating in the mud, and the x-rays show sheared and 410 

inclined layers (Fig. 7a). These two sections could either be interpreted as two debrites that are 411 

stacked, or infer that the interval 83-240 cm is a larger clast within the debrite. We prefer the 412 

second interpretation as there is no sharp change in the gamma-ray density log (Fig. 7a), where 413 

the second debrite would be shearing and depositing on top of the older one, causing 414 

compression and/or eroding into deeper-buried strata with increased density.  415 

The debrite is capped by facies ST in CE11_05 and _06 (Fig. 7a). We interpret this to be a co-416 

genetic turbidite that deposited from a more dilute suspended flow through debris flow 417 

transformation or mobilized at the same time as the debris flow. This relationship was also 418 

observed in the nearby gravity core 08/09sc1 of [Øvrebø et al., 2005]. However the ages of the 419 
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deposits do not match (Fig. 8) and therefore cannot be correlated. They also correlate with the 420 

debrite near the bottom of CE14_07A and the one in CE14_12 (Figs 7a and 8). About 30 km 421 

laterally towards the east, neither the debrite nor the turbidite can be correlated into CE11_03 422 

and _04, but stratigraphically they coincide with the top of the disturbed sequence in CE11_03 423 

(Figs 7b and 8). This suggests that either the flow ceased close to the location of 09/07sc1 or that 424 

it carried on beyond that location but just did not expand laterally towards the east. 425 

Debrite/turbidite events occupying cores CE14_08B and 78/30_sc1 are difficult to correlate with 426 

any of the other events and may represent a separate single event.  427 

The timing of emplacement of these debrites and turbidites is discussed further in section 4.5. 428 

4.4 Sedimentation rates 429 

Sedimentation rates were calculated in intervals of hemipelagic sediments that are not punctuated 430 

by any deposits that might have been erosional. Therefore, not all radiocarbon dates were used 431 

(Table 1).  432 

CE11_03 and CE11_05 show relatively slow sedimentation rates (ca 2.5 cm ka-1) compared to 433 

CE11_06 and CE11_02 (both about 12 cm ka-1) (Table 1). We believe these differences can be 434 

attributed to the location of the cores relative to the route of the bottom current, suggesting that 435 

our cores straddle the boundary of the deep water mass that sweeps the base of slope of Rockall 436 

Bank. Where the current effect exists, the sedimentation rates are larger, i.e. where cores 437 

CE11_02 and CE11_06 were taken from, as opposed to the location of CE11_03 which is 438 

beyond the effect of the bottom current. This interpretation is further corroborated by the 439 

presence of sediment waves around CE11_02 and CE11_06, but not around CE11_03 (Fig. 1). A 440 

problem that arises with this interpretation is that CE11_05 was taken only 5.5 km away from  441 
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 442 
 443 

Figure 8. Correlation panel of all the cores used in this study as compiled from figures 7a and b.  444 
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CE11_06, and yet the sedimentation rate is nearly an order of magnitude lower. Three reasons 445 

can be invoked to explain this difference; (1) the dated sample from CE11_05 contained older 446 

material either resulting from the heavy bioturbation evident on the x-ray images or because the 447 

top of the sandy layer that forms the cap to the debrite was not completely avoided when 448 

sampling; (2) the top one meter of the core is significantly compressed. However, the shape of 449 

the trace fossils does not suggest any significant compression, so this possible interpretation is 450 

ruled out; (3) sediment was preferentially depositing where there was more accommodation 451 

space, and CE11_06 was taken from inside a scar, whereas CE11_05 just outside it. The 452 

elevation difference between the two cores is 65 m. 453 

 454 

4.5 Evidence of separate slide events and estimated volumes involved 455 

The new high-resolution airgun data have revealed the distribution of the slide deposits (facies 4) 456 

and the facies between them that allows the identification of at least three episodes of slope 457 

instability. We assume that the geometry of each of the individual buried failure deposits is 458 

lobate in shape with a NW-SE axis, similar to the lobes evident on the seafloor surface, in order 459 

to estimate their volume and areal extent in the absence of a denser network of seismic lines.  460 

On the basis of the seismic profiles, three distinct slide deposits can be identified (slides A, B 461 

and C) (Fig. 4). 462 

Slide A is found in the deepest section (between reflectors R2 and R3), separated vertically by 463 

about 10 ms thick hemipelagic sediments (facies 1 and/or 5) from slide deposits B1, B2, and C 464 

(Fig. 4). The slide deposits vary in thickness from 70 ms down to below the limit of resolution 465 

(10 ms) and have an average thickness of 30 ms. Using an acoustic velocity of 1700 m s-1 for 466 

moderately consolidated sediments [Hamilton and Bachman, 1982] this corresponds to slightly 467 
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less than 30 m. The area the Slide A deposits occupy is estimated at about 7,500 km2 (Fig. 9) 468 

indicating an approximate volume of ca 225 km3. 469 

Slide B comprises two parts (B1 and B2) that are highly erosive, judging by the thickness of 470 

truncated sediments against the edges of the deposits. B1 and B2 are separated laterally by a 471 

segment of undisturbed seafloor sediments (Fig. 4b).  While they may indicate two separate slide 472 

events, they are found at the same stratigraphic level. This favours an interpretation where B1 473 

and B2 are part of the same event that bifurcates around a remnant seafloor block or rafted block. 474 

Interestingly, we observe a similar pinnacle-like feature on the seafloor vertically above the 475 

remnant seafloor block (Fig. 4b). This pinnacle in fact corresponds to an elongate ridge that 476 

strikes parallel to the flow direction. It is therefore likely that a similar ridge caused slide B to 477 

bifurcate around it.  Slide B is 20-60 ms thick, on average 35 ms, which with an acoustic velocity 478 

of 1600 m s-1 for less consolidated sediments than slide A [Hamilton and Bachman, 1982] as this 479 

is at shallower stratigraphic level, corresponds to ~30 m thickness. The extent of slide B is more 480 

limited than slide A, at 4,500 km2, and we estimate the volume to be ca 125 km3.  481 

Slide C is characterized by variable internal acoustic character, probably due to different degrees 482 

of disintegration and potentially variable lithology (Fig. 4). This deposit is thicker than slide B, at 483 

about 120 ms maximum thickness, but has an average thickness of 75 ms, or 60 m (assuming the 484 

same acoustic velocity of 1600 m s-1 as for slide B). The cores sample the top part of this deposit 485 

but do not penetrate it fully (orange line in figs 7 and 8 mark the top of the deposit), Slide C is 486 

linked with the lobes that extend on the seafloor downslope of the North Upper Slope scar and 487 

the Lower Slope scar (after Georgiopoulou et al. [2013]) and we calculate its extent at 6,600 km2 488 

(Fig. 9) and its volume at ca 400 km3, making slide C the most voluminous of the three slides. 489 
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A fourth event, slide D, is only identifiable in the cores as it is too thin to be resolved by the 490 

seismic data (purple line in Figs 7 and 8). In some cores we only observe a fining upward 491 

turbidite (medium to fine sand) (e.g. cores 08/09_sc1, CE14_13A), while in others the turbidite 492 

caps a clast-supported debrite (facies CD) (e.g. cores CE14_07A, CE14_06A and possibly 493 

CE14_08B). It occupies the central downslope area according to its distribution in the cores (Fig 494 

9d). Its deposits suggest that it was a dilute event (further discussion in section 5.1) that 495 

generated a turbidity current which flowed ESE and was directed southeastward towards the 496 

deepest part of the Rockall Trough, following the seafloor topography (Fig. 9). The average 497 

thickness of the event in the study area is 30cm and it occupies an area of 4000 km2 which gives 498 

a volume of at least 1.2 km3. The volume of the turbidite, which is on average 10cm thick and 499 

occupies an area of nearly 5000km2, adds another 0.5 km3.       500 

The volume of the RBSC was previously calculated by Georgiopoulou et al. [2013] based on 501 

estimates of the missing sediments from the scars on the Rockall Bank slope. They used two 502 

approaches: a “conservative” approach, where the volume of evacuated sediments was based on 503 

connecting the scarps by straight, planar surfaces and a more “generous” approach, where the 504 

volume of evacuated sediments was calculated by connecting the scarps with dome-shaped 505 

surfaces. The two approaches generated volumes that vary from 265 to 765 km3 of missing 506 

sediments. The present study indicates the total volume of the four slide deposits amounts to ca 507 

750 km3, which is very close to the “generous” volume of Georgiopoulou et al. [2013]. This also 508 

suggests that the “generous” approach, where a mounded contouritic morphology on the Rockall 509 

Bank slope was considered prior to slope collapse, is more realistic than the “conservative” 510 

approach in estimating the missing volumes from the scars. However, it should be noted that one 511 

of the slides, Slide B, was highly erosive (as discussed above) and therefore the volume of the 512 
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deposits should exceed the volume of the evacuated sediments, but it is difficult to estimate by 513 

how much.  514 

 515 

 516 
 517 

Figure 9. Inferred distribution of slides A, B, C and D based on the seismic and core data as well 518 

as the seafloor lobes as expressed on the bathymetry, in the order they took place. The lighter 519 

shaded area is the interpreted evacuation area, whereas the darker shaded area is the interpreted 520 

depositional area (for each panel the entire area of the earlier slides is lightly shaded). The arrow 521 

in (d) indicates the direction of flow of the Slide D turbidity current and the transparent white 522 

area indicates the extent to which it spread.  523 
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4.6 Emplacement age of RBSC events  524 

We have calculated a sedimentation rate of about 12 cm ka-1 for the last 20 ka for the Rockall 525 

Bank slope, and about 2.5 cm ka-1 for the deeper Rockall Trough, away from the influence of 526 

bottom currents (Table 1). In order to estimate the ages of the older events we have extrapolated 527 

the Rockall Bank sedimentation rate back, assuming constant sedimentation rates, recognizing 528 

the uncertainties and potential errors in this approach, particularly the deeper in the record we 529 

extrapolate where climatic changes would have affected sedimentation rates significantly. In 530 

addition we are considering average radiocarbon ages rather than ranges which also contains 531 

errors.  532 

Slide A is the oldest event. It is difficult to estimate its age with any confidence as there is no 533 

way of knowing how much sediment has been removed through erosion by Slides B and C that 534 

overlie it. All we can say confidently about Slide A is that it is older than horizon R3 which is 535 

probably a few Ma old given the thickness of acoustic facies 5 and the sedimentation rate we 536 

have calculated and employed. However, it would be unreasonable to use the same 537 

sedimentation rate for the length of period it would have taken to deposit this amount of 538 

sediment considering how variable sedimentation rate can be over time.  539 

The southernmost deposit, Slide B, is buried under ca 24 m of sediments, which with the above 540 

sedimentation rate for the Rockall Bank slope (12 cm ka-1), yields an estimated age of 200 ka.  541 

Slide C appears to have deposited at approximately the same stratigraphic level as Slide B, on 542 

top of Horizon R2 and adjacent to Slide B (Fig. 4b), probably due to the seafloor topography that 543 

Slide B created and then Slide C was routed through it. However, Slide C appears on seismic 544 

profiles to be either exposed at the seafloor (Fig. 4) or if there is a drape on it, it is thinner than 545 

the vertical seismic resolution (ca 8 m). By assuming a drape thinner than 8 m and using a 546 

sedimentation rate of 12 cm ka-1 we can estimate that slide C is younger than approximately 70 547 



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

ka. A sub-bottom profile shown in Georgiopoulou et al. [2013] (their figure 5) shows recent 548 

slide deposits inside the Upper North Slide scar, upslope of Slide C. Their results indicate that 549 

either Slide C is actually significantly younger than 70 ka or that there has been another, very 550 

recent slope collapse in the same area that is not resolved on the seismic data. Indeed, even high-551 

resolution Pinger data with 1m vertical resolution do not show slope collapses in the area 552 

younger than slide C [Sacchetti et al., 2012a]; see their figure 5). However, our core data clearly 553 

demonstrate that there has been a more recent failure, slide D, that was deposited only about 0.5 554 

m above slide C and therefore could not be resolved even by the pinger high-resolution data 555 

(Figs 7a and 8). The only way to distinguish and establish the distribution of slides C and D is 556 

based on the presence (or absence) of the youngest event in the cores.  557 

Core CE11_02 suggests there has been an event, at 20,850 cal BP (which is the age of the sample 558 

taken 35 cm above the top of the debrite, 17,940 cal BP, plus the 2910 years that it would have 559 

taken to deposit the 35 cm at 12 cm ka-1 sedimentation rate). This 20,850 cal BP event is not 560 

found in CE11_01, which was collected from the undisturbed seafloor adjacent to the slide side 561 

scarp to the north. The event is found in CE11_06 where it has a very similar age of 21750 cal 562 

BP. The sandy turbidite that caps the debrite in CE11_06 is also found in CE11_05, although the 563 

age in core CE11_05 suggests that this layer of sand is older (28,540 cal BP) which would make 564 

them uncorrelated. However, this sample was taken from a part of the core that appears to be 565 

heavily bioturbated (Fig. 7a) which could have mixed in older material. We suggest that this is 566 

the same sandy layer based on its stratigraphic position downcore and the physical properties 567 

(Fig. 7a). We considered whether the sandy layer in CE11_04, between sections 1 and 2, also 568 

correlated with the sandy layer in CE11_05 and _06, but the physical properties and mineralogy 569 

differ (Fig. 7a); in CE11_05 and _06 the sand is foraminifera-dominated and contains rounded 570 
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and angular lithic grains, whereas in CE11_04 there are very few foraminifera relative to the 571 

clastic material which is dominated by glassy angular quartz and dark green lithic fragments. 572 

There are also significant differences in the physical properties; crucially the magnetic 573 

susceptibility that is a reflection of mineralogy, is higher in CE11_05 and _06, whereas the p-574 

wave velocity and gamma-ray density are higher in CE11_04. Therefore we do not believe the 575 

sandy layer correlates across into CE11_04. Core CE14_12 contains a debrite capped by a very 576 

thin sand layer dated at 22,037 cap BP which correlates well with the other cores. The same 577 

event appears in core 09/07_sc1, dated at 21744 ka [Øvrebø et al., 2005] which is also in very 578 

close agreement with the other ages and with an error range that makes them overlap. Cores 579 

CE11_03 and CE11_04 contain no debrites at the appropriate stratigraphic interval, but the 580 

sedimentary sequence from about 1 m downcore, which is where a slide C deposit would have 581 

been anticipated, appears disturbed in CE11_03. This could have resulted from slide material 582 

buttressing against and ploughing through the seafloor further upslope and causing in situ 583 

deformation of the seafloor. Alternatively, it could be due to the coring procedure, which is not 584 

uncommon with piston coring [Jutzeler et al., 2014] but the deformation we see in this interval 585 

does not match any of the previously described types, i.e. it is not limited to the sandy intervals, 586 

there is no arcuate warping of the layers or extension and breaking of the muddy interval. Instead 587 

the deformation is consistent with plastic deformation of soft sediments as it would appear in a 588 

debrite only the stratigraphic order of the layers has not been altered. As seen on the bathymetric 589 

data, cores CE11_03 and CE11_04 were taken from the edges of depositional lobes of Slide C, 590 

i.e. very close to causes of seafloor disturbance. Based on the correlation of the sandy turbidite 591 

layer across CE11_05 and _06, it appears that the 22 ka event that generated the debrite/turbidite 592 

seen in CE11_05 and _06, may have been responsible for the deformation seen in CE11_03. A 593 
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similar character is observed at a similar stratigraphic position in core CE14_14 that was taken 594 

from the edge of the lobe on the southern side of the complex (Fig. 7a). 08/02_sc1 does not have 595 

a deposit that correlates with this event. Nevertheless there is a very sharp contact between 596 

contrastingly different hemipelagic sediments (on the basis of colour and lithology) (Fig. 7a). 597 

This surface could only have been created by an erosional event and given its stratigraphic 598 

position we assign it to the 22 ka event. Given the coincidence of the distribution of the 599 

debrite/turbidite in the cores and the distribution of Slide C on the seismic, we believe that slide 600 

C is the 22 ka event. 601 

Across the cores from the Lower slope region and in the middle of the slide complex we found a 602 

younger debrite-turbidite pair higher in the stratigraphy (Slide D). This event is encountered in 603 

cores CE14_13A (dated 8760 cal BP) and CE14_07A (dated 9120 cal BP), in 08/09_sc1 (dated 604 

10,202 cal BP) from Øvrebø et al. [2005] and possibly in CE11_03 as a thin turbidite, without a 605 

debrite. The age of this event has been determined to be around 10 ka. Absence of this deposit 606 

from CE11_05, CE11_06, 08/01_sc1 and 08/02_sc1 (Fig. 8) suggests that this flow followed a 607 

narrow ESE trajectory. This event coincides stratigraphically with the T2 turbidite described by 608 

Georgiopoulou et al. (2012) in the deeper Rockall Trough.  609 

There appears to be a recent debrite near the top of CE14_07A as well as the top of 78/30_sc1 610 

and a turbidite at the top of CE14_06A, while the entire CE14_08B consists of a debrite deposit 611 

capped by a turbidite that is at the top of the core. It is hard to determine whether the deposits in 612 

CE14_08B and 78/30_sc1 correlate with the 10 ka event or the even more recent event. This 613 

latest event does not have a large extent and is not identified in cores further away from the 614 

scarps, so it is likely that it is the result of scarp spalling and small equilibrium adjustments (e.g. 615 

[Carter et al., 2018]).  616 
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 617 

5 Discussion 618 

5.1 Styles of mass transport  619 

Several different types of deposits have been identified in the RBSC, pointing to a wide range of 620 

flows in the spectrum of sedimentary flow processes, from dilute to cohesive flows. Core data 621 

allow us to assess and compare the flow processes in the last two phases of slope instability in 622 

the RBSC, during slides C and D.  623 

Slides A and B, being buried deep below the seafloor, and in the absence of their sedimentary 624 

record in the cores, cannot be assessed for flow type save for their acoustic record. The top of 625 

Slide A appears blocky. However, the large runout and then thinness of the deposit suggest that it 626 

must have transformed downslope to a more fluid flow that allowed it to spread laterally.  627 

Similarly, slide B appears to have been blocky, but less widespread and thicker with pronounced 628 

and steep lateral margins. From these characteristics we infer that slide B was probably more 629 

concentrated and perhaps flowed more plastically like a debris flow that halted its movement en 630 

masse, freezing in place. A dilute component that would have deposited a turbidite further 631 

downslope cannot be dismissed, but there is no evidence for it with the available data. 632 

Slide C appears to have been a bimodal flow, comprised mostly of a cohesive clast-rich debris 633 

flow and an accompanying dilute cloud or tail that deposited a thin turbidite as the flow was 634 

waning. The turbidity current could have been either high-density or low-density as both can 635 

deposit laminated sands [Sumner et al., 2012], which is what has been retrieved in the cores. The 636 

runout of the turbidity current was not significant, as we do not encounter it in cores beyond the 637 

limits of the slide [Georgiopoulou et al., 2012]. The top of Slide C appears smoother than Slides 638 

A and B and we interpret this to mean that the character of this flow was less blocky and maybe 639 
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more plastic. Similar to slide B, the toe of slide C appears thick, thicker than the body of the slide 640 

(Fig. 4), and set within stratified pre-existing sediments as if it buried and confined itself, 641 

ploughing through the seafloor. Small-scale thrusts are likely present at the toe (Fig. 4) lending 642 

further evidence towards a self-confining type of flow, but not to the extent previously reported 643 

for self-confining submarine landslides [Frey Martinez et al., 2005]. Further corroborating 644 

evidence comes in the form of the sheared section in core CE11_03 that appears as though in situ 645 

layers have been locally deformed, possibly due to the lateral pressures emanating from the toe 646 

of the slide ploughing through the adjacent seafloor. Different scenarios for modelling of slide C 647 

to match the deposits as seen on the bathymetric data reveal that the best fit resulted when a 648 

Bigham rheology was adopted with either a velocity-dependent term or with basal frictional 649 

properties [Salmanidou et al., 2018].  650 

Slide D on the other hand, appears to have been more dilute, perhaps fully transformed into a 651 

turbidity current as indicated by the deposit found in the cores. However, in spite of its dilute 652 

nature, this flow did not spread laterally much but did have a long runout and extended mostly 653 

downslope as it can be found in a deeper part of the basin [Georgiopoulou et al., 2012]. These 654 

characteristics suggest that Slide D was more rapid and more focused than the previous episodes 655 

of failures as it is found along a relatively narrow, elongate axis (Fig. 9d). 656 

Finally, the latest episode was probably generated by minor secondary scarp spalling that did not 657 

produce a large event, and the deposits have not gone far from the scarp source. The timing of 658 

this event is estimated to be some time in the last millennium as there does not seem to be any 659 

substantial drape covering it. 660 

The sequence of events described here based on the depositional data is in general agreement 661 

with the sequence of events proposed by Georgiopoulou et al. [2013]. However, the present 662 
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study reveals that these events took place over a considerable period of time. This has also 663 

demonstrated the predisposition of the slope for ongoing slope instability and repetitive failure. 664 

For example, Slides A and B appear to originate from the same source, even though Slide B was 665 

almost half the size of A, but it may have resulted from retrogression of the Slide A scarp.  666 

Attempts to model the flow behaviour of slides A and B, using the same approach as for slide C, 667 

demonstrated that this was not possible and the modelled deposits mapped beyond the actual 668 

ones [Salmanidou et al., 2018]. This was attributed to potentially different rheological properties 669 

[Salamanidou et al., 2018]. Therefore, the assumption that slide events that occur in the same 670 

area and as a result should have the same lithological characteristics, and by extension 671 

rheological characteristics, is wrong, at least for this case study, as demonstrated by Salmanidou 672 

et al. [2018] and by the different deposits we find in the cores in this study. 673 

We also observe that slide events become more frequent in more recent geological time. This 674 

does not necessarily reflect an increased rate of slope failure but is more likely a reflection of the 675 

increased resolution closer to the seafloor. This could indicate that the thick deposits identified in 676 

the deeply buried slides may comprise the composite products of a number of smaller stacked 677 

events rather than the result of single large events.  678 

 679 

5.2 Wider implications  680 

Early work suggested that the RBSC probably occurred as a single event [Faugères et al., 1981; 681 

Flood et al., 1979]. Georgiopoulou et al. [2013] examined the scarp morphology at the headwall 682 

of the complex and suggested that there may have been several episodes given that the 683 

“freshness” or angularity of the scarps varies across the slope, but they were unable to draw any 684 

conclusions regarding the timing of events, other than that there were likely to have been 685 
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significant hiatuses between events as seafloor modifications and healing appeared to have taken 686 

place over the older events. 687 

In this study, with access to new high resolution seismic data and a large number of new cores 688 

from the depositional area, we are able to confirm the multi-stage nature of RBSC and cast new 689 

light on the emplacement ages and timing between separate events. We are thus able to 690 

demonstrate the long history of instability of the Rockall Bank eastern slope. The youngest slide 691 

event, that appears at the top of a limited number of cores, likely took place within the last 1000 692 

years but it appears it was very small and did not affect a significant area. The 10ka event (Slide 693 

D) was a relatively small event in terms of volume (<2 km3) but had a very long runout. Slide D 694 

was nowhere near as voluminous as Slides A, B and C, but it is significant nonetheless and 695 

demonstrates that more events of these dimensions may be “hidden” in the resolution of the 696 

seismic data which has implications for risk assessment studies that consider the repeat interval 697 

of submarine slope failures.  698 

The youngest of the large events (Slide C) appears to coincide with the Last Glacial Maximum 699 

(LGM), the height of the last glaciation [Clark et al., 2012]. During glacial periods, when the sea 700 

level fell, continental margins experienced increased terrigenous input as much of the shelf was 701 

exposed and became a sediment source [Johannessen and Steel, 2005]. A lower sea level may 702 

have exposed part of the Rockall Plateau as a small island, but it could not have been large 703 

enough to generate the required large amounts of sediment input as it is not connected to a land 704 

mass and its dimensions are limited. Additionally, the predominant sediment supply for Rockall 705 

Bank, as evidenced by seismic profiles and cores, came through bottom currents running parallel 706 

to the slope [Georgiopoulou et al., 2013; O'Reilly et al., 2005; Øvrebø et al., 2005; Stoker et al., 707 

2005]. However, bottom currents in Rockall Trough are considered to have been slow during 708 
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glacial times, with seafloor sediment waves barely affected and with minimum winnowing 709 

power [Howe, 1996]. Previous studies have suggested a combination of rapid sediment 710 

accumulation from bottom currents on top of steep basement scarps and slope undercutting by 711 

the bottom currents as instability triggering mechanism for this slope [Elliott et al., 2010;  712 

Georgiopoulou et al., 2013]. However, given the timing of Slide C at 22ka, could this 713 

mechanism have been a primary trigger? It is likely that the slope reacted with some lag time and 714 

currents had already destabilized it prior to their weakening and a ground vibration acted as the 715 

final trigger. Another factor that may have contributed is fluid seepage to the seafloor. A number 716 

of closely-spaced faults can be seen in the seismic profiles (Fig. 4a) that may have also 717 

facilitated fluid flow to the seafloor but no direct evidence for fluid seepage can be seen on this 718 

resolution of seismic or the bathymetry.  719 

At 22 ka the British Irish Ice Sheet was starting to decline [Clark et al., 2012]. Models of 720 

isostatic loading for the Eurasian Ice Sheet that includes the British Irish Ice Sheet, show that 721 

isostatic loading did not affect Rockall Bank [Patton et al., 2016] that lies just at the limit of the 722 

affected region (see fig. 12 of Patton et al. [2016]). Isostatic unloading readjustment is 723 

experienced in an extensive area beyond the centre of the ice load, which is about 10o of 724 

longitude (roughly 1000 km) for the BIIS-sized ice load [Lambeck, 1996]. The affected area on 725 

Rockall Bank lies a few kilometres inboard of this radius (Fig. 10). During that time (22 ka), the 726 

ice sheet was still very close to its maximum extent, still occupying the Irish Shelf [Peters et al., 727 

2016], i.e. most of the ice load was still in place. Models based on relative sea-level data from 728 

around Ireland and Scotland show that deglaciation was very rapid after 21 ka [Brooks et al., 729 

2008]. Therefore seismicity due to isostatic rebound as the cause of the 22 ka Rockall Bank slope 730 

failure is unlikely. Therefore, we conclude that the generation of the 22 ka slope failure event 731 
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(slide C) was most probably unrelated to the climatic conditions. However, seismicity, unrelated 732 

to isostatic rebound, may have well been responsible for Slide C, even though the area is not 733 

generally very active seismically (Fig. 10)..  734 

 735 

Figure 10. Location of study area (black box) relative to the extent of the area affected by 736 

isostatic downwarping (red dashed line) according to Lambeck (1996). Also shown are 737 

earthquake magnitudes since 1980 (from the Irish National Seismic Network).  738 

 739 

Seismicity due to isostatic rebound may have been responsible for Slide D and for the more 740 

recent event. The initiation area for Slide D is also within the area of influence of the main 741 

sweeping bottom current in the area that is strong enough to incise a moat at the base of slope of 742 

Rockall Bank.  743 

Slide C was modelled by Salmanidou et al. [2017] and it was shown to have generated a 5-10m 744 

high tsunami that traversed Rockall Trough and impacted on the Co. Mayo coast, NW Ireland. 745 

However, given the timing, it is unlikely it reached the coast, having encountered the BIIS first, 746 

which at 22 ka was still occupying the Irish shelf [Clark et al., 2012; Peters et al., 2016; 747 
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Sacchetti et al., 2012a]. The ice shelf would likely have dampened the effect of the tsunami 748 

wave. Although the question of whether or not slides C or D could have generated tsunamis is 749 

beyond the scope of the present project, it is a topic worthy of further study as the affected slope 750 

has not been fully evacuated and potential incipient scarps can be seen on the seafloor [ 751 

Georgiopoulou et al., 2013] and their figure 6), and at least one, albeit much smaller event has 752 

taken place following Slides C and D.   753 

For tsunami risk assessments it is imperative that studies like the current one are undertaken 754 

prior to modelling, in order to separate and distinguish the different events that constitute a slide 755 

complex, otherwise the risk may be overestimated or even underestimated. Very large events 756 

(several 100s of km3) that would generate more destructive tsunamis tend to have large 757 

recurrence intervals and therefore, while the hazard exists, the risk may be considered small. 758 

However, smaller- and medium-scale landslides (10s to a few 100s of km3) will have shorter 759 

recurrence intervals and therefore the risk increases. Other factors such as sedimentation rates 760 

and slope replenishment should also be considered when assessing risk of future slide events.  761 

This study has demonstrated that (a) it is more likely that large buried slide events comprise 762 

multiple smaller stacked events, (b) slide-prone areas can fail repeatedly along the same scarps 763 

or regions, so these areas are at risk of failing again in the future, and c) slide events originating 764 

on the same slope, with the same sediment source may have very different flow behaviour 765 

probably because each slide creates new conditions for the slope and the seafloor that gets 766 

traversed by the following slide. Perhaps the later slides tap into different lithologies or even 767 

remobilize earlier slide deposits, which, in combination with the changed topography and the 768 

increased bed roughness, may have significant effects in determining the flow behaviour, 769 
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allowing younger slides to disaggregate more, complicating further forecasting future slide 770 

behaviours and tsunami modelling. 771 

6 Conclusions 772 

Using a set of newly-acquired high-resolution seismic profiles and gravity cores from the 773 

depositional area of the Rockall Bank Slide Complex we have been able to demonstrate that: 774 

• The complex comprises at least three large-scale slides of 200, 125, and 400 km3 each, 775 

slides A, B and C in order of occurrence from oldest to youngest. 776 

• Slides A and B occupy the southernmost part of the complex, while Slide C extends 777 

across the middle and northernmost parts. This suggests that different parts of the slope 778 

were unstable, although the southern scarp appears to have been unstable on at least two 779 

occasions. 780 

• The most recent events, Slides C and D and the small local event, are dated at 22 ka, 10 781 

ka, and within the last 1000 years respectively.  782 

• Based on the three most recent events, the recurrence period for slope instability in 783 

Rockall Bank is about 10 ka, although this is based on only three data points and should 784 

be taken with caution.  785 

• The repeated instability focused on this part of the Rockall bank slope over such a long 786 

period of time suggests that slope instability conditions are persistent through time and 787 

that may indicate that this slope is inherently unstable. 788 

• The concurrence of slide C with the beginning of deglaciation of the BIIS appears to be 789 

coincidental. 790 

• Multiple events from the same source area can and do generate events with different 791 

flow behaviours. 792 
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