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Abstract: We focus on horizontally scaling NoSQL databases in a cloud
environment, in order to meet performance requirementwspecting security
constraints. The performance requirements refer to daiehcy limits on the
query response time. The security requirements are defieed the need to
address two specific kinds of threats that exist in cloudldetas, namely data
leakage, mainly due to malicious activities of actors hibste the same physical
machine, and data loss after one or more node failures. A éaturfe of our
approach is that we account for multiple cloud providergifiy resources of
different characteristics. We explain that usually theyaa itrade-off between
performance and security requirements and we derive a rmbdeking approach
to drive runtime decisions that strike a user-defined b&detween them taking
into account the infrastructure heterogeneity. Finallg, evaluate our proposal
using real traces to prove the effectiveness in configutiegrade-offs.
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1 Introduction

Cloud computing is an evolving paradigm that has transforthe way organisations and
individuals store, share and access their informatiomttoduces a number of advantages
and benefits by supporting a computational infrastructureres availability of resources
is dynamic, meaning that hardware and software are proddettmand when users need
them at a reasonable monetary cost. On the other hand, tgigiaralso creates challenges
and introduces concerns related to security. In fact, maggrosations and individuals
are still avoiding cloud services mostly because they atsue if the services provided,
typically by different providers, are suitable for theicgéty requirements.

Security concerns related tiata leakageanddata lossare of particular importance.
Simply speaking, data leakage is the unauthorised traoffiata from one user to another.
Each user should have access to their own data and not beatdedss the data of others
unless are authorised to do so. In the cloud, the risk of @atealge is increased due to the
storage of data in a multi-tenant environment. A recentystGdispos et al. (2013) [1], has
shown that the risk of data leakage is increased for a comphaey employees use cloud-
based services. On the other hand, data loss refers to aioondhere data is destroyed
and becomes unavailable. This could be the result of a roakcact (e.g. an attack to an
organisation’s data), due to human error or due to hardesaiite/are/network failures. In a
cloud environment - and in particular in a multi-tenant eomiment - the risk of data loss
can be increased due to the multi-tenancy situation.

We deal with a particular feature of cloud databases, namlkalsticity, in light of
security concerns. Elasticity allows cloud users to mothily amount of resources used
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on-the-fly, so that they can always handle the external tdpd, even when load changes
are unanticipated. It is manifested in three main forhwjzontal scaling where virtual
machines (VMs) are added or removeeitical scaling where the hardware configuration
of the existing VMs is modified, anahigration where existing VMs are moved between
physical hosting machines. More specifically, in this wosle build upon our previous
work Naskos et al. (2015)1[2] on performance-oriented tamial scaling so that we can
reach elasticity decisions that take into account bottoperéince and security requirements.
Performance requirements are expressed as a threshotdiregtne maximum allowed
response time to user requests, while security requiresvemat expressed through the
probability of data leakage due to multi- tenancy and of dass through hardware
failure and/or due to multi-tenancy. Ideally, one would dnattain zero violations of
the performance threshold, no security incidents, whila@imizing the monetary cost
associated with the provision of cloud VMs.

1.1 Problem Challenges.

The main challenge in the setting described above stems fhenfact that the three

requirements, that is bounded response times, minimal tagneost and protection from

failures and data leakage, are essentially intertwineccanttadicting to a large extent, as
explained below:

* NoSQL databases partition the data across several nodesaanbenefit from the
inherent feature of cloud infrastructures to dynamicalipyision resources. The
combination of these two characteristics allow cloud dasals to horizontally scale
when the external load increases, so that more servers leeaeaiiable to respond
to user requests. If horizontal scaling is performed cdlsefior example, in a load
balancing way that avoids over-reacting, the average restime can be maintained to
a certain desired level regardless of any changes in thenexktead. More specifically,
more VMs can be added (scale-out) when the load increaséghisucomes at
an increased monetary cost. Analogously, when the extéwadl decreases, some
servers can be released by the user on the grounds that mxesipned servers incur
unnecessary monetary cost. In private clouds, monetaty apsimplicit (e.g., through
increased energy consumption), whereas, in public cloadee is actually paid.
To make matters more complicated, when adding a new sergemsient phase is
expected, during which performance does notimprove or mwandeteriorate, due to
data movement to the new server.

Online services may become unavailable due to failurestifthe physical machines
and the network, which can lead to data loss. The main mestmatd address this
type of threat is through replication (or mirroring) thabals for data to be copied to
several servers. The more the copies, the more resistaniliirets the system becomes.
However, this comes at the expense of higher response timesupdating data, since
eventually changes need to be propagated to all copies.dMerghe more VMs are
employed, e.g., for performance reasons, the higher tHeapility a number of VMs
equal to or greater than the replication factor to fail treeding to data loss. This is
orthogonal to the fact that the volume of lost data decreagtesthe number of VMs
for the same replication factor.

Despite any efforts from cloud providers, there is alwdys danger that malicious
cloud users hosted on the same physical machines as thesesaipet unauthorized
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access to data. Intuitively the more physical machines see to host the database,
the higher the danger, whereas, at the same time, publicinescére more vulnerable.

To summarize, scaling out a database may improve the peafare; but this may incur
unnecessary monetary costs due to over-provisioning.oMirg can be combined with
scaling out and may cause performance problems but ing#laseobustness to failures.
Scaling out may also exacerbate the data leakage and datthteats. As such, keeping
latency low through scaling-out is in contrast to monetarst@nd avoiding the threat of
data leakage and data loss.

1.2 Real-world Motivating Example.

We take motivation for our work from a real-case scenarie, @reek National Gazette
Infrastructure, involving the sharing and storage of largmber of documents. The Greek
National Gazette is responsible for publishing laws andlldgcisions on the Government’s
newspaper in order for these laws and decisions to be activ@pplicable. Besides legal
decisions there are also a number of decision categorigmated from the private and
public sector that by law must be sent for publications to@wwernments’s newspaper.
In such scenario, the dynamic provision of services witheptable performance is very
important as is the need to make sure that documents are akadéefore the official
publication, and they are not lost after they are publisBadsuch, the administrators face
the following dilemmato temporarily acquire additional and potentially unsafewd VMs
or to sacrifice performance during peak user request peflods

1.3 Contributions and Structure.

The contributions of this work are threefold. First, we gmtsa Markov Decision Process
(MDP) modelling approach to cloud elasticity in an homogerse single cloud provider
setting. Our approach is coupled with probabilistic modeiaking and accompanied by
a security threat-aware decision mechanism; to this endyuile upon our performance-
oriented proposalin Naskos et al. (2015) [2]. The elastigtcision mechanism can account
for user-defined trade-offs between performance and sgcequirements, while aiming to
avoid over- and under-provisioning in any case. Secondntveduce a novel MDP model
that accounts for multiple, heterogeneous cloud providérsd, we present an evaluation
that sheds light upon the impact of security requirementtherelasticity behavior. Our
results show that our decision making proposal can effelgtatrike a configurable balance
between the conflicting requirements mentioned above. Wwbik is an extended version
of the conference paper in Naskos et al. (2015) [3], whicliges only on the single cloud
provider setting.

The remainder of this paper is structured as follows. In &kcwe provide the
specifications of our models. In Sdd. 3, we present the MDPetsoahd the decision
mechanisms developed for the single provider setting. tM&eave introduce the complete
approach for multiple and heterogeneous cloud infrasirest In Sed.]5, we evaluate our
proposal for awide range of security attack and failure pbilities using real cloud database
traces. We discuss the related work in §éc. 7 and concludedri8 Compared to the
conference version in Naskos et al. (2015) [3], the matari®ec[2 anfdl4 is new, while
the experiments in Selcl 5 are repeated from scratch anf@l8as.8en revised.
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2 Specification of Model Features

Our elasticity policies are based on advanced analysis [frebabilistic model checking)
of MPD models. Obviously, the model should be designed in ativat all the essential
aspects of elasticity in our problem our captured, so tkatnalysis leads to good runtime
decisions. MDPs are specified by their states, actionssitian probabilities and rewards
Puterman (1994) [4]. Below, we provide the list of the maisige requirements:

R1: Horizontal Scaling. The model should be capable of capturing the behaviour of the
system under different numbers of VMs employed and the itians between states
with different number of VMs.

R2: Performance Uncertainty and Transient Periods.NoSQL systems are particularly
complex and it is extremely difficult to derive analytical deds that describe
their behavior in terms of performance accurately. Moreotieeir behaviour is
unpredictable and may vary significantly even for the santereal conditions. This
uncertaintly need to be reflected on the model. Furthernthreng transition from
one state to another in terms of the number of VMs employegsiistem typically
experiences a non-stable transient period, which alscsited captured by the model.

R3: Security Incidents. Security incidents, along with their probability of occemce,
need to be explicitly covered.

R4: Multi-objective Rewards. Analysis of MDPs heavily relies on the rewards associated
with the model entities. To be able to take security-awaastality decisions based on
such an analysis, the rewards should consider both perfaerand security-related
incidents (either explicitly or implicitly).

R5: Heterogeneity. The model should differentiate the system'’s state accgidithe exact
combinations of cloud providers that provide the VMs used.

3 Model-based security-aware elasticity for a single clougrovider

In this section, we first introduce the basic modelling repreation at a conceptual level
and how it is used to drive performance-oriented elastigitifially proposed in Naskos
et al. (2015)/[2]); later in the section, this approach isexted and refined to cover both
performance and security issues.

In our initial model, each state corresponds to a differéuntter size, where the size
equals to the number of active cloud virtual machines (VMsning a NoSQL database,
such as HBase and Cassandra. The NoSQL database is typimthilshared and replicated;
i.e., its tables are horizontally fragmented and each feagns allocated to multiple VMs.

Figurell introduces a simplified representation of our MEesspace and the enabled
actions in each of the shown states. Every statorresponds to the number of VMs that
compose the application cluster (e.g. the NoSQL clusted irsdlaskos et al. (2015)[2])
with i ( min #V Ms < i < max #V Ms) representing the cluster’s size at some time
instant.

This illustration of the state space is separated in timé@ex(¢, ¢ + 1,¢ + 2, ...) with
each one correspondingto a distinct decision step of thelgeoovisioning policy. Decision
steps are distinct time periods captured in the model; edegysion step in the actual
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Figure 1 MDP model overview.

deployment, corresponds to pre-specified time periodsfeninutes for the present work).
We can thus take into accountthe evolution of the conditigtistime, which is particularly
important when a decision policy is coupled with externaldgrediction. As shown in
Figure[l, on every decision step the possible elastic axt@weadd, for adding VMs to
the clusterremove for removing VMs andho_op for maintaining the same number of
active VMs. The first two actions are also parameterized thidhnumber of VMs added or
removed, respectively.

After addelastic actions, the decision maker may be idle for a preiipd time period
(e.g. one decision step) to allow the system to stabilizeiriguthis transient period, as
the number of active VMs is changed, new VMs need to be (i)tetedii) booted, (iii)
configured, (iv) added to the NoSQL cluster and (v) initiedizavith data. In Figurgl1, the
states in the forn(sfij) att+1 representransientstates, i.e. unstable system states due
to a recent change in the number of active VMs. Thus, basetieartabled actions &t
we have three states @t 1 including twostablestatess; _; ands;, where the number of
VMs is not changed, and one transient state. Stgtesds; represent a configuration with
1 VMs, however as the environment evolves, these two statebafaave differently to the
incoming load (e.g. they may receive different incomingdi@nd may be characterized
by different response latency). Also, as we observe, dfest state, the same pattern is
repeated with different time sections and state namingemtions, withs; now being the
current state.

Overall, this model meets thel and the second part (i.e. transient statesRaf
requirements.

3.1 Model-based elasticity for performance

A common performance requirement is the lateray)(of processing user requests, i.e.
the time elapsed from query submission to answer, not toeskeecertain threshold,
regardless of the number of concurrent users. Howeverh@éosame number of VMs and
the same amount of incoming loadthe latency may vary significantly, due to factors that
are both external to our model and hard to model; e.g., a tiomsuming operating system
process is initialized.

To ameliorate this, the probabilistic nature of our modeh @asily capture the
uncertainty of the environment that follows every elasficilecision. The model’s
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Figure 2 Resolution of performance uncertainty

representation in Figuld 1 is further elaborated in Figudeéd®account for the possible
variability in the application’s performance for a giverteraal load and cluster size. More
specifically, the conceptual states in Figure[1 correspond te actual states (shown
ass;b,, in Figure[Zh , 1 <m < n), to better map the behaviouk,{) of interest (i.e.
performance, security). Each new extended state corrdspom different expected system
behaviour and is derived through clustering the collectati@redicted log entries of the
past, current and future measurements, for the same eMteadand cluster size, resulting
in deviations from the expected behaviour. The probabidftyransition to each possible
state is proportional to the probability of occurrence & torresponding state behaviour.
With this state transformation our model fully meets Rigrequirement.

InNaskos etal. (2015)|[2], several elasticity policieseat@amined, and the most effective
one was termed a&DV+VC+PRE standing foradvanced-+violation-cluster+prediction
More specifically, the policy is termed as advanced becausemputes theumulative
reward after a pre-specified number of transitions in theehadlledstepsthis configurable
parameter is set to 4 for the current work, based on expetatien with different values.
TheVC label indicates that all the measurements for a given numibéMs and external
load that do not meet the latency threshold, are gatherédatsame state and all the other
measurements, are clustered to more than one states aefimgsll the viable behaviours
of our system. Thus, two new conceptual states are intratiaice presented in Figurel2b,
theno violationstate, which is further extended to more than one stateshendaiation
state, which is connected with a single state, which dephetsindesirable behaviour of
our NoSQL clusterPRE indicates that a prediction mechanism of future incomiraglls
utilized (i.e. Linear Regression (LR) for the present wokljilizing the future incoming
load prediction, we are able to compute the future laten@smements based on the logged
measurements.
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Rewards are associated only to model states (action rewandslso be used, however
are not considered in the present work) and are derived diogpto the following utility
function:

w(wms) = 0, if lat >z (1)
14 (1/vms), iflat <z

wherevmsis the current number of VMs. As such, this utility functiorciudes a user-
specified constraint and manages to take into account botbrpence issues (through
thelat threshold) and monetary costs. The latter are implicitipsidered by decreasing
the utility in a way inversely proportional to the number o&chines when there is no
performance violation. Overall, this utility function peizes both under-provisioning and
over-provisioning.

Runtime decisions are taken as follows. Every time a detis&eds to be taken, the
model template described above is dynamically instamtiatecording to the latest log
measurements. Then, a two-phase model verification proeddies place to decide the
optimal path (i.e. finite sequences of states and actaitbremove/no_gpTo this end,
the PRISM tool Kwiatkowska et al. (2009) [5] and its propesfyecification language
(PCTL probabilistic temporal logic) are used. In the firsaph, we ask for the maximum
cumulative reward of the model. l.e., on every transitiorttie model (i.e., a step in
a path), the selected utility function is evaluated and @it is summed to the total
reward of the path. In this way, single or multiple optimathzathat lead to the same
optimal reward are generated. The PCTL property used toagké maximum reward is
Rmax =7 F[steps = max_steps], wheremaz teps defines the depth of the verification
(i.e., length of the paths) and is set by the user. Secoridfeiie are more than one optimal
paths, every first action of every optimal path is checkedhvaitother PCTL property
Pmax =? F[steps = maz_steps & violation] to define its maximum probability of
performance specific Service-Level Agreement (SLA) violat The first action with the
lowest maximum performance violation probability is theecselected by our decision
mechanism.

3.2 Model-based elasticity for data leakage

The performance-oriented model aims to avoid performanaations, while avoiding
costly over-provisioning. Here, we describe how our modedrihanced with capabilities
to capture data leakages and consider them during elgst®iision making thus meeting
requirement&3 andR4 as well. The modifications refer to both the main model and the
decision policy.

More specifically, we further extend the state transforarapiresented in Figufe Pb
yielding a hierarchical conceptual model. The new extamisipresented in Figuté 3. Hence,
everys; state is further connected to oneseff ¢ ornot sa f e states, where the former stands
for no data leakage incident, while the latter denotes thposite. Hence, the probability
of the s;b,,, state is computed through the multiplication of thveb,,, probability and
the probability of no attackrob;,, ..., Or attackprob;,,,,.,, respectively, since the data
leakage attacks and latency violations are considereditalependent events. We consider
that there is an explicit mechanism to count and report thebwar of attacks leading to
data leakages in a periodic manner, e.g. Papadimitriou é€2@11) [6]. The data leakage
probability information is used in our models to initialiflee transition probabilities to
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Figure 3 Detailed MDP model stable states.
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states that represesdifeor not safestates. A reasonable assumption is that the probability
of attacks per VM is the same and equabtob,;..x, and the attacks on different VMs are
statistically independent; in that cageob; ,,,., becomes equal to— (1 — probasiack )’

In addition, we apply modifications to the performance-atigéel model verification
procedure and we further employ two additional utility ftions for the reward
specification. In our firstapproach, andin order to accoanrdéta leakages and performance
trade-offs, we propose a 3-parameter function as follows:

0, if attack = true
u(vms) = < a, if lat > x A attack = false. (2)
b+ (c/vms), iflat <z Aattack = false.

wherea, b andc are user defined values atdack is a flag that indicates a data leakage.
In Sec[b we show how setting the 3 parameters, can yield aoafite trade-offs between the
different objectives, i.e., between (i) security, (ii) ftemance (in terms of latency violation
and under-provisioning), and (iii) monetary cost througbiding over-provisioning.

The second utility function uses a different weighting sukdetween the goals we are
trying to achieve and alleviates the need for measuremesghbld specification:

u(vms) =k 'ﬁv'rnsattmk +m-vms+n- lglt (3)

wherek, m andn are user defined weights with+ m +n =1, Pyms, ... 1S the
normalized probability of attack for the given number of VMgns is the normalized
number of VMs andat is the normalized response latency. Regarding the pratyabil
attack, in our cases, the low and upper bounds arg(1 — probasack)'» and1l — (1 —
probattack )™, respectively; we normalize this intervalfta 1]. Similarly, assuming that
we know the minimum and maximum number of VMs that can be eygulpwe normalize
the number of VMs td0, 1]. For the response latency, where there is no upper boundseve u
z-score normalization; then we transform fkel, 1] range into[0, 1], while values lower
than -1 (resp. greater than 1) are mapped to O (resp. 1). Nattéhis utility function should
be minimized rather than maximized.

For both utility functions, the second PCTL property ($ed) & transformed to seek
the first action with the lowest maximum probability of botbrformance-specific SLA
violation and data leakage in cases of multiple optimal path

4 Model-based security-aware elasticity for multiple clowdl providers

Our model is further extended to account for multiple clotmxlers, hence to meet tiRb
requirement. With this extension, VM instances from difercloud providers with similar
performance behaviour and different data leakage prababile supported (note that in
general, the performance of similar VM instances providediffierent cloud providers can
vary Jiang etal. (2009)[7]). Having multiple VM instanceivdifferent attack probabilities
offered byk cloud providers:p, the attack probability;_,,,., iS computed as

VMil, . V M ik,
DPigttack — 1- (1 - pTObattackcpl )# PL ok .ok (1 - pTObattackcpk ># Pk

whereprobatiack,, and#V Mij.,, are the attack probability of a single VM and the

number of active VMS, for the cloud providgr(cp;), respectively; alsel +i2+ ... +
ik = 1.
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Figure 4 Detailed MDP model states for multi-cloud.

Overall, if there aré providers, adding VMs does not lead to a singlg, ; conceptual
state (omitting the transient state for simplicity), bu(’ﬁﬁ;‘l) possible states. For example,
suppose that there are two providers, offering(iyate VM depicted agr and (ii) public
VM, depicted agu in Figurel4. Adding two VMs from state;b,,, may lead to one of the
(2= 3: (i) si + 1pr + 1pu, (i) s; + 2pr, (i) s; + 2pu states. Figurgl4 shows the
extensions to the model for two time sections.

The model solver is responsible to handle the non-detesmirdand select one of
these states. Apparently, this extension further augntkeatsomplexity of the verification
process. However, the PRISM model checker is able to haadimére complex models;
e.g., it verifies models of systems with similar setup to the presented in Secti@h 5 with
up to 10K states approximately, in just a few seconds.

5 Evaluation

5.1 Experimental Setup

We have used logs from a real Cassandra infrastructure tiucbrystematic experiments.
The collected measurements are used firstly, to populatiitied logs, and secondly, to
emulate a real situation. Through emulation, we have mah&méairly test each policy
or configuration on an equal basis. The workload consistsyrfichronous read requests
(req), the volume of which evolves in a sinusoidal manneyiwnay from 4000 to 16000
reg/sec coupled with with 2 plateau periods at 13000 red¢se000 time units each. We
collected measurements every 30 secs and, in our emulatime unit is equal to this
measurement collection period. In each sine period, threr@&d measurements. The period
of the decision making should be configured according to thegtiity of the incoming load
of the system and the monitoring frequency. There are cloodgters (e.g. Amazon EC2)
that charge extra fees for less than 5 mins monitoring frequé/Ne allow an elasticity
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action to take place every 10 time units, to emulate a systetnrhay modify the VMs
every 5 mins (or 10 mins is cases of add action, to allow theegay$o stabilize). Additions
incur a higher transient period due to the higher overheaddate and boot the VM, setup
a NoSQL instance and perform data transfer. Scaling-dowimipler as the VMs can be
removed immediately (i.e. there is no need for graceful neghof a VM if the replication
factor is not affected). As the emulated load is generateddban the logs, which also act
as training set, we consider that the system is well traiaad,as such, the MDP models
are instantiated in an accurate manner. In every up-scédmaap to 3 VMs can be added,
while during down-scaling, up to 2 VMs are allowed to be repwin a single step. The
cluster sizes varies from 8 up to 18 VMs. Every experimenstion 3 iterations. Further

details are provided in Naskos et al. (2015) [2].
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Fig.[5 presentsthe latency distribution in two charactierssates of the collected dataset,
where the dotted line shows the latency thresholds use@iaxperiments.

5.2 Experimental Results in a Hybrid Cloud Environment

Our experiments show the trade-offs between securitykattacd latency violations for a
series of utility function configurations and probabilitief attack incidents. We present a
setting, where the cloud deploymentis hybrid with both gtéand public VMs. The attack
probability for the private VMs is set to 0%, while, for thelpiec one, is 1% for the first set
of experiments and 0.1% for the second. Firstly, we presenélasticity behaviour when
the extra machines are provided by the public provider eskodly. Later, we present results
when the additional VMs can be provided by both parties. Feviby, we present results
only for data leakage; the results for data loss are sinaitargported in Naskos et al. (2015)

[.

5.2.1 Data Leakage Attacks - Single Cloud Provider for EXliachines

In this set of experiments we compare the security-awareshaghinst the baseline model
in Section[3.1L. For the security-aware model, we employ tiligyufunction in Eq. (2)

in five different setups as shown in Table 1. Intuitivéy},eak-Otries to avoid attacks at
any performance cost. The next three policies, i.e. DLdaB}| place more importance
on latency violations thabLeak-Q DLeak-4 tries to balance performance and security,
emphasizing on attack avoidance slightly less than the RiOgaolicy. The latency threshold

is set to either 45 or 50 msecs.

| || DLeak-0| DLeak-1]| DLeak-2| DLeak-3 | DLeak-4 |

a 100 0.5 100 100 100
b 100 1 100 1000 100
c 1 1 160 1600 16

Table 1 Parameter setup for the utility function in EQl (2))

In Figure[®, we present the adaptation of the number of VMdieincoming load
for each policy. The red dotted line represents the inconfag while the solid blue
line represents the number of active VMs. Except few infiteds, due to the inherent
environment uncertainty infused in our emulations, Ai®V+VC+PREand DLeak-[1-3]
policies can broadly follow the load variation. The DLeak#@l DLeak-4 policies keep the
number of active VM to the most safe state, which is 8 VMs.

| | ADV+VC+PRE | DLeak-0]| DLeak-1| DLeak-2| DLeak-3| DLeak-4 |

45 msecs 12.4 8 12.1 11.3 12.2 8
50 msecs 12.1 8 11.6 10.9 11.7 8
Table 2 Average number of active VMs (1% attack probability)

Initially, we set the probability of data leakage attack @ per step to 1%; later,
we examine data leakage probability of 0.1% that differs byeader of magnitude. The
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Figure 6 Variation of the external load and the number of active VMs

leftmost pair of columnsin Figufé 7 (top) presents the petage of time steps where latency
violations (left blue bar) and data leakages (right greeh decur for theADV+VC+PRE
policy. In this experiment, the latency threshold is 45 mssend, for cluster size from 8
to 18 VMs, the attack probability ranges from 0% (lower bouted9.5% (upper bound).
ADV+VC+PRE manages to yield a very low number of performance violatiahthe
expense of non-negligible security attacks. The secondsitid pair of columns in the
same figure present the results fdreak-0OandDLeak-4 respectively, where the system is
essentially penalized only for the attack situations, addkency violation reward is very
close to the no-attack no-violation case. As expected, tinetrer of VMs is kept low (see
Table[2). Overall, the attacks are reduced to their minimhuwever the latency violations
are reaching their highest percentage (65.8% and 65.238¢ctely).

Table2 needs to be examined in parallel with Fiddre 7. As veepke in this figure, the
DLeak-2parameterisation achieves a reduction in the deviatiom fitee lower bound of
probability attacks of 30% (from 4.8% to 3.36%) comparechmADV+VC+PREpolicy,
at the expense of an increase in the latency violationsedime system is prohibited to
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Figure 7 Aggregated Latency Violations and Data Leakage Percefitagé msecs (top) and 50
msecs (bottom) latency thresholds and 1% data leakagehplibbper VM.

scale in several cases to avoid data leakage attBtlkesak-1slightly increases the number
of violations (from 0.5% to 1.74%) with a negligible decreas the data leakage attacks
(3.5%).DLeak-3parameter setup increases the number of violations witheing able to
decrease the number of data leakages. As we observe i Jalle&k-2keeps the number
of active VMs lower than th®Leak-1andDLeak-3 which explains the decrease in the
number of data leakages. This also is an indication thagmifft parameter configurations
can achieve different trade-offs.

Fig.[7 (bottom) repeats the same experiment, but with tle@tviolation threshold set

to 50 msecs. The data leakages percentage is decreasethiensaturity enhanced policies
with DLeak-2achieving the best tradeoff this time as well.
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Figure 8 Aggregated Latency Violations and Data Leakage Percefitagé msecs (top) and 50
msecs (bottom) latency thresholds and 0.1% data leakagalpiity per VM.

| | ADV+VC+PRE | DLeak-0]| DLeak-1| DLeak-2| DLeak-3| DLeak-4 |

45 msecs 12.4 8 12.3 11.8

12.3

11.4

50 msecs 12 8 11.8 11

11.9

10.9

Table 3 Average number of active VMs (0.1% attack probability)

In Fig.[8, the data leakage probability because of multatery is changed to 0.1% per
VM per time unit, hence the percentage of data leakage timamutghe cluster ranges from
0% to 0.99%. As we observe, the data leakage percentagelisagty 60% (from 0.4%

to 0.16%) for theDLeak-2with an increase in the latency violations (i.e. 4.3% frod296
achieved by ADV+VC+PREpolicy), reaching a significantly better trade-off than titleer
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Figure 9 Aggregated Latency Violations and Data Leakage Percefitagé msecs (top) and 50
msecs (bottom) latency thresholds and 1% data leakagelplibpper VM using
multiple cloud providers.

setups. The mean number of the active VM®ineak-2is reduced from 12.4 to 11.8, as
presented in Tablgl 3. Interestingly, other configuratisash asDLeak-4 fail to reach a
beneficial trade-off. When the latency violation threshskthanged to 50 msecs (see Figure
(lower)) the same trend applies, with a further reductibdata leakage attacks for the
DLeak-2 reaching 76% less compared to theV+VC+PRE

5.2.2 Data Leakage Attacks - Multiple Cloud Providers fotrBMachines

In this setting, the number of VMs in the private infrastiretranges from 8 VMs up to 12
VMs and in the public infrastructure from no VMs up to 10 VMd$dtotal range of VMs
is maintained the same with the previous experiments i.e. &BtVMs, hence the model
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solver should choose between a mixture of private and p\ilis. The data leakage attack
probability per VM per time unit is 1%.

In Figure[3(top), we present experiments with the 45mseendy threshold. The
ADV+VC+PREpolicy achieved 0.42% of performance violation and 2.23%até leakage
attacks. As it is expected, the data leakage attacks areeddoompared to the previous
experiment of the single cloud provider given that moregewMs can be use@Leak-2
managed to drop the data leakage incidents to the half ajppatedy, but with 7.85% latency
violations. However, the main difference in the behavioluthe different configurations
is thatDLeak-3achieves an interesting trade-off as well: it reduces siyaacidents less
than DLeak-2 but with much fewer performance violations. Alddl eak-3dominates
DLeak-1 The same trend applies also when the latency thresholarEcs0msecs ( Figure
B(bottom)).

5.2.3 Lessons Learned

The main lesson learnt from the above experiments is thagldsticity decision making
approach along with the 3-parameter utility function in $&& provides a powerful tool
for striking a balance between security and performanceirepents. As a rule of thumb
to be used by system administrators, we advocate settirgatiaenetera andb at the order
of hundreds (2 orders of magnitude higher than the rewarthfosecurity incident) and
the parametet an order of magnitude higher than the maximum cluster sizerder to
yield an effective approach in reaching a mid-way balanberiTif the ratio of data leakage
incidents compared to performance ones is consideredfuigher increasing andc can
be investigated.

5.2.4 Weight-based Utility

| || DLeak’-0 | DLeak’-1 | DLeak’-2 | DLeak-3 | DLeak’-4 | DLeak’-5 | DLeak-6 |

k 0 0 0.5 1/3 0.25 0.1 0.3
m 0 0.5 0 1/3 .25 0.25 0
n 1 0.5 0.5 1/3 0.5 0.65 0.7

Table 4 Parameter setup for the utility function in EQ] (3))

We also experimented with the utility function in 6. 3 foemge of different settings as
shown in Tabl€WX. Indicative results are shown in Fifufe hé Main observations are that (i)
a range of different trade-offs can be achieved througinsgtie weights accordingly; (ii)
these trade-offs are in general inferior to the ones for theipus utility function in terms of
ratio of performance and security incidents. The lattettidated to the fact that the latency
threshold is not explicitly taken into account; (iii) givémat the goals of avoiding attacks
and over-provisioning contradict to the goal of achieviog latency in Eql1, setting all
the weights to be equal (e.g., addheak’-3in Tabld4) leads to system under-provisioning,
i.e., attacks are avoided at the expense of much severehadisd) performance; a more
balanced trade-off is accomplished whenitheeight is set to values 0.6.
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Figure 10 Aggregated Latency Violations and Data Leakage Perceffitad® msecs latency
thresholds and 1% data leakage probability per VM with wisdlutility.

6 Real-world Scenario Adaptation

Based on the lessons presented in the Seiion 5, throughapogal, the Greek National
Gazette can become capable of securely utilizing publiowme®s during pick periods,
providing performance guarantees. More specifically, thggsstion is that the existing
infrastructure is adapted to work in parallel with a publioud infrastructure (like the
Amazon's EC2), so that public VMs can be deployed on the flynieeded. The initial
values of maximum number of public VMs, the bounds of eléstiand the latency
threshold can be defined by an administrator and adaptedtane! In addition, the attack
probabilities need to be monitored and possibly adaptasdhditme (e.g., through online log
analysis). Based on our experiments, a good starting pegatrding the utility function is
to employ Eq[B with a setup similar @Leak-3 which is shown to achieve a good balance
between security and performance.

7 Related Work

The literature is rich with research efforts that consid&usity issues within the context of
cloud computing. Recent initiatives mainly from the indysind government organisations
such as ENISA and Cloud Security Alliance, have sought tdpece a number of guidelines
and methods to help in the selection of cloud providers akagelddressing some specific
security concerns of the cloud. Yet such guidelines appkian ¢coo cumbersome with no
clear indications as to when a Cloud Service Provider maydmsidered as not being
trustworthy. This makes the valuable information detailgtthin these documents hard to
exploit.

Gong etal. (2010) [8] showed that using a side-channellgtiaxattacker can instantiate
new VMs of a target virtual machine so that the new VM can pigadiy monitor the cache
hosted on the same physical machine. Mulazzani et al. (28] howed that attackers
can exploit data duplication techniques to access custadatar by obtaining hash code
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of the stored file. Wenzel et al. (2012) [10] consider segwaitd compliance analysis of
outsourcing services in the cloud computing context.

There are also works that focus on the development of moaketd approaches
to security analysis in cloud environments. A goal-drivggpr@ach is introduced to
analyse security risks of cloud based system Islam et alAR[11]. Goals, threats and
risks are consider from three main components: data, fagplication, and technical
and organisational measure. We have also contributed solitté of research with the
development of a model-based framework that enablesatlmit, analysis of security and
privacy requirements and selection of deployment modeloKiatis et al. (2013) [12] and
service providers Mouratidis et al. (2013) [13] based orhseguirements. These works
provide important developments in analysing and modeHiecurity in cloud computing
but they do not take into account performance issues.

Our work is also related to proposals that deal with cloudtaliy to maintain specific
performance characteristics. Tan et al. (2012) [14] combloud elasticity with anomaly
prevention, which refers to the resource contention, so#wbugs or hardware failures.
This proposal utilizes a prediction technique based oregyshetrics to vertically scale
the resources of the VMs or to decide for VM migration, i.@ytleonsider different forms
of elasticity, as is also the case in Gong et al. (2010) [18] &hen et al. (2011) [16]. A
work that indirectly solves MDP models utilizing reinforoent learning-based policies to
guide elasticity appears in Tsoumakos et al. (2013) [17]ckvis extended in our previous
performance-oriented work in Naskos et al. (2015) [2].

A significant number of proposals use rule-based technituegiide the elasticity,
e.g., Moore et al. (2013) [18] and Copil et al. (2013)/[19].Gopil et al. (2013)/[19], a
technique is proposed that addresses the implications efaatic action across multiple
dimensions, providing for example the cost implication ofi@izontal scaling action.
None of those techniques is accompanied by online prokébilierification of elasticity
properties. Finally, model checking and runtime quantiaterification for cloud solutions
other than horizontal scaling has been proposed in Calinessal. (2011)/[20] and Perez
et al. (2013)/[21]. The former, utilizes PRISM to guide seevadaptation, while the latter
presents a technique to predict the minimum cost of cloudoglepents using PCTL over
MDP models. In summary, to the best of our knowledge, our @sapis the first one that
addresses the elasticity problem taking into account betfopmance and security issues.

Finally, several works handle the elasticity between logfeneous cloud infrastructures,
like Copil et al. (2014)1[22], Hector et al. (2014) [23] and & al. (2013) |[24], or
between heterogeneous VM instances of the same cloudtinitage, like Gupta et al.
(2015) [25]. These proposals consider the performancedgsaeity between the different
utilized VM instance types. In our proposal, we considerdame performance footprint
between the used VM instances and the heterogeneity catterdifferent security levels
offered by multiple cloud providers. Our current modelliagproach is also capable of
capturing multiple VM instance types with heterogeneoufppmance, however this is out
of the scope of this paper. None of the aforementioned palpa®nsiders the security
heterogeneity between multiple cloud providers, and ndrthem handles the elasticity
using a formalized, dependable approach like the one pealioghis work.
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8 Conclusions

This work presents a novel approach to support elasticitysims for cloud databases,
which considers both performance and security requiresn&ince, these requirements
are contradicting, we have developed a probabilistic moldetking solution that accounts
for user-defined trade-offs between them and is applicablaulti-cloud environments.
As demonstrated by the experiments, our proposal is capdldtriking a configurable
balance between security-related incidents and perfarendegradation. Our mechanism
can be applied to NoSQL clusters of any size as its scakaksliffected only by the scaling
size (i.e., the maximum number of VMs that are allowed to adamove concurrently),
which usually does not exceeds a few tens of VMs. Finallyhis work, we have assumed
that the attack probabilities are independent. Howeveedurity issues arise due to data
transmission between different providers, then the atfadbabilities need to become
statistically correlated. Our models can be easily supfiost scenario, since they are
orthogonal to the way in which attack probabilities arereatied.

As afuture research, we plan to adapt our approach in ordepioort vertical elasticity.
To this end, the envisaged models need to be more fine-graioadidering each VM
individually in an extreme case. In general, each diffecenfiguration that can be achieved
through vertical elasticity need to be treated in a way simtib different cloud providers
in this work. This will result in models with much more statex thus is expected to give
rise to severe complexity issues that need to be effectagdlyessed.
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