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Abstract
To adequately model mathematical arguments the analyst must be able to repre-
sent the mathematical objects under discussion and the relationships between them, 
as well as inferences drawn about these objects and relationships as the discourse 
unfolds. We introduce a framework with these properties, which has been used to 
analyse mathematical dialogues and expository texts. The framework can recover 
salient elements of discourse at, and within, the sentence level, as well as the way 
mathematical content connects to form larger argumentative structures. We show 
how the framework might be used to support computational reasoning, and argue 
that it provides a more natural way to examine the process of proving theorems than 
do Lamport’s structured proofs.

Keywords  Inference Anchoring Theory · Mathematical practice · Mathematical 
argument · Structured proof

1  Introduction

The representation of mathematical knowledge and inference in appropriate formal 
logical frameworks is well-understood and the subject of much research. Computa-
tional tools to support this through proof checking, automatic theorem proving, and 
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computer algebra are well-established, though they require formal, computationally 
explicit, content as input. However, the existing mathematical literature, particularly 
informal mathematical dialogues, and expository texts, is opaque to such systems, 
which cannot currently handle the variety of activities typically involved in produc-
ing such knowledge and proofs, such as, for example, exposition and argument that 
concerns making conjectures, forming concepts, and discussing examples and coun-
terexamples. Our goal is to bridge this gap through devising an expressive modelling 
language that is closely related to the way mathematics is actually done.

Our approach to modelling such content is inspired by the general-purpose 
argument modelling formalism Inference Anchoring Theory (IAT), introduced by 
Reed and Budzynska (2010). As its name suggests, IAT anchors logical inferences 
in discourse. IAT has been applied to mediation (Janier and Reed 2017), debates 
(Budzynska et  al. 2014b), and to paradoxes in ethotic argumentation (Budzynska 
2013), along with other real-world dialogues (Budzynska et  al. 2013). The Infer-
ence Anchoring Theory + Content (IATC) framework we introduce is based on IAT, 
but with several significant modifications. Most fundamentally, IATC is designed to 
bring to the surface the structural features inherent in mathematical content.

IATC could be overlaid upon formally specified contents, where these are availa-
ble. Lamport’s “Temporal Logic of Actions+” (TLA+) (Lamport 1999, 2014) is one 
such formalism that could be used to model content-level expressions. Higher-level 
discourse structure would then be exhibited somewhat along the lines of Lamport’s 
own semi-formal “structured proofs” (Lamport 1995, 2012). However, unlike struc-
tured proof, IATC does not aim to reshape the way people do mathematics, but to 
model it more exactly. As such, it constitutes groundwork for a future generation of 
computer systems that can collaborate with mathematicians and students in a way 
these potential users already understand. Epstein (2015) highlights the “extent to 
which a person believes that her work experience or product has been facilitated or 
improved by the collaboration” as a key evaluation metric for assessing collabora-
tive intelligent computer systems. The key metric at this stage is more basic, namely, 
we are interested in the degree to which IATC can represent real-world examples of 
mathematical practice in a way that can make them accessible to computational rea-
soning. After introducing the modelling approach, we use several examples to show 
that IATC is indeed satisfactory in this regard.

–	 Our first example is a school-level challenge problem that was presented in a pub-
lic lecture by the mathematician Timothy Gowers (Gowers and Ganesalingam 
2012). The lecture aimed to motivate and contextualise a project, then begin-
ning, to develop mathematical software that “operate[s] in a way that closely 
mirrors the way human mathematicians operate” (Ganesalingam and Gowers 
2017,  p.  255). The reasoning needed to solve the challenge problem remains 
beyond the scope of the computational method that Ganesalingam and Gowers 
ultimately published, but it is both sufficiently simple and sufficiently realistic to 
introduce the practical aspects of working with IATC.

–	 Our second example is a question posed on the online Q&A forum MathOv-
erflow, together with the ensuing dialogue. MathOverflow is part of the Stack 
Exchange network of community question-and-answer websites, which is par-
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ticularly popular with software developers. The MathOverflow sub-site is devoted 
to discussions about research-level questions in mathematics. Such discussions 
are very different from the textbook-style proofs treated by Ganesalingam and 
Gowers (2017), and we discuss the considerations that such discussions would 
impose on computational modelling efforts.

–	 MiniPolymath 1 through 4 were part of a series of experiments in collabora-
tive online mathematics known as “Polymath projects” (Nielsen et  al. 2009–
2018). While other projects in the series tackled novel research, the problems 
in the MiniPolymath subseries were drawn from the Mathematical Olympiad, 
a premier competition for pre-college students. Six problems are given, and the 
examination takes place over two days with three problems to be solved each day. 
Whereas individual Olympiad participants frequently fail to solve three challenge 
problems in the four-and-a-half hours allotted for that purpose, all four of the 
collaborative MiniPolymath efforts generated a solution. However, it should be 
noted that some of these solutions took more than 24 hours to develop. IATC can 
help us understand how the proof efforts progressed, and can potentially help us 
understand why they were (mathematically) successful.

The plan of the work is as follows. Section 2 reviews previous research on math-
ematical argument, presents a brief introduction to Inference Anchoring Theory, and 
describes Lamport’s structured proofs as an example of the state of the art for mod-
elling informal mathematical knowledge. Section 3 introduces IATC, describes the 
grammar of IATC markup, and describes the differences between this language and 
IAT. Section  4 presents our analysis of the examples outlined above, which have 
been marked-up with IATC in order to illustrate the relevant modelling concerns. 
Section 5 summarises and reviews the contribution, situates our work in relationship 
to the broader literature, and outlines potential directions for further work.

2 � Background

In this section we state what we mean by argumentation, and survey previous 
research on argumentation in mathematics (Sect. 2.1). We then describe Inference 
Anchoring Theory (Sect. 2.2) and structured proof (Sect. 2.3), two landmarks that 
guide our effort.

2.1 � Argumentation and Mathematical Arguments

Our approach to argument builds on Buzynska and Reed’s Inference Anchoring 
Theory (IAT), which we describe in Sect. 2.2. The specific conception of argument 
that underlies IAT is as follows:

[A]rguing can be interpreted as an illocutionary act that comes about as the 
result of a relation between uttering a premise and uttering a conclusion, thus 
mirroring the logical structure of inference[.] (Reed et al. 2017, p. 146)
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Reed and Budzynska (2010) note that in everyday language the term “argument” 
is used to describe a particular kind of interaction as well as the shared under-
standing extracted from these interactions, as “evidence” or “proof.” The purpose 
of IAT is to make the links between discourse and reasoning explicit.

Concerning argumentation in a mathematical context, Pedemonte (2007, p. 39) 
argues that “analysis of the ‘content’ is not sufficient to analyse all the cogni-
tive aspects in the relationship between argumentation and proof.” A large part of 
mathematical discussion is in essence meta-discussion about meta-level objects, 
such as proof strategies that are suggested on the fly and debates about whether 
these strategies are likely to work as intended.

Mercier and Sperber (2011) distinguish arguments from inferences: only in the 
case of arguments “the reasons for drawing this conclusion on the basis of the 
premises are (at least partially) spelled out” (p.  58). By contrast, formal math-
ematics is typically based on the reductive assumption that “mathematical reason-
ing may be identified with classical, deductive inference” (Aliseda 2003, p. 25). 
However, everyday mathematical reasoning plainly involves more than just 
proof steps. Here are two examples of familiar patterns of reasoning that appear  
in MiniPolymath 3: 

argument from authority	� “My bachelor thesis supervisor said that one can’t use 
the word cardinal if we talk about finite sets. One has to 
use the words ‘number of elements’” (Tao et al. 2011, 19 
July, 9:46 pm).

argument from analogy	� “Let me check that I got the example correctly: is this 
‘a point inside a regular polygon’? Isn’t it established in 
an early comment that the example of a point inside an 
equilateral triangle indeed visits all the points? Can you 
clarify the difference here?” (Tao et  al. 2011, 19 July, 
9:19 pm).

The word “argument” has been attached to several distinct kinds of mathemati-
cal artefacts and activities. This term may indicate proofs (Gasteren 1990), infor-
mally-presented proofs (Tanswell 2015), proof sketches (Lamport 1995), aspects 
of reasoning that are not addressed by formal deduction (Aberdein and Dove 
2013) and elements of persuasive discussion (Zack and Graves 2001).

Some theorists have expressly contended that proofs are not arguments: this is 
because proofs offer certainty, while arguments cannot (Dufour 2013). Neverthe-
less, communication of reasons and reasoning can be found throughout mathe-
matical practice. Pedemonte (2007) highlights the use of inductive and abductive 
logic as well as deduction in mathematical processes that move “from conjectur-
ing to the construction of proof [to] the proof as product,” and in which “content 
rather than formal criteria” can guide the proving process. Dufour (2013) gives 
examples of argumentation “not only before and during the proof but also after, at 
least as long as it can be criticized” (p. 74). Other scholars have observed features 
such as these:
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–	 Published mathematical writing tends to be particularly explicit about reasons 
and conclusions (Dove 2009, p. 149).

–	 Not only the Prover but also the Skeptic “has an important role to play, namely 
to ensure that the proof is persuasive, perspicuous, and valid” (Dutilh Novaes 
2016, p. 2618).

–	 On the way to a proof, degrees of confidence about the conclusions to be drawn 
may be discussed (Inglis et al. 2007, p. 17).

–	 Mathematical meanings need to be interpreted, and this tends to be a struggle 
(van Oers 2002, p. 360).

Carrascal (2015) provides an excellent survey of recent thinking about argument 
in mathematics, highlighting its connections with mathematical practice. Carrascal 
advises: “in order to learn more about the nature of mathematical practice and how 
its products are evaluated, we should be looking at real examples of this practice.” 
She points to Pease and Martin (2012) as a notable example in this genre. Once we 
have developed a suitable apparatus, Sect. 4 will tackle several real-world examples, 
including a detailed reexamination of the dataset studied by Pease and Martin.

“Blog maths” (Barany 2010) and other online discussions, for example, on the 
question-and-answer site MathOverflow, can “tell us about mathematicians’ atti-
tudes to working together in public” as well as the “kinds of activities that go on in 
developing a proof” (Martin 2015). In the process of creating a proof or mathemati-
cal theory, divergent understandings are negotiated using shared concepts, defini-
tions, and standards for proof, even as the concepts evolve. Along these lines, Pease 
et  al. (2017) used the methods of structured and abstract argumentation to formal-
ise the theory of informal mathematics developed in Lakatos’s Proofs and Refuta-
tions (1976) as a set of rules for turn-taking in a dialogue game. This work shows 
that formally specified and fully implemented argumentation tools can be brought 
together and applied to a specific, demanding, domain of human reasoning.1 Dau-
phin and Cramer (2018) produced a similar model of natural-deduction style argu-
ments, explanations, and the “prima facie laws of logic” such as may be debated in 
work on mathematical foundations. These prior efforts focus on developing rules 
that give a plausible codification of mathematical process. Our concern is different, 
but complementary. We are interested in a better understanding of what is actually 
said in mathematical arguments, and on the reasoning that is conveyed. Accordingly, 
we will adapt a general-purpose argument modelling approach, Inference Anchoring 
Theory, which is described in the following section.

1  The dialogue game defines ordered operations on a shared information state represented in the Argu-
ment Interchange Format (AIF) (Lawrence et al. 2012), which is then interpreted by The Online Argu-
ment Structures Tool (TOAST) (Snaith and Reed 2012) and passed on to DungOMatic (Snaith et  al. 
2010) to calculate the grounded extension, which in this case represents the currently accepted, collabo-
ratively constructed, proof or theory under discussion.
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2.2 � Inference Anchoring Theory

Inference Anchoring Theory (IAT) is used to model the logical relationships 
between the propositional contents of utterances made in dialogues (Budzynska and 
Reed 2011). As noted by Reed et al. (2017), the inspiration for developing IAT lies 
in earlier work on representing dialogue in the Argumentation Interchange Format.

IAT is grounded in a notion of dialogical relations that formalise the informal 
“conventions and norms that dictate the flow of dialogue” (Snaith and Reed 2016). 
Per Budzynska and Reed (2011), these dialogical relations are also referred to as 
“transitions,” a term that is meant to recall the notion of transitions between operat-
ing states in a finite state machine. Indeed, when the norms have been fully cod-
ified in a dialogue protocol, the transitions are exactly described by a finite state 
machine.2 Content relationships are typically identified by matching locutions 
against known argument schemes, e.g., an ‘Argument from Positive Consequences’ 
is associated with two transitions, ‘challenging’ and ‘substantiating’ (Walton et al. 
2008). Budzynska et al. (2014a) describe Inference Anchoring Theory in terms of 
three components:

	 (i)	 relations between locutions in a dialogue, called transitions;
	 (ii)	 relations between sentences (propositional contents of locutions); and
	 (iii)	 illocutionary connections that link locutions with their contents.

                                                              (Budzynska et al. 2014a), emphasis added

In Figs. 1 and 2, below, “TA” stands for a default transition, “RA” stands for appli-
cation of rule of inference, and “CA” stands for default conflict. That is to say, there 
is no explicit formal dialogue protocol attached to these two examples.

Figure 1 is a typical example of an IAT analysis. Figure 2 illustrates a feature that 
was not directly mentioned in the list  (i)–(iii), above; specifically, this figure uses 
an ‘implicit’ speech-act to anchor propositional content on a transition rather than 
a locution. Here, when a speaker asserts ‘A’ and their interlocutor says ‘No’, the 

Fig. 1   IAT diagram for the con-
versation ‘A’/‘Why?’/‘A′’

2  In such a setting the formal argumentation-theoretic techniques and tools mentioned in Footnote  1 can 
be applied, though IAT models are not required to be fully formal in this regard.
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logical content ‘ ¬A ’ is attached to the transition, rather than to the negating word. 
The basic rationale is that the locution ‘No’ cannot be made sense of without the 
preceding context. There has been some debate about what to do about this. Botting 
(2015) says that the choice to anchor arguments on transitions is a conceptual mis-
take. However, for the creators of IAT, the reason illocutionary acts can be rooted on 
dialogical relations follows

...directly from pragma-dialectical analysis which views the speech act of 
assertion [...] as occurring at the ‘sentence’ level, and the speech act of argu-
mentation as occurring at a ‘higher textual level.’ (Budzynska and Reed 2011)

Visser et  al. (2011) describe the theoretical considerations in more detail. The 
pattern common to both Figs. 1 and 2 is that allowable inferences are governed by 
dialogue norms. In Fig. 1, for instance, we would not immediately know that ‘ A′ ’ 
is intended to support ‘A’ without Wilma’s intermediate question which explicitly 
requested such support. Given the context, the intended inference is clear. Thus, 
both examples serve to illustrate that

the connection between locutions in a dialogue has an inferential component 
beyond any that may hold between the contents of those locutions (Reed and 
Budzynska 2010).

In short, IAT studies “the way in which the rules of dialogue influence the construc-
tion of argument” (Budzynska et al. 2016).

Although the specific example in Fig.  2 is very simple, the following general 
observation on dialogue norms is useful for thinking about how the conversation 
might continue from the point it has reached so far:

[T]here is an asymmetry between the production of arguments, which involves 
an intrinsic bias in favor of the opinions or decisions of the arguer whether 
they are sound or not, and the evaluation of arguments, which aims at distin-
guishing good arguments from bad ones. (Mercier and Sperber 2011, p. 72)

If the conversation were to continue, Wilma would typically have the burden of jus-
tifying her rejection of ‘A’, which might be done with counterarguments that would 
dig into the details of ‘A’ looking for flaws (ibid., p.  67); in addition, she might 

Fig. 2   IAT diagram for the 
conversation ‘A’/‘No’
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begin to make a case for an alternative position, ‘B’. These considerations point to 
the direction we will be taking with IATC.

Our main strategy will be to supplement IAT with an explicit register for content. 
Alongside (i)–(iii), above, we introduce:

	 (iv)	 a model of non-propositional content, namely of the mathematical objects 
under discussion, and the relations between them.

We will describe the implications of this addition in detail in Sect.  3, along with 
some other adaptations to IAT that we have found useful in mathematical settings. 
One of the implications is that in the current work we do not need to emphasise tran-
sitions—of either the explicit or implicit variety—since a more explicit treatment of 
content gives us another way to manage context relationships.

2.3 � Lamport’s Structured Proofs

Structured proofs, as described by Lamport (1995, 2012), inhabit the middle ground 
between formal and informal mathematics, and provide a useful point of reference 
for our work on IATC. Structured proofs offer a notational strategy that is a “refine-
ment of [...] natural deduction” (Lamport 1995). While the proofs represented using 
this system are not required to be strictly formal, the language of structured proofs 
has evolved together with Lamport’s work on a formal language and corresponding 
proof checking system, the “Temporal Logic of Actions+” (TLA+ ), which is used 
to model concurrent systems Lamport (1999, 2014).3 Structured proofs are, specifi-
cally, structured as a strict hierarchy of lemmas. An example appears later on in this 
paper, in Fig. 6, which we will use to illustrate the similarities and differences with 
IATC.

For now, we comment that while the use of strict hierarchies is not representa-
tive of the way proofs are usually constructed in day-to-day practice, Lamport has 
proposed that structured proofs can assist in proof development, e.g., by helping to 
bring errors to the surface. However, they do not necessarily make the job of the 
reader easier: Lamport (2012, p. 20) quotes a referee who had read one of his struc-
tured proofs:

The proofs [...] are lengthy, and are presented in a style which I find very tedi-
ous. [...] My feeling is that informal proof sketches [...] to explain the crucial 
ideas in each result would be more appropriate.

3  Only a few of the keywords available in the latest version of TLA+ appear in the structured proof 
notation. Per Lamport (2015), the full list of TLA+ keywords is as follows. Those which are also used 
in structured proofs are decorated with underlining: assume ... prove ..., boolean, by, case, 
choose, constant (synonymously, constants), corollary, def, define, domain, else, 
except, extends, have, hide, if, instance, lambda, lemma, let ... in ..., new, omitted, 
pick, proposition, recursive, subset, suffices, take, theorem, unchanged, union, 
use, variable, witness.
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Unlike structured proofs, IATC is intended to express the typical processes by which 
proofs are generated in standard practice, rather than make the process of prov-
ing and reading proofs easier. It would nevertheless be compatible with our aims 
to include formal statements in TLA+ (or some other language) in IATC’s content 
layer.

3 � Inference Anchoring Theory + Content

IATC has many things in common with IAT, but should not be seen as a strict addi-
tion to the earlier theory. Adding explicit models of content and discussions about 
content prompts several adaptations. In this section we describe these adaptations, 
and introduce the IATC modelling language.

Several important requirements arise from the features of the mathematics 
domain. As we saw above, IAT is concerned with anchoring propositions to utter-
ances and with mapping the logical relationships that obtain between them. How-
ever, various mathematical objects—Larvor (2012) mentions “diagrams, notational 
expressions, physical models, mental models and computer models”—are more 
comfortably thought of as non-propositional in nature. Discussions about proofs 
have been theorised formally using the notion of proof plans, which are constructed 
and transformed using explicit heuristics and tactics (Bundy 1988). However, Fie-
dler and Horacek (2007, pp. 63–64) have suggested that existing work with proof 
plans cannot be straightforwardly adapted from machine-oriented to human-ori-
ented contexts, because proof plans are, from a potential human reader’s perspec-
tive, overly detailed, with insufficient structural abstraction. By contrast, a language 
like IATC is charged with expressing “strategic arguments that are meaningful to 
humans” (Fiedler and Horacek 2007, p. 68). Nevertheless, as important as strategic 
reasoning is, low-level mathematical content seems to be even more fundamental.

We see the first-class role that content plays in mathematical discourse when new 
terms are introduced and referred to, for example. Thus, the editor’s introduction to 
Karttunen (1976) notes the following:

...informal notational practise [sic] of mathematicians, who will write an exis-
tentially quantified formula (say, (∃e)(∀x)(xe = ex = x) , as one of a set of pos-
tulates for group theory) and thenceforth use the variable bound by the existen-
tial quantifier as if it were a constant as when they will write the next postulate 
( ∀x)(∃x−1)(xx−1 = x−1x = e) . [punctuation modified]

Karttunen’s concept of “discourse referents,” illustrated in the quote above, underlies 
Discourse Representation Theory (Kamp and Reyle 1993) and its extensions. While 
the developers of IAT acknowledge the generality of Structured Discourse Repre-
sentation Theory (SDRT), in particular, they criticise it for making “assumptions 
of context-independent semantics” (Budzynska et al. 2016). Nevertheless, DRT has 
been successfully applied to model some aspects of mathematical discourse, and we 
will discuss that work further in Sect. 5, and contrast it with our orientation here.

For now, we emphasise that IATC differs from IAT in its approach to context. 
Specifically, IATC sets the notion of dialogical relations to one side, and instead 
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connects locutions to each other directly in the content and intermediate (meta-dis-
cussion) layers.

Before we describe the language in detail, we present a simple example, Fig. 3, 
which reanalyses and extends the ‘A’/‘No’ dialogue from Fig. 2. The first two dia-
logue moves in these two examples are identical.

Here, rather than connecting ‘No’ to ‘A’ with a transition, we connect it directly 
to the previously modelled content, A, via a ‘Challenge’ illocution. From there, 
we continue to use the content and intermediate layers to explicitly model intercon-
nections. For example, ‘B’ does not simply conflict with A, but rather presents a 
warrant for “not A”, modelled here using the two-parameter ‘implies’ relation.

With these changes in place, dialogue relations could in principle be reintroduced. 
For example, ‘Because B’ could be seen to ‘substantiate’ the previous utterance, 
‘No’, as a communicated reason for rejecting A. Nevertheless, in the current work 
we continue to leave these links out, on the basis that we do not yet have a detailed 
theory of the norms of mathematical dialogue. The Lakatosian model developed by 
Pease et  al. (2017), for example, only covers a limited subset of the rules and norms 
involved, specifically, those dealing with conjectures, lemmas, and the production 
and evaluation of counterexamples. By interconnecting contents in the content layer 
and through intermediate relations, we are able to make an explicit model of the 
logical structure of mathematical arguments. Such models could potentially inform 
a subsequent analysis of the associated dialogue structures.

For example, the long-range reform connection from A to A′ in our content 
analysis would suggest a corresponding long-range transition from Bob’s first to his 
last statement in the dialogue. However, that would still neglect Bob’s so-far implicit 
reasoning to the effect that A′ is (potentially) not vulnerable to objection B. If the 
dialogue continued from this point, detailed relationships between the constituent 
contents of ‘ A′ ’ and ‘B’ may need to be discussed, and an IATC analysis would be 
able to unpack these and account for the details.

In line with these design decisions, and inspired by the specific features of math-
ematical dialogue and exposition, IATC introduces a range of extra machinery to 
the IAT framework to model the relationships between mathematical objects and 
propositions, along with an array of dialogue moves related to the strategic aspects 
of proof. Unlike IAT, we make no attempt to cover argumentation in law, natural 

Fig. 3   Simple IATC diagram exhibiting an assertion, a refutation, a counterexample, and a reformation. 
(Color figure online)
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science, or interpersonal mediation, fields in which the norms that govern inference 
can be vastly different. (Precedent, for example, may be acceptable in a legal argu-
ment but not in one about ethics.) In mathematical argumentation, many of the con-
ventions are embodied in the objects under discussion and the things that can sensi-
bly be said about them. Details of our notational apparatus are given in Tables 1 and 
2. We collect reference examples of short texts marked up with these codes in an 
Appendix.

Our method for producing this set of tags was as follows. Two of us (with first 
degrees respectively in Mathematics and Information Systems, both with more than 
10 years experience studying argumentation and social machines) performed close 
content analysis (Klaus 2004) together on the first 100 comments in MiniPolymath 
1. Our analyses resulted in an initial tag set, including both typical illocutionary per-
formatives and mathematics specific performatives, like Define and QueryE, as 
needed (see “Appendix” for examples). Several of the typical illocutionary connec-
tions (Assert, Question, Challenge, Agree) could be carried over from the 
schemes commonly applied in IAT. Our initial tag set was discussed and iteratively 
developed over the same 100 comments by all co-authors, with any recurring dif-
ferences discussed, allowing us to align our results. A third co-author (with a first 
degree and Ph.D. in Mathematics) then further developed and refined the tag set by 
performing close content analysis on the entire MiniPolymath 3 conversation and on 
sections of MiniPolymath 1. Again, this was conducted alongside discussion with 
the other co-authors throughout the process. A fourth co-author (with a first degree 
in Mathematics) later extended the tag set with additional informal logical relation-
ships, such as analogy, and specific content-focused relationships, such as sums, 
which played a role in the further examples we treated in Sect. 4. These extensions 
were again reviewed by all co-authors.

Our discussions concerned issues such as whether to label a statement such 
as ‘it would be good to approach the problem in this way...’ as simply a sug-
gested strategy or, additionally, as a value[...] judgement about the 
strategy. Shortly, in Fig. 4, we will show an example tagging in which the multi-
ple layers of interpretation are included. However, perfect agreement about how 
to treat such cases is not intended; the IATC framework is designed to account 

Table 1   Inference Anchoring Theory + Content, part 1: Performatives

Performatives (perf[...])

Assert (s [, a ]) Assert belief that statement s is true, optionally because of a
Agree (s [, a ]) Agree with a previous statement s, optionally because of a
Challenge (s [, a ]) Assert belief that statement s is false, optionally because of a
Retract (s [, a ]) Retract a previous statement s, optionally because of a
Define (o, p) Define object o via property p
Suggest (s) Suggest a strategy s
Judge (s, v) Apply a heuristic value judgement v to some statement s
Query (s) Ask for the truth value of statement s
QueryE ({pi(X)}) Ask for the class of objects X for which all the properties {pi} hold
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for flexibility in interpretations. The additional tags in Table 2 were not at first 
divided into the present categories, but repeated analysis quickly revealed struc-
tural content relations, as well as inferential structure, as natural categories, intui-
tively corresponding to the mathematical and logical contents of the MiniPoly-
math discussions we examined. By far the most difficult categorisation to make 
was between value judgements and reasoning tactics. For example, the difference 
between deeming a statement useful and suggesting it as a goal could depend 

Table 2   Inference Anchoring Theory + Content, part 2: inferential structure, heuristics and value judg-
ments, reasoning tactics, and content-focused relations

Inferential structure (rel[...])
 implies (s, t) Statement s implies statement t
 equivalent (s, t) Statement s implies statement t and vice versa
 not (s) Negation of s
 conjunction (s, t, ...) Conjunction of statements s, t, ...
 has_property (o, p) Object o has property p
 instance_of (o, m) Object o is an instance of the broader class m
 indep_of (o, d) Object o does not depend on the choice of object d
 case_split (s, { si}) Statement s is equivalent to the conjunction of the 

si’s
 wlog (s, t) Statement t is equivalent to statement s but easier 

to prove
Heuristic value judgments (value[...])
 easy (s [, t]) Statement s is easy to prove; optionally, easier than 

statement t
 plausible (s) Statement s is plausible
 beautiful (s) Statement s is beautiful (or mathematically elegant)
 useful (s) Statement s can be used in an eventual proof

Reasoning tactics (meta[...])
 goal (s) Used with Suggest to guide other agents to work 

to prove the statement s
 strategy (m, s) Indicate that method m might be used to prove s
 auxiliary (s, a) Statement s requires an auxiliary lemma a
 analogy (s, t) Statement s and statement t should be seen as 

analogous in some way
 implements (s, m) Statement s implements the method m from a previ-

ously suggested strategy
 generalise (m, n) Method m generalises method n

Content-focused structural relations (struct[...])
 used_in (o, s) Object o is used in statement (or object) s
 reform (s, t) Statement s can be reformed into statement t
 instantiates (s, t) Statement s schematically instantiates statement t
 expands (x, y) Expression x expands to expression y
 sums (x, y) Expression x sums to expression y
 cont_summand (x, y) Expression x contains y as a summand
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completely on how polite or how bold the person making the utterance wished to 
be!

Our performatives have slots, which are filled by statements or objects. State-
ments may be represented in various ways: in unparsed natural language, as sym-
bolic tokens that serve as shorthand for such statements, or in some representa-
tion language. The other relations are clustered into segments treating Inferential 
Structure, Heuristics and Value Judgments, Reasoning Tactics, and Content-
Focused Structural Relations. The associated grammatical categories are given 
the following abbreviations in our linear notation: ‘rel’, ‘value’, ‘meta’, 
and struct’. For example, the expression ‘perf[Assert](rel[has_
property](o, p))’ denotes the assertion of the statement “object o has property 
p.” IATC allows direct, explicit, statements about objects, propositions, and state-
ments. For example, ‘perf[Assert](used_in (o, s))’ denotes the assertion 
of the statement “object o appears in statement s.”

We have two notational strategies that call attention to features of discourse or 
content that are taken as understood, but not explicitly stated. Performatives may 
be marked as “unspoken” when the contents are only broadly implied. Several 
examples of this notational strategy appear in Sect. 4.1. Similarly, content-focused 
structural relations are sometimes introduced without an attached performative, 
whenever they have been noticed by the analyst. Figure  4 includes examples 
of this latter usage. This figure represents the analysis of a short excerpt from 
a real mathematical dialogue, showing its diagrammatic and textual representa-
tions in IATC. The discussion (“MiniPolymath 1”) concerned Problem  6 from 
the 2009 International Mathematical Olympiad. The text analysed in Fig. 4 is a 
portion of the fourth comment made in the discussion (Tao et al. 2009, 20 July, 
6:50 am). An expanded excerpt is discussed in Sect. 4.3 along with more details 
of our IATC analysis of MiniPolymath data. Here, colour coding highlights the 

perf[Assert](rel[equivalent](problem, perm_view))
perf[Judge](value[useful](perm_view))
perf[Suggest](meta[goal](perm_view))
struct[used_in](ai, problem)
struct[used_in](ai, perm_view)

Fig. 4   IATC markup of the statement “The following reformulation of the problem may be useful: show 
that for any permutation s in Sn , the sum as(1) + as(2)… + as(j) is not in M for any j ≤ n .” A larger por-
tion of the dialogue is analysed in graphical and textual form in Fig. 12 and Table 3. (Color figure online)
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correspondence between the graphical and textual grammar elements. One state-
ment has been analysed into three performatives:

–	 The speaker Asserts that the problem has an equivalent reformulation. “The 
following reformulation of the problem may be useful: Show that for any per-
mutation s in Sn, the sum as(1) + as(2)… + as(j) is not in M for any j ≤ n.”

–	 The speaker Judges the reformulation to be (potentially) useful. “The following 
reformulation of the problem may be useful: [...]”

–	 The speaker Suggests that the reformulation describes a goal that could be 
worth pursuing: “[...] Show that [...]”

In addition, mathematical objects (several symbols, ai ) are analysed as component 
pieces of tagged content (‘problem’ and ‘perm_view’). Note that bold lines at 
left in the figure are a shorthand for the ‘used_in’ relation. Subsequent statements 
in the dialogue will be able to link back to these objects: the analysis of an expanded 
extract appears in Fig. 12.

The relations given in Tables 1 and 2 have been sufficient to describe the reason-
ing in a range of examples, however we do not claim that this list of relationships 
would treat all mathematical texts. Nor do these relationships describe mathematical 
texts at the level of formality found in proof checking systems, or the level of detail 
found in some other theorisations of discourse. Thus, in the future IATC should not 
be limited to the set of tags presented here. For example, we have found uses for the 
value judgments ‘easy’, ‘beautiful’, and ‘useful’, but it is quite plausible 
that future work would find use for values such as ‘efficient’, ‘generative’, 
or something else. Similarly, useful additions may be found in the other grammati-
cal categories. The evidence from our examples in Sect. 4 is that these major gram-
matical categories—performatives, inferential relations, meta-level reasoning, value 
judgments, and content relations—are themselves stable.

We have described, and illustrated with simple examples, the way content and 
strategic relationships can be used to mediate contextual relationships, but context 
is also representable in IATC in another more explicit way. Although IATC does not 
require proofs to be structured in a tree-like hierarchy, nested structure is introduced 
as follows. In general, language elements in Table 2 that have a statement slot can 
also have that slot filled by a (possibly disconnected) subgraph. In this way, structure 
corresponding to a “lemma” can be indicated. A lemma, in this sense, is understood 
to be the reasoning that ‘implements’ a ‘strategy’, or, alternatively, a specific 
section of reasoning that ‘implies’ some conclusion. This representation strategy 
is similar to the “partitioned networks” introduced by Hendrix (1975, 1979). An 
example will appear in Sect. 4.1.

To summarise, IATC resembles IAT in many ways, but with changes that are 
required when content, and discussions about content, are explicitly modelled. 
These features are necessary to express details of mathematical reasoning. For 
example, one proposition that can be extracted from the statement in Fig. 4 has the 
schematic form “The reformulation P is equivalent to the original question Q.” IAT 
would have no way to extract P and Q from the assertion, but IATC can do so: they 
are represented as ‘problem’ and ‘perm_view’ in the figure. Later moves can 
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then connect to these pieces of content, and we already see such structure forming in 
our analysis of the above short excerpt.

IATC retains and extends IAT’s approach to modelling contents and inferences, 
by adding non-propositional contents and more complex logical and heuristic rela-
tions. Illocutionary connections are also retained, with some mathematics-specific 
additions. However, IATC sets aside the notion of transitions, not because we view 
dialogue norms as unimportant, but because they are difficult to model at this stage. 
In IAT, relations between propositional contents roughly mirror the norms involved. 
The corresponding notion for IATC would be heuristics that account for the pro-
duction of new expressions, and which take preceding expressions and background 
knowledge into account. We will have more to say about such heuristics in Sect. 4, 
nevertheless, many considerations must be deferred to future work.

4 � Examples

In this section, we use three examples to showcase what IATC has to offer as a tool 
for analysis. We illustrate

–	 how IATC expresses the reasoning structures that arise in proof construction,
–	 how it might be used to support computational models of mathematical reason-

ing,
–	 and how it helps to uncover the salient elements of mathematical discourse.

To illustrate the points above, we have selected and analysed three examples that 
exhibit informal, expository, and discursive features of mathematical reasoning. The 
presentation here is a novel and self-contained synthesis and expansion of remarks 
made in previous papers (Corneli et  al. 2017a, b; Pease and Martin 2012). The 
three examples collectively show the richness of mathematical argument, and were 
selected to match the three aims indicated above:

–	 Section 4.1: A carefully spelled out informal solution to a tricky but non-techni-
cal mathematical problem serves to illustrate the thought processes involved in 
successful mathematical problem solving. The example shows how IATC cap-
tures this sort of thinking.

–	 Section 4.2: A discussion of the relationships between, and merits of, different 
mathematical questions exhibits a level of abstraction above that needed in an 
individual proof. We explore the ramifications for explicit representations of the 
reasoning involved.

–	 Section  4.3: A multi-participant dialogue that develops a challenging but not 
highly technical proof casts light on processes of mathematical collaboration and 
mathematical reasoning. An analysis of this material using IATC allows us to 
explore the process of proof-construction in detail.

In each of the following subsections, we give more details of the context of each 
example, before presenting our analysis and comments.
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4.1 � Making the Reasoning Explicit in the Solution to a Challenge Problem

In this section we aim to show that IATC is a natural modelling tool for informal 
mathematics. Whereas Robinson (1965, p. 23) had sought to

reduce complex inferences, which are beyond the capacity of the human mind 
to grasp as single steps, to chains of simpler inferences, each of which is within 
the capacity of the human mind to grasp as a single transaction,

an alternative path of enquiry seeks to describe the heuristic process of proving the-
orems in more cognitively plausible terms. In particular, one relevant question to ask 
is how (human) mathematicians avoid large searches (Gowers 2017). IATC can con-
tribute to the further development of this effort, by giving a uniform but expressive 
way to outline the process of developing proofs. Researchers working on mathemati-
cal software meant to exhibit human-style reasoning may find this expressiveness 
useful.

Our chosen example is a “magic leap” problem presented in a public lecture by 
Timothy Gowers, describing joint work with Mohan Ganesalingam (2012). The rea-
soning was communicated by a combination of speech and marks on a chalkboard, 
and is reproduced in Fig. 5. This example has been modelled in IATC by Corneli 
et  al. (2017b). The problem initially appears difficult to solve without a computer 
algebra system, but a simple algebraic solution is available once the correct strategy 
is found. As such, an important part of the reasoning involved in solving the prob-
lem is to find the correct strategy. The steps involved in this part of the reasoning 
process are heuristic rather than deductive. We redescribe the analysis here.

Fig. 5   A “magic leap” challenge problem and its solution, presented by Timothy Gowers as part of a 
public lecture at the University of Edinburgh, November 2, 2012. (Reproduced from notes taken at the 
lecture.)
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For comparison with the IATC analysis, Fig. 6 reproduces the proof in Lamport’s 
style. Figures 7, 8, 9 and 10 present portions of the IATC tagging of the solution 
that was presented in Gowers’s lecture. Figure 7 illustrates an initial exploration of 
the question, and Fig. 8 establishes a ‘strategy’ based on that exploration (“The 

Fig. 6   The solution to the challenge problem as a Lamport-style structured proof
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trick might be: it is close to something we can compute”). Figure 9 opens the door to 
applying the strategy. The central part of the proof that ‘implements’ the strategy 
is highlighted in Fig. 10.

The introduction to the proof, expanded in Fig. 7—and condensed into a "Proof 
sketch” in Fig. 6—contains interesting examples of heuristic reasoning. This part 
of the solution centres on the probing question “Can we do this for �?”, where � 

Fig. 7   IATC tagging for the first portion of the challenge problem

Fig. 8   IATC tagging for the second portion of the challenge problem
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ranges over several examples: x + y , e, and small rationals, and where ‘this’ denotes 
“find the 500th digit of �2012 .” In the IATC representation, each tentative proposal 
to “do this...” stands in analogy with the original problem statement. Although 
Fig. 7 contains only Assert performatives, a more complete representation would 

Fig. 9   IATC tagging for the third portion of the challenge problem

Fig. 10   Nested structure (in red) implements the strategy suggested earlier: “The trick might be: 
it is close to something we can compute.” The intermediate conclusion reached in this phase of reasoning 
(highlighted in blue), when taken together with a further computational check, subsequently implies 
that the answer is “9”. (Color figure online)
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also include Query performatives, since the analogies are not only proposed: their 
validity is also queried, much as we saw in the example treated in the previous 
section.

Step 1 in the structured proof works out one of the ideas from the proof sketch at 
a level of detail that was not present in the lecture, which instead progressed directly 
on to the material treated in Step 2. As Fiedler and Horacek (2007, p. 69) noted, 
“The analysis of human proof explanations shows that certain logical inferences 
are only conveyed implicitly, drawing on the discourse context and default expec-
tations.” There is no hard and fast rule that can tell us how much of the implicit 
material we need to explicate, but one rule of thumb that naturally arises from our 
representation strategy is that coherently related discussions should correspond to 
connected graphs in the expansion. Thus, for example, Fig. 7 includes an implicit 
“unspoken” Assertion; the proof is made fully explicit in Step 1 of the Lamport-
style proof, but never appeared in the original lecture. Again, in a standard IAT rep-
resentation, unspoken assertions would typically be represented as ‘implicit’ speech 
acts rooted on transitions, whereas in IATC, we see how these unspoken assertions 
play a role in the argument via their expansion and subsequent interconnections in 
the content layer.

Indeed, nowhere in the explicitly communicated reasoning is the key strategy 
fully and explicitly stated. The basic strategy of the proof is that the quantity of inter-
est may be sufficiently close to something we can compute. In the IATC representa-
tion (Fig. 8), this is understood to be Suggested by the following statements from 
the proof sketch, “And how about small perturbations of these? Maybe it is close to 
a rational?” Step 1 of the structured proof shows that rationals do, in fact, match the 
strategy’s preconditions. The IATC representation is less explicit on this point, since 
it sticks more closely to the reasoning expressed in the lecture. This example shows 
that even relatively explicit statements may need further interpretation to be repre-
sented meaningfully in IATC. Specifically, the way the proof progresses only makes 
sense if we recognise the ‘strategy’ implied by what might otherwise appear to 
be a throwaway comment early on.

Step 2 in the structured proof concerns another analogy. This time, a special 
one which, the IATC analysis notes, symbolically generalises the initial ques-
tion (Fig.  8). That is, rather than considering (

√

2 +
√

3)2012 we now consider 
(
√

2 +
√

3)m . (NB.  an edge connecting the ‘generalise’ node to the prob-
lem statement has been omitted.) However, the concept of generalisation remains 
implicit in the corresponding portion of the structured proof. Indeed, Step 2 is not 
a good match for the requirements of structured proof at all, since it is not a real 
lemma, and its “proof” fails (indicated by “*”). Including failed proof steps is not 
a problem for IATC. In Fig. 9 the process of solving the problem proceeds apace, 
without pausing to remark on a failed lemma, now that something more interesting 
has been discovered.

Meanwhile, Step 3 in the structured proof implements the main strategy 
for resolving a special case of our generalised problem, namely showing that 
(
√

2 +
√

3)2 is close to an integer, establishing a pattern that leads to the conclu-
sion. Again, Step 3.3 offers considerably more detail than was present in the original 
lecture.
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Step 4 subsequently generalises the method that was used in Step 3, and 
applies it to the expression we were originally interested in. Figure  10 diagrams 
out the reasoning that underlies this step. The long-range dashed edge in this fig-
ure connects with the node “The trick might be: it is close to something we can 
compute” pictured in Fig.  8. The collection of nodes highlighted in red imple-
ment that strategy. Notice, though, that the computation is not done explicitly: 
it’s unimportant which integer the number of interest is close to. Collectively, the 
fact that (

√

2 +
√

3)2012 + (
√

3 −
√

2)2012 sums to “some integer” and the fact that 
(
√

3 −
√

2)2012 is sufficiently small implies the result. Step 5 shows the details of 
the final computational check.

Several objections could be raised about the structured proof presented in Fig. 6, 
most notably to the inclusion of a failed lemma in Step 2. However, as a source 
of information about the intuition behind the proof, this failure is valuable. While 
objections to the IATC treatment are also possible, it is clear that this method helps 
to make explicit features of the proof process that remain implicit in the structured 
proof. In particular, analogies, strategies, and relationships between methods are 
made explicit. While the structured proof augments the lecture with more techni-
cal details, IATC provides a more faithful model of the reasoning expressed in the 
lecture itself.

4.2 � Towards Computable Models of Mathematical Reasoning Via IATC: A Q&A 
Example

Contributors to discussions about mathematics on MathOverflow do more than just 
talk about proofs.

The presentation is often speculative and informal, a style which would have 
no place in a research paper, reinforced by conversational devices that are 
accepting of error and invite challenge. (Martin and Pease 2013)

IATC allows the argumentation aspects of mathematical dialogues to be represented 
as explicit graphical structures, which gives a plausible basis from which to develop 
an explicit computational model of the reasoning steps that are implied in math-
ematical argumentation. Corneli et al. (2017a) showed how IATC could be used to 
create graphical models of the discussion that develops around a question posted 
on MathOverflow. Here we will remark further on implications for computational 
modelling. The question, which was given the title “Group cannot be the union of 
conjugates” (Chandrasekhar et al. 2010), is as follows:

“I have seen this problem, that if G is a finite group and H is a proper subgroup 
of G with finite index then G ≠

⋃

g∈G gHg−1. Does this remain true for the infinite 
case also?”

In the most straightforward reading, two superficially similar group-theoretic 
propositions seem to be at stake: 

(P1)	� “If G is a  finite group, H is a subgroup of G and the index [G ∶H] is finite, 
then G is not equal to the union of gHg−1 ”; and,
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(P2)	� “If G is an  infinite group, H is a subgroup of G and the index [G ∶H] is finite, 
then G is not equal to the union of gHg−1.”

 The question thus implicitly outlines an argument by analogy:

–	 (P1) is true
–	 (P2) is similar to (P1)
–	 Therefore, (P2) is (potentially) true as well

The essence of the question is to ask whether the mathematical facts align with this 
schematic argument. As it turns out, this question is answered in the affirmative. 
Shortly after the question was asked, one discussant make the terse comment “the 
case of infinite G readily reduces to the case of finite G”; months later, another dis-
cussant supplies an explicit proof of (P2).

In the mean time, other discussants had proposed and addressed several alterna-
tive formulations of the question. An important distinction hinges on the interpreta-
tion of the phrase “infinite case.” An alternative proposition that incorporates some 
of the suggested revisions is as follows: 

(P2′)	� “If G is an  infinite group, H is a proper finite index subset of G and the 
index [G ∶H] is  infinite, then G is not equal to the union of gHg−1.”

 In this case an argument by analogy would not match the facts: a counterexample is 
supplied to show that proposition (P2′ ) is false.

The dialogue is an interesting example of mathematical reasoning in which proof 
certainly plays a role, but is nevertheless of secondary interest compared with ask-
ing interesting questions, and thinking about how different questions relate to each 
other. What would be necessary to represent this sort of dialogue computationally? 
Expressing propositions like (P1) in IATC is straightforward, though, as we noted, 
the content layer is not directly modelled in this representation language. The fol-
lowing expression represents this proposition in IATC, introducing additional 
invented pseudocode representations (in italics) in the content layer.

perf[Assert](
rel[implies](
rel[conjunction](finite_group (G),

subgroup (H,G),
rel[has_property](index (H,G),is_finite ))

rel[not](equal (G,
union_over (conjugates (H,g),elements (g,G))))))

Processing such expressions to build a model of a dialogue will require add-
ing numerous stanzas like this one, each rooted on an IATC performative, into 
one graph database that records the relationships between the statements and their 
constituent parts. Individual expressions like the implies relationship would 
need to be addressable, in order for an analogy between two implications to be 
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proposed. Definitions for predicates like finite_group and special construc-
tions like union_over could be supplied in an accompanying knowledge base. In 
further rounds of computational processing, the analogies between (P1) and (P2), 
and between (P1) and (P2′ ), could be checked using graph-processing methods 
described by Sowa and Majumdar (2003). New heuristics would be needed if the 
aim was to demonstrate the truth or falsity of the various propositions, not just to 
recreate the surface analogies. Moreover, as we’ve seen, mathematical dialogues are 
not just concerned with verifying statements, but may also consider the qualities that 
make a particular question interesting in a given context. Heuristics that can be used 
to select interesting problems are not prevalent in current mathematical software.

As a limited proof of concept showing the plausibility of adding a computa-
tional deduction and verification layer on top of IATC representations, Corneli et al. 
(2017b) give a detailed expansion of one step of a mathematical proof using sim-
ple rules for transforming the underlying graph structures. It is worth emphasising 
that the representations of reasoning afforded by language elements in Tables 1 and 
2do not themselves encode the meta-level reasoning associated with such graph 
transformations.

4.3 � MiniPolymath Revisited

The data that underlie this section were generated in a series of online experiments 
in collaborative problem solving convened by mathematician Terence Tao (2009; 
2011). We use IATC to expand on a previous analysis of this data presented by 
Pease and Martin (2012), showing how IATC can advance the theory of mathemati-
cal argument through the detailed analysis of real world examples, as per Carrascal 
(2015).

In their 2012 paper, Pease and Martin analysed the third MiniPolymath project in 
broad strokes, with each blog comment comprising a single unit to be tagged. They 
developed a typology of five intuitive comment types, based on the mathematical 
content of each comment: examples, conjectures, concepts, proofs, and other.

In order to assign comments to these categories, both authors performed close 
content analysis on all comments posted between the time Tao posted the problem 
to his blog (8pm, UTC on July 19th, 2011) and the time he announced that a solu-
tion had appeared (9.50pm, UTC on July 19th, 2011). The discussion comprised 147 
comments over 27 threads. Ten comments were assigned to more than one category.

Our present IATC analysis of the same data is designed to give a more complete 
picture of the linguistic, dialectical, and inferential structure of the comments that 
fall within the five intuitive categories mentioned. There are three main differences 
between the two analyses. First, in comparison with the earlier broad-stroke analy-
sis, the IATC analysis is richly detailed, with a unit defined as any quantum of com-
mentary with taggable content. Secondly, our focus in the earlier analysis was purely 
on mathematical content, and on the type of mathematical content in particular. This 
contrasts with our present analysis, in which we provide a more fine-grained repre-
sentation of mathematical content in the taggable units, and furthermore take into 
account linguistic, dialectical, and inferential structure. Third, the IATC analysis 
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takes into consideration the entire MiniPolymath 3 conversation, including the com-
ments that came after Tao had announced that a proof had been found.

The new analysis, accordingly, adds depth to our earlier analysis. Crucially, the 
new perspective will be more relevant to argumentation theorists, and supports a 
detailed understanding of what went on in the process of constructing the collabora-
tive proof. The earlier typology provided an initial way to sort the content, whereas 
the IATC tag set developed along with our analysis via the iterative, discursive 
method discribed in Sect. 3. Though they cover the same data and show some corre-
lations, as described below, the latter categorisation was not derived from the earlier 
one.

Figure 11 presents an excerpt from the MiniPolymath 1 dialogue (MPM1) as 
it originally appeared on Tao’s blog. Figure 12 and Table 3 give the IATC analy-
sis of this excerpt in diagrammatic and textual form. The first portion of Fig. 12 

Fig. 11   Screenshot of a portion of the MiniPolymath 1 dialogue. (Color figure online)
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repeats the contents of Fig. 4. The longer excerpt shown here illustrates complex 
contextual interconnections forming in the content layer.

Our main example in this section is MiniPolymath 3 (MPM3), which we 
tagged into IATC in its entirety. (This work was carried out by one co-author with 
a first degree and PhD in Mathematics, in consultation with others as described 
in Sect. 3.) As an indicative sample, the first three comments and their tags are 
shown in Fig. 13. Figure 14 shows how tags from IATC’s five grammatical cat-
egories were distributed over time. Thus, for example, we see ‘value’ tags used 
early in the discussion as strategies are being considered, and again later in the 
discussion when solutions are being vetted. Figure 15 gives another view of the 
timeline, showing how the comments were categorised into the 5-part typology 
from Pease and Martin. In the initial categorisation developed for that paper, 
comments were allowed to be in multiple categories at once. Here, to facili-
tate a clean mapping to IATC, we redid the categorisation with the requirement 
that each comment should fit into exactly one main category. We arrived at a 
nearly equal division of comments among the five categories: example (20.3%) 
conjecture (21.2%), concept (19.5%), proof (19.5%), and other (19.5%). (This 

Fig. 12   IATC analysis of MPM1 excerpt (graphical form). (Color figure online)
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Table 3   IATC analysis of MPM1 excerpt (text form). (Color table online)
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replication work was carried out independently by one of the coauthors with a 
first degree in Mathematics.)

Figure  16 illustrates the correspondence between IATC tags with the earlier 
typology. Aligning the bulkier 5-part categorisation with the IATC tagging shows 

Fig. 13   IATC tags for the problem and first three comments in MiniPolymath 3
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that these five intuitive labels are mapped in very different ways to the more detailed 
IATC tag set.

We observe certain regularities: for example, Assert is present in all five 
types of comments, but is used most frequently within proof-related comments. 
Annotations from the ‘struct’ grammatical category are most prevalently asso-
ciated with conjecture-related comments. (NB.  In this tagging exercise we only 
considered the ‘used_in’ facet of the ‘struct’ category, so ‘structural’ 

Fig. 14   Timeline of the MiniPolymath 3 dialogue showing the IATC grammar categories used in the tag-
ging. Comments are binned into 5 min intervals. The first interval is 8:05–8:09 and the last is 9:50–9:59, 
inclusive. (Color figure online)

Fig. 15   Timeline of the MiniPolymath 3 dialogue showing comments categorised into five categories: 
Concept, Conjecture, Proof, Examples, and Other. (Color figure online)
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is here a synonym for ‘used_in’.) It is not surprising that the performative 
Challenge is used most frequently in examples, since, intuitively, an exam-
ple is likely to be put forward as a counter-example. The most prevalent use of 
Agree is in comments that are categorised as “other”. Retract is frequently 
used in this category as well, as is stronger (here, a synonym for ‘implies’). 
These usages reflect social values as well as mathematical semantics. E.g., one 
can express support for an idea by underscoring one’s belief in an implication, as 
in the comment “Yes, it seems to be a correct solution!” (Tao et al. 2011, July 19, 
9:35 pm).

One might suspect that Suggest should be used only within conjectures, but in 
the current categorisation it is used somewhat more frequently along with concepts. 
This is partly explained by the fact that Suggest can be used to introduce either 
a goal or a strategy. Sometimes goals represent conceptual tidying, as in “I 
guess there is an odd/even number of point distinction to do” (Tao et al. 2011, July 
19, 9:31 pm).

Furthermore, despite our self-imposed constraint to map each comment only to 
the most salient of the five categories, in practice a comment may simultaneously 
introduce a concept along with a conjecture that applies that concept. For exam-
ple the straightforward concept of “restriction[s] on how the next pivot is chosen” 
appears along with the more speculative conjecture “Can we start with a complete 
graph and all cycles on that graph and just discard the ones that don’t follow the 
restrictions to converge on the ones that do?” (Tao et al. 2011, July 19, 8:56 pm). 
The need to introduce concepts also applies in the case of more outlandish conjec-
tures, such as “It might be fun to use projective duality” (Tao et al. 2011, July 19, 
8:23 pm). However, a concept may suggest a vague method without raising a con-
jecture as such, e.g., “I’m thinking spirograph rather than convex hull” (Tao et al. 
2011, July 19, 8:44 pm).

In sum, the IATC analysis of MiniPolymath 3 shows in detail how individual 
contributions to the dialogue are comprised. In aggregate, this analysis exposes the 
structural anatomy of a successful collaborative proof. It should be noted that not all 
the contributions to MPM3 were equally relevant to the final solution. By entering 
the structures in an explicit graphical model in the manner described in Sect. 4.2, 
graph theoretic analysis could establish, e.g., the centrality of the various concepts 
used in the content layer, and who introduced them into the conversation.

5 � Conclusion

We have sought to advance the study of mathematical practice from an argumenta-
tion-theoretic perspective. We introduced Inference Anchoring Theory + Content, 
offered a brief comparison with IAT, which it builds upon, and used three examples 
to showcase IATC’s capabilities. We showed that:

–	 IATC offers a more faithful representation of everyday mathematical practice 
than does, e.g., Lamport-style structured proof.
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–	 IATC has the potential to support computational reasoning about mathematics by 
bringing structural relationships between pieces of mathematical content to the 
surface.

–	 IATC can recover salient elements of discourse within comments, as well as the 
way these contents connect across comments.

Some limitations to the approach should be considered when applying the frame-
work. We emphasise that these are limitations and not necessarily flaws in the over-
all design. In general, the limitations could be addressed with extensions to the 
language.

–	 IATC does not yet handle everything that is said in mathematical dialogues. 
We saw above that IATC nevertheless helps disambiguate the “other” category 
bracketed by Pease and Martin (2012).

–	 There are places where IATC representations remain bulky, pushing much of the 
actual reasoning into whatever representation system handles the content layer.

–	 One related limitation is that implications and assumptions that mathematicians 
consider “obvious” are typically elided from their discourse, often for valid 
expository reasons, and that, therefore, unpacking the contextual relationships 
between statements typically requires a mathematically trained annotator.

–	 We introduced a graphical way to segment dialogues, but IATC does not cur-
rently have the ability to express context shifts – although it can compare con-
texts with ‘analogy’.

Corneli et al. (2018) survey other relevant frameworks that might form extensions 
for a future version of IATC. More general-purpose formalisms like the W3C’s 
“PROV” (Groth and Moreau 2013) would allow us to say something about the prov-
enance and evolution of concepts, but would have nothing to say about the mathe-
matics-specific features that interest us.

In Sect.  3, we mentioned that Discourse Representation Theory (DRT) has 
informed several earlier efforts to model mathematical discourse. We are aware 
of three PhD theses—by Clauss Zinn (2004), Mohan Ganesalingam (2013), and 
Marcos Cramer (2013)—which have made use of somewhat similar mathematics-
specific interpretations of DRT. Zinn and Cramer focused on proof checking, while 
Ganesalingam looked at mathematical communication from a linguist’s perspec-
tive. However, he opted to focus exclusively on mathematics in the “formal mode,” 
leaving informal communication about matters such as “interestingness” to one 
side, because they bring with them a host of additional complications (Ganesal-
ingam 2013, pp. 7–8). From a linguistic point of view, DRT is useful in a mathe-
matical setting, in the first instance, because of its core ability to express “legitimate 

Fig. 16   Pie charts showing the relative proportion of IATC tags used to code MPM3, across five intui-
tive kinds of comments. E.g., Comment 1 has been categorised as a Conjecture. The IATC stanza 
perf[assert](rel[stronger](rel[not](prove_rtf), rel[not](random_test_
false))) associated with this comment (see Fig. 13) therefore adds these values to the usage counts 
within the Conjecture pie chart: ‘Assert’ +1, ‘stronger’ +1, and ‘not’ +2. (Color figure online)

▸
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antecedents for anaphor” (Ganesalingam 2013, p. 50). In Ganesalingam’s work, this 
basic feature is extended to allow sidelong references to definite descriptions (such 
as ‘the set of natural numbers’) by “introducing generalised anaphors which can 
have presuppositional material attached to them” (Ganesalingam 2013, pp. 25, 237). 
Specifically, this allows one to infer from statements such as “x is prime” that x is in 
fact a member of the set of natural numbers (p. 25).

The associated requirement of combining semantics and pragmatics (van der 
Sandt 1992,  p.  336) is reminiscent of our treatment of unspoken assertions and 
unstated features of content in our IATC-based analyses. To continue the com-
parison, Ganesalingam’s adaptations of DRT overcame limitations, having to do 
with quantifier scoping, that constrained earlier type-theoretic analyses (Ganesal-
ingam 2013,  pp.  81–82). This is broadly similar to our use of nested structure in 
Sect.  4.1. Indeed, Sowa (2000) shows that several different approaches to nested 
structure (including DRT) are all mutually equivalent from a logical point of view. 
As indicated by van der Sandt (1992), pragmatics is relevant for DRT-based models 
because it can inform the context-specific resolution of Discourse Representation 
Schemes. This is related to the question we highlighted in Sect. 4.2: how to model 
the transitions between discourse moves in mathematics? IAT accounts for similar 
issues by making reference to dialogue norms, but we have seen that for mathemat-
ical dialogues, detailed content- and context-specific issues need to be taken into 
consideration at each stage. The models of content evolution used by Ganesalingam 
and Gowers (2017) to keep track of proof generation were structurally similar to the 
DRT-based models developed by Ganesalingam (2013): in this case, the evolution 
was governed by a limited set of reasoning tactics. Our work with IATC highlights 
features of mathematical reasoning, like analogy, that more general heuristics will 
need to account for.

There are other resources available which could further expand IATC’s offerings 
in this regard. For example, a recent special issue of Argument & Computation (Har-
ris and Marco 2017) includes papers detailing the usefulness of rhetorical structures 
for argument mining. Mitrović et al. (2017), in that volume, indicate the SALT Rhe-
torical Ontology (Groza 2012) as relevant prior work. SALT contains three catego-
ries—coherence relations, argument scheme relations, and rhetorical blocks—each 
of which unfolds with considerable further detail. These three categories can be seen 
as somewhat analogous to IATC’s grammatical categories. Mitrović et  al. (2017) 
and Lawrence et al. (2017) point to foundational work of Fahnestock (1999, 2004) 
on the argumentative function of rhetorical figures, particularly in science writing. 
IATC might be profitably connected to such analyses. Furthermore, the integration 
of rhetoric into argument mining highlights the relevance of structures that are rather 
different from the IAT-style transitions that have been used in work summarised by 
Budzynska et  al. (2015). White’s (1978,  p.  6) pithy assertion that “logic itself is 
merely a formalization of tropical strategies” can serve as an additional provocation 
to develop structural analyses of this sort.

Nevertheless, whether mathematical content is modelled using ideas from logic, 
rhetoric, or other sources, considerable further work will be required to effectively 
describe the processes that are employed in forming and responding to mathemati-
cal arguments. A small case study included as an appendix to Pease et  al. (2017) 



1 3

Argumentation Theory for Mathematical Argument﻿	

(and, incidentally, based on MiniPolymath 3) illustrates the plausibility of Lakatos’s 
model—however that model is clearly far from complete as a theory of mathemati-
cal production. Pease et  al. were concerned with mathematical content only inso-
far as it fills slots for some 20 dialogue moves that are based on Lakatos’s strategy 
for arguing about lemmas and counterexamples. For example, MonsterBar(m, c, r) 
gives a reason r, contradicting the justification m for the counter-conjecture not-c. 
At no point does this theory touch the supposed mathematical ground of axioms 
and rules of inference. That the reason r, for example, may have been formed induc-
tively, or deductively, or in some other way, goes undiscussed. IATC would allow us 
to expand the structure that appears within statements like r. Whereas Pease et al.’s 
formalisation of Lakatosian reasoning as a dialogue game offers a computational 
model of certain dynamical patterns in mathematics, our current work has focused 
on kinematics. The efforts can be seen as complementary: Bundy (2013) has argued 
that the right representation can considerably simplify reasoning.

One promising approach to modelling process combines argumentation and 
multi-agent systems (Modgil and McGinnis 2007; Maghraby et  al. 2012; Robert-
son 2012). However, most approaches to modelling specifically mathematical agents 
have had significant limitations. Thus, for example, Fiedler and Horacek (2007) have 
described the difficulty of squaring argumentation-theoretic work with the methods 
of formal proof. Ganesalingam and Gowers’s (2017) project aimed at simulating 
a solitary individual rather than a population. However, Furse (1990) had already 
called into question the robustness of approaches to modelling mathematical crea-
tivity that only model a solitary creative individual. Pease et al. (2009) describe an 
implementation effort that made use of a multi-agent approach, drawing on argu-
mentation theory concepts and a Lakatosian model of dialogue. However, the math-
ematical applications of that system were limited to straightforward computational 
aspects of number theory and group theory, which suggests a “knowledge bottle-
neck” (Saint-Dizier 2016; Moens 2018).

As indicated in a report of the National Research Council (2014, p. 90), “knowl-
edge extraction and structuring in the context of mathematics” is in demand on an 
increasingly industrial scale. IATC allows methods of argumentation to interface 
with those of knowledge representation; both aspects are relevant to knowledge 
extraction. Formalisation of IATC would assist in its applicability: “IKL Concep-
tual Graphs” defined by Sowa (2008) would provide a natural foundation. IKL, the 
IKRIS Knowledge Language (Hayes 2006; Sowa 2008), deals elegantly with context 
and has been used as a representational formalism in a project with aims comparable 
to our own: the Slate project (Bringsjord et al. 2008), which centred on an argumen-
tation tool that could support a mixture of deductive and informal reasoning.4 Previ-
ous work on mathematical usage can also inform future efforts in knowledge model-
ling with IATC (Trzeciak 2012; Wells 2003; Wolska 2015; Ginev 2011).

Mathematical Knowledge Management, particularly in the “flexiformal” 
understanding developed by Kohlhase (2012) and Kohlhase et  al. (2017), 
presents another paradigm that could eventually be integrated with IATC. 

4  http://www.jfsow​a.com/ikl/IKLsl​ate.pdf.

http://www.jfsowa.com/ikl/IKLslate.pdf
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Flexiformality combines strict formalisations of those parts of mathematics 
for which that makes sense with opaque representations of constants, objects, 
and informal theories. Iancu (2017) built on Kohlhase’s work, and focused on 
“co-representing both the narration and content aspects of mathematical knowl-
edge in a structure preserving way” (pp. 3–4). However, modelling narrative in 
Iancu’s sense is more relevant to the “frontstage” presentation of mathematics 
in a single authorial voice than to the “backstage” production of mathematics 
(cf.  Hersh 1991)). Section  4.2 illustrated one such example from backstage: 
mathematicians need to be able to choose between different mathematical 
problems.

IATC offers a step forward for research into both the communication and produc-
tion of mathematics, and can play a role in future work on knowledge extraction and 
simulation. Potential applications include, among others, the development of a new 
generation of mathematics tutoring software and digital assistants that engage their 
users in thought-provoking dialogues.
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Appendix: Reference Coding Samples

This “Appendix” collects sample texts and IATC codings to supplement Tables 1 
and 2 in Sect. 3, which introduced the available codes. Texts are sourced from the 
examples discussed in Sect.  4. In general, one utterance may expand to multiple 
statements in IATC; accordingly, texts may appear here multiple times. Bold face 
is used to illustrate the portion of the text, at right, that justifies the tag that appears, 
at left. Numbering refers to the tree-ordering of MiniPolymath 3 comments, unless 
another source is indicated. 

Performatives

perf[assert](rel[implies](rel[not](prove_rtf), 
rel[not](random_test_false)))

1. Could you start off with a random point in the 
plane and prove it doesn’t work, if you can’t 
prove that then the opposite holds

perf[agree](cycle_partition) 2.2.1.1. I believe this is true. It proves that it’s 
enough to find a cycle that visits each vertex at 
least once

http://creativecommons.org/licenses/by/4.0/
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Performatives

perf[challenge](problem, equi_tri_stuck) 3.1.1. Say there are four points: an equilateral 
triangle, and then one point in the center of the 
triangle. No three points are collinear. It seems 
to me that the windmill can not use the center 
point more than once! As soon as it hits one 
of the corner points, it will cycle indefinitely 
through the corners and never return to the 
center point. I must be missing something here

perf[retract](perf[challenge](problem, equi_tri_
stuck))

3.1.1.2.1. Ohhh...I misunderstood the problem. I 
saw it as a half-line extending out from the last 
point, in which case you would get stuck on the 
convex hull. But apparently it means a full line, 
so that the next point can be “behind” the previous 
point. Got it

perf[define](pivot_seq, ps_def) 2. Connecting the dots: At the point where the 
pivot changes we create a line that passes 
through the previous pivot and a new pivot—
like a side of a polygon

perf[suggest](meta[goal](cycle_spans_S)) 2.1. Nice. We need only to consider the times when 
two points are connected—this gives us a path, 
and after some time this path will come back to 
some already visited point. So there is a cycle. If 
only we could find a cycle which spans all the 
points, the question is solved. That may be some 
useful simplification

perf[judge](value[useful](pivot_seq)) 2.1. Nice. We need only to consider the times when 
two points are connected—this gives us a path, 
and after some time this path will come back to 
some already visited point. So there is a cycle. 
If only we could find a cycle which spans all the 
points, the question is solved. That may be some 
useful simplification

perf[query](random_test_false) 1. Could you start off with a random point in the 
plane and prove it doesn’t work, if you can’t 
prove that then the opposite holds

perf[queryE](additional_condition_on cycles(X)) 2.1.1.1. For example, the restriction on how the next 
pivot is chosen (geometrically: comment 9). Are 
there any other restrictions? Can we start with 
a complete graph and all cycles on that graph and 
just discard the ones that don’t follow the restric-
tions to converge on the ones that do?

Inferential structure

perf[assert](rel[implies](rel[not](prove_rtf), 
rel[not](random_test_false)))

1. Could you start off with a random point in the 
plane and prove it doesn’t work, if you can’t 
prove that then the opposite holds

perf[assert](rel[equivalent](problem, forall_
exists_problem), cycle_partition)

2.2.1.1. I believe this is true. It proves that it’s 
enough to find a cycle that visits each vertex at 
least once. There are no “rho” processes with an 
initial segment that doesn’t repeat
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Inferential structure

perf[assert](rel[implies](rel[not](prove_rtf), 
rel[not](random_test_false)))

1. Could you start off with a random point in the 
plane and prove it doesn’t work, if you can’t 
prove that then the opposite holds

perf[question](rel[implies](rel[conjunction]
(G_infinite_group, H_subgroup_of_G, H_
finite_index_in_G), G_not_equal_to_union_of_
cosets))

(Sect. 4.2, Question) I have seen this prob-
lem, that if G is a finite group and H is a 
proper subgroup of G with finite index then 
G ≠ ∪_g ∈ GgHg−1 . Does this remain true for the 
infinite case also?

perf[assert](rel[has_property](pivot_seq, 
has_cycle))

2.1. Nice. We need only to consider the times when 
two points are connected—this gives us a path, 
and after some time this path will come back to 
some already visited point. So there is a cycle. 
If only we could find a cycle which spans all the 
points, the question is solved. That may be some 
useful simplification

rel[instance_of](S, convex_plus_point) 3.1. Yes. Can we do it if there is a single point not 
on the convex hull of the points?

perf[assert]( rel[indep_of]( disj_path, M )) (MPM1, 31.) Quick thought following on David 
Speyer’s first comment: The problem asks us to 
prove that no set of size (n − 1) can disconnect 
two diagonally opposing vertices in the n-cube. 
By Menger’s theorem, this is equivalent to prov-
ing that there are n internally vertex-disjoint paths 
between these two vertices. So, now we are faced 
with a constructive problem, independent of 
the set M: Construct n vertex-disjoint paths 
from 0n to 1n in the n-cube

perf[assert](rel[case_split](IS, IS_A, IS_B)) 2.1.1.1.1. The line must sweep out a full rotation 
(and only one full rotation) of 2� during the tra-
versal of S. I feel like this is intimately related to 
proving that there is a starting angle for any point 
P in S such that all of S is then traversed. I’m try-
ing to show this by induction. Base case ( |S| = 2 ) 
is obvious. Let |S| = n, take S� = S ∪ {Q}, and 
start with some windmill traversal of S. Case 
A: Q is unreachable. Therefore we just traverse 
S, taking 2� to do so by induction. Case B: Q is 
reachable at some angle. [...]

perf[assert](rel[wlog](problem, zero_angle), 
one_turn)

11.2.3.1. Only the starting point matters. By the 
problem statement, it appears that the initial angle 
is irrelevant to the existence of a pivot point P∗ 
from which all of S is traversed. Every point in S 
is a pivot point, but only with a specific range of 
starting angle (e.g. those consistent with the cycle 
generating S). The union of these intervals must 
necessarily be [0, 2�) , and thus we can assume 
WLOG that the starting angle is 0 (and thus we 
single out a specific point—or points in the case 
of |S| = 2)
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Heuristic value judgments

perf[judge](value[easy](S_is_conv)) 3. If the points form a convex polygon, it is easy
perf[judge](rel[not](value[plausible](equi_tri_

stuck)))
3.1.1. Say there are four points: an equilateral 

triangle, and then one point in the center of the 
triangle. No three points are collinear. It seems 
to me that the windmill can not use the center 
point more than once! As soon as it hits one of 
the corner points, it will cycle indefinitely through 
the corners and never return to the center point. I 
must be missing something here

perf[judge](value[beautiful](proof_sugg)) 14.2.1. Very nice! Don’t we run into problems 
with a convex hull though? Take a square with a 
point in the middle (M) and pass the diagonal of 
the square (not through M)—it seems to me M 
is never visited (though I may be wrong here). 
I think we should be more specific in our initial 
choice of line, maybe?

perf[judge](value[useful](pivot_seq)) 2.1. Nice. We need only to consider the times when 
two points are connected—this gives us a path, 
and after some time this path will come back to 
some already visited point. So there is a cycle. 
If only we could find a cycle which spans all 
the points, the question is solved. That may be 
some useful simplification

Reasoning tactics

perf[suggest](meta[goal](cycle_spans_S)) 2.1. Nice. We need only to consider the times when 
two points are connected—this gives us a path, 
and after some time this path will come back to 
some already visited point. So there is a cycle. If 
only we could find a cycle which spans all the 
points, the question is solved. That may be some 
useful simplification

perf[suggest](meta[strategy](cycle_spans_S, 
process_of_elim))

2.1.1.1. For example, the restriction on how the next 
pivot is chosen (geometrically: comment 9). Are 
there any other restrictions? Can we start with 
a complete graph and all cycles on that graph 
and just discard the ones that don’t follow the 
restrictions to converge on the ones that do?

perf[suggest](meta[auxiliary](problem, forall_
split))

Ok. I think the solution might involve this observa-
tion, with the observation that every point 
participates in a “splitting” line (one with n / 2 
points on one side)

perf[assert](meta[analogy](compute 500th digit 
of (sqrt(2)+sqrt(3))⌃2012, compute 500th digit 
of (x+y)⌃2012))

(Sect. 4.1) Can we do this for x + y? For e? 
Rationals with small denominator?

perf[assert](rel[implements](#SUBGRAPH, the 
trick might be))

(Sect. 4.1) (
√

2 +
√

3)2012 + (
√

3 −
√

2)2012 is an 
integer! And (

√

3 −
√

2)2012 is a very small 
number. Maybe the final answer is “9”?

rel[generalise](binomial theorem, eliminate cross 
terms)

(Sect. 4.1) (
√

2 +
√

3)2012 + (
√

2 −
√

3)2012 is an 
integer!



	 J. Corneli et al.

1 3

Content-focused structural relations

rel[used_in](pivot_seq, pivot) 2. Connecting the dots: At the point where the pivot 
changes we create a line that passes through the 
previous pivot and a new pivot—like a side of a 
polygon

rel[reform](H_finite_index_in_G , H_infinite_
index_in_G)

(Sect. 4.2, Second comment on question) Yes, the 
statement is out of focus: gHg−1 is intended (and 
“infinite index case”). The natural starting point 
is to ask whether the proof for finite index breaks 
down

rel[instantiates]((sqrt(2) + sqrt(3))⌃2,general 
form of the problem)

(Sect. 4.1) (
√

2 +
√

3)2

perf[assert](rel[expands](2 + 2sqrt2sqrt3 + 3, 
(sqrt(2)+sqrt(3))⌃2))

(Sect. 4.1) 2 + 2
√

2
√

3 + 3

perf[assert](rel[sums](2 + 2sqrt(2)sqrt(3) + 2 + 
2 - 2sqrt(2)sqrt(3)+3,10))

(Sect. 4.1) (
√

2 +
√

3)2 + (
√

2 −
√

3)2 = 10

perf[assert](rel[cont_summand]( (sqrt(2) + 
sqrt(3))⌃2012 + (sqrt(2)-sqrt(3))⌃2012,(sqrt(3)-
sqrt(2))⌃2012)

(Sect. 4.1) And (
√

3 −
√

2)2012 is a very small num-
ber. Maybe the final answer is “9”?
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