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Abstract 
Reverse logistics (RL) has been regarded as a key driving force for remanufacturing. 
However, there are great uncertainties in terms of quality and quantity of used 
components for RL. There are also complexities in suppliers and operations. These 
make decision-making of RL very complex. In order to identify the best collection 
mode for used components, a demand-matching oriented Multiple Criteria Decision 
Making (MCDM) method is established. In this method, the damage level and 
remaining service life are firstly incorporated into the evaluation criteria of reuse 
modes, then a hybrid method (AHP-EW) that integrates Analytic Hierarchy Process 
(AHP) and Entropy Weight (EW) method is applied to derive criteria weights and the 
grey Multi-Attributive Border Approximation Area Comparison (MABAC) is adopted 
to rank the collection modes. Finally, sensitivity analysis is implemented to test the 
stability of the proposed method, and a demands-matching method is proposed to 
validate and evaluate the feasibility of the optimal alternative. The collection of used 
pressurizers is taken as case study to validate the applicability of the proposed model. 
The results showed the effectiveness of the proposed method in MCDM of RL. 

Keywords: Reverse logistics; Multiple Criteria Decision Making; Demands matching; 
Damage level; Remaining service life 

1. Introduction
Reverse logistics (RL) is recognized as a means to deal with the end-of-life (EOL)
products in an environmental and friendly manner and has attracted an increasing
amount of attentions in recent years (Zhalechian et al., 2016; Govindan et al., 2017a;
Rajeev et al., 2017; Govindan et al., 2018a). In RL, the environmental impact, resource
utilization, and business profits of used components/products are largely dependent on
the collection modes (i.e., Third Party Take-back (TPT), Manufacturing Take-back
(MT), and Retailer Take-back (RT)). Improper decision-making of collection mode
may increase environmental burden, resource consumption, and reduce profits (Saha et
al., 2016). Current decision-making of collection mode researches can be summarized
in three main issues: establishing evaluation criteria system, deriving the weights of
criteria, and decision-making based on rank of collection modes. As a significant
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strategy to save energy consumption and reduce carbon emission in industrial systems, 
it has been widely applied to many fields, especially in manufacturing and 
remanufacturing fields (Entezaminia et al., 2017; Wang et al., 2018).  

The ever-increasing of EOL products and the strict environmental policies contribute 
to the development of remanufacturing including industrial, government, and research 
communities. As a means of eco-friendly and energy-efficient production, 
remanufacturing, a serious of process (e.g., disassembly, clean, inspect, reconditioning, 
and reassembly) to return EOL products/components to “like new or better than new” 
functional status, has attracted growing attention worldwide (Lee et al., 2017; Paterson 
et al., 2017; Zlamparet et al., 2017; Lu et al., 2018; Jin et al., 2018). Correspondingly, 
the increasing demands of customers’ satisfaction, the maximum benefits for collection 
companies, and the minimum impact for environment put forward higher demands to 
the demands match between collection companies and used components in RL. The 
demands matching degree is one of the most important features to reflect the matching 
degree between collection companies’ capacity as well as capability and used 
components. The condition characteristics of used components is the prerequisite of 
determining demands matching because the condition characteristics like damage level 
and remaining service life will directly determine the treatment methods and process 
routes, which finally impacts the companies’ profits, environmental impact, and 
resource utilization (Jiang et al., 2016; Wang et al., 2017). This paper establishes an 
evaluation criteria system including condition characteristics of used components, 
which could be adopted to the decisionmaking of collection modes for used 
components. 

The process of collection modes evaluation is the fundamental basis for decisionmaking 
of collection mode for used components, but various evaluation criteria, characteristics 
of criteria, and condition gap between the collection companies and used components 
make it a challenging problem. For instance, when considering the treatments means of 
used components, some criteria like damage level, remaining service life, energy 
consumption, and cost must be taken into consideration. Therefore, a multi-criteria 
decision-making (MCDM) method becomes the best choice to deal with this problem 
(Tian et al., 2018). The process of MCDM is consisted of four main steps: (1) 
alternatives generation, (2) establishment of evaluation criteria system, (3) 
determination of criteria weights, and (4) rank of alternatives (Senthil et al., 2018). Each 
criterion is relevant to an objective in a specific decision-making process, and 
normalization is normally used to transform different types of criteria into a same form 
(Ameri et al., 2018; Tsai et al., 2018). However, the qualitative criteria (e.g., 
performance degradation risk) and quantitative criteria (e.g., energy consumption) are 
common in decision-making of collection modes in RL, which thus there are many 
objective and subjective impacts/factors respectively. Analytic Hierarchy Process 
(AHP) and Entropy Weight (EW) are good ways to deal with these subjective and 
objective factors. To the best of our knowledge, few of literature has reported a hybrid 
method integrating AHP with EW to drive the weights of criteria for collection modes 
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in RL. Once the weighted is determined, the rank of alternatives should be followed. 
The grey Multi-Attributive Border Approximation Area Comparison, an inclusive 
evaluation tool, has been viewed as an efficient decision support system for selection 
problems due to its consistent/stable solutions under the different conditions (Mardani 
et al., 2016; Zavadskas et al., 2016; Xue et al., 2016; Debnath et al., 2017). Sensitivity 
analysis is normally adopted to inspect the stability of the proposed MCDM method, 
while the matching between the evaluation object and alternatives from a practical 
perspective is rare. This may lead to that the final rank of alternatives is not suitable in 
real production. To this end, this paper presents a demands-matching oriented MCDM 
method to decide and inspect the collection mode for used components from a practical 
angle respectively. The novelties of this paper are: (1) Establishing quantification 
evaluation criteria of used components’ condition. The quantified damage level and 
remaining service life are adopted to comprehensively evaluate the condition of used 
components; (2) Comprehensively considering the quantitative and qualitative criteria 
in evaluation criteria system. A hybrid method integrating AHP with EW is used to 
allocate the weights of criteria; (3) Introducing demands matching concept and 
establishing its mathematics. Considering the relationship between the capacity as well 
as capability of the collection companies and the condition of used components, 
demands matching is adopted to validate the feasibility of the collection modes rank 
obtained from the grey MABAC method, on the other hand, it is used to generate a 
feasible and rational collection mode from a practical perspective, which may give the 
future improvements suggestions for collection companies.  

The layout of this research can be summarized: Section 2 provides a review of the 
relevant literature. The framework of this research and the evaluation criteria system 
are presented in Section 3. The method, i.e., a demand-matching based hybrid MCDM, 
is presented in Section 4. The verification of a case study with three collection modes, 
sensitivity analysis, and demands matching calculation are presented in Section 5. 
Finally, Section 6 provides the conclusions and future work.  

2. Literature review 
Decision-making of collection modes in reverse logistics is normally viewed as a 
typical MCDM problem, owing to the paucity of accurate and formal measurement 
criteria or programs. Approaches experts experience relevant to this area, mathematical 
models or simulations are used to the evaluation process of alternatives (Dehghanbaghi 
et al., 2016; Saha et al., 2016; Prakash et al., 2016; Mohammed et al., 2017; Shankar et 
al., 2018). In the literature, many previous researched have studied and presented 
various approaches/methods to implement the decision-making of used components, 
and the adopted impact criteria include environmental, risk, economical, and social 
aspects (Uygun et al., 2016; Ahmadi et al., 2017; Cai et al., 2018; Senthil et al., 2018). 
Many scholars as cases are shown in Table 1 to reflect the selection of evaluation 
criteria.  

Table 1 Literature on evaluation criteria in decision-making of used components 



ACCEPTED MANUSCRIPT 
 

4 

References 
Evaluation criteria  

Environmental Risk Economical Social 

Senthil et al. (2018)  ✓   

Lintukangas et al. (2016)  ✓ ✓  

Zhao et al. (2016)  ✓ ✓  

Govindan et al. (2017b) ✓  ✓ ✓ 

Fathollahi-Fard et al. (2018) ✓  ✓  

Kadambala et al. (2017) ✓  ✓ ✓ 

Banasik et al. (2017) ✓  ✓  

Wu et al. (2016) ✓  ✓  

Zarbakhshnia et al. (2018) ✓ ✓ ✓ ✓ 
Govindan et al. (2016a) ✓ ✓ ✓ ✓ 

The aforementioned literatures provide a guideline for the selection of evaluation 
criteria for collection in reverse logistics. However, few of them consider the basic 
physical condition (e.g., damage level and remaining service life) of used components. 
In detail, the damage level and remaining service life will determine the treatment 
means, remanufacturability, and remanufacturing process routes, which further 
influence other aspects, e.g., energy consumption and cost of treatment process (Wang 
et al., 2017; Kurilova-Palisaitiene et al., 2018). Therefore, the consideration of damage 
level and remaining service life in the evaluation process have a great significance on 
remanufacturing activities, operation optimization, and profits improvements of 
collection companies. 

An overview of main decision-making of collection modes of used components in 
reverse logistics is presented briefly in this section. In general, the MCDM methods 
could be summarized into two types: 1) comprehensive decision-making methods. For 
instances, VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) (Gul et 
al., 2016), fuzzy AHP (Kubler et al., 2016), ELimination and Choice Expressing the 
REality (ELECTRE) (Govindan et al., 2016b), Preference Ranking Organization 
Method for Enrichment Evaluation (PROMETHEE) (R et al., 2017), Interval Type-2 
Fuzzy Sets (IT2FSs) (Mousakhani et al., 2017), Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) (Han et al., 2018), and Decision Making Trial 
and Evaluation Laboratory (DEMATEL) (Bouzon et al., 2018); 2) combinational 
decision-making methods. For example, Keshavarz et al. (2017) used the Evaluation 
based on Distance from Average Solution (EDAS) method and IT2FSs to evaluate the 
suppliers from environmental perspectives in supply chains. Sari. (2017) proposed a 
novel decision framework to evaluate green supply chain management practices, in 
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which the Monte Carlo simulation, AHP, and VIKOR are developed under fuzzy 
environment. Senthil et al. (2018) proposed a hybrid MCDM integrating AHP, TOPSIS, 
and PROMETHEE for prioritizing the reverse logistics risk. Shaik et al. (2018) applied 
a hybrid multi-criteria method combining DEMATEL, fuzzy ANP, and AHP methods 
to assess the reverse logistics companies’ performance, in which the performance 
attributes such as product lifecycle stages, strategies, processes, capabilities, and 
perspectives, and measures were considered. Govindan et al. (2018b) presented a hybrid 
method combing a variant of ELECTRE I accounting for the effect of reinforced 
preference, the revised Simos procedure, and Stochastic Multi-criteria Acceptability 
Analysis to select the most preferred service providers in reverse logistics.  

The review of the previous researches illustrates that although there are many effective 
evaluation methods to deal with decision-making of collection modes for used 
components. Nevertheless, some aspects still be ignored, for instance, the quantified 
damage level and remaining service life of used components, which have a significant 
influence on the decision-making process of collection modes, is rarely considered in 
evaluation criteria system. The quantitative and qualitative criteria are common in 
evaluation criteria system, while the comprehensive derivation of weights for both 
quantitative and qualitative criteria is ignored. The gap between the collection 
companies’ demands and the condition of used components determines the final 
decision-making of collection modes. The grey MABAC method is recognized to be an 
effective decision support tool to rank all kinds of alternatives. To this end, a demands-
matching based MCDM method is proposed. The evaluation criteria system is 
established considering the quantified damage level and remaining service life. A 
hybrid method integrating AHP with EW is adopted to provide used components with 
a comprehensive condition evaluation from both quantitative and qualitative 
perspectives. The grey MABAC is applied to obtain the rank of collection modes. The 
demands matching degree is proposed to validate the feasibility of the rank obtained 
from grey MABAC method from a practical perspective.  

3. Framework and evaluation criteria system of MCDM for RL 
The proposed research framework of MCDM for RL is shown in Fig. 1. The proposed 
framework could assist analysts with respects to: 
1) Understanding and determining the criteria for selecting collection modes; 2) 
Identifying the relative importance weights of criteria based on objective factors and 
subjective factors; 
3) Ranking the alternatives and selecting the optimum collection mode on the basis of 
demands matching degree and sensitivity analysis.  

Demands  
 matching Optimum  
  Evaluation  Deriving of  Ranking of  

collection 
 criteria criteria weights  collection modes  
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Sensitivity  mode 

analysis Fig. 1. Framework of multi-criteria decision-making for RL 

The multi-criteria decision-making in Fig. 1 includes five steps: 
Step 1: Establishment of evaluation criteria. The evaluation criteria include status 
information of the used components (quality), impacts on environment and people 
(sustainability), economic performance of processing used components (cost and 
profit), and uncertainties in terms of market and performance (risk). 

Step 2: Deriving of the criteria weights. This step is to determine the relative importance 
weights of criteria using a hybrid AHP-EW method. In this method, the subjective and 
objective factors are considered simultaneously. 

Step 3: Ranking of collection modes. The collection modes include Third Party 
Takeback (TPT), Manufacturer Take-back (MT), and Retailer Take-back (RT). This 
step is to rank the alternatives for collection using a grey MABAC method, which is 
based on the demands of used components. 

Step 4: Sensitivity analysis and demands matching. The sensitivity analysis is to test the 
stability of the proposed rank of collection modes, and the demand matching is 
proposed to inspect suitability between collection modes and recyclers, whilst validate 
the effectiveness and the applicability of the proposed MCDM method. 

Step 5: Determination of the optimum collection mode. Through the proposed steps, the 
final optimum collection mode can be obtained, which provides a guide for managers 
of manufacturing/remanufacturing companies to make a decision for collection mode 
selection of used components. 

3.1 Evaluation criteria system of decision-making for RL 
The selection of criteria is significant for the evaluation process and it has been 
acknowledged with a wide-ranging literature in introduction. This paper is focused on 
four types of factors including quality (B1), sustainability (B2), economy (B3), and risk 
(B4). There are three collection modes including Third Party Take-Back (TPT) in which 
used components with rich varieties and large volume are collected by third party 
companies, Manufacturing Take-Back (MT) in which original manufacturers are 
engaged in the collection of used parts with less varieties and large volume), and 
Retailer Take-Back (RT) in which the used components with less varieties and small 
volume are collected by retailers. The details are shown in Fig. 2. 
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Fig. 2. Evaluation criteria of decision-making for reverse logistics  

The nine criteria were established to evaluate the RL for decision makers and the detail 
definitions of the evaluation criteria are shown in Table 2. 

Table 2 Evaluation criteria and the corresponding definitions 

 
Remaining usable time after the components has serviced for a 

period  
of time. 

Energy consumption during the transportation and processing. 
Environmental impact of transportation from location of usage 

points on collection points, which is related to the distance 

between usage  
point and collection point. 

Threats to the people in workplaces during the remanufacturing  
process. 

Cost during remanufacturing processing and transportation 
process. 

Return from the collection of used components. 
The phenomenon that the used component fails to work due to certain  

processing demands. 
Demand uncertainty due to the variable market price of  

Criteria    

No. Criteria Definitions 

B11 Damage level 
Damage degree of fault features (e.g., wear, deformation, and  

corrosion) of the used components. 

B12 Remaining service life 

B21 Energy consumption 

B22 Negative impact 

B23 Harmfulness 

B31 Cost 
B32 Profit 

B41 Performance degradation 
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 B42 Demand risk 
remanufactured components. 

 
3.2 Mathematical modelling of criteria 
3.2.1 Quality  
The quality of used components can be reflected through the damage level and 
remaining service life.  
(1) Damage level B11 
Each used component may have one or more types of fault features and its damage level 
may be varied. In accordance with Li et al. (2013) and Wang et al. (2017), the quantified 
damage level can be obtained, in which the machine tool spindle is taken as the example 
and it can be divided into three evaluation score intervals. The damage level of used 
components is evaluated based upon the volumetric damage amount of the fault features 
and the score intervals are shown in Table 3. 

Table 3 Damage level of fault features based on Li et al. (2013) and Wang et al. (2017) 
 

 Volumetric damage Damage score 
Fault features 

 amount intervals  intervals 
 

 0<x<1.0mm3 [0, 3.3) 
 Wear 1.0 mm3≤x<2.0 mm3 [3.3, 6.6) 
 x≥2.0mm3 [6.6, 10] 
 0<y<0.6mm3 [0, 3.3) 
 Crack 0.6≤y<1.2mm3 [3.3, 6.6) 
 y≥1.2mm3 [6.6, 10] 
 0<z<1.0mm3 [0, 3.3) 
 Wear-corrosion 1.0mm3≤z<2.0mm3 [3.3, 6.6) 
 z≥2.0 mm3 [6.6, 10] 
 0<w≤0.01L [0, 3.3) 
 Deformation 0.01L<w≤0.02L [3.3, 6.6) 
 w>0.02L [6.6, 10] 

 
Note: L represents the length of the axis-type components 

(2) Remaining service life B12 
The remaining service life of used components relates to the expected residual service 
time after being utilized for a period of time. In accordance with Zhang et al. (2013), 
the remaining service life for each used component can be identified using a Weibull 
distribution for mechanical component: 

i 1 
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 RL i( )                        (1) 
i 

 
(x)x1exp()d                    (2) 

0 

where RL represents the remaining life of the used component; i and i represent the 

scale parameter and shape parameter of the Weibull distribution respectively.  

These two parameters can be obtained using least-squares method on the basis failure 
data and sensor data of the used components (Zhang et al., 2013);  represents an 
intermediate variable. 

Similarly, the remaining service life of used components can be evaluated according to 
remaining life score intervals. The three score intervals are according to the maximum 
and minimum of the remaining life.  

3.2.2 Sustainability 
The sustainability of RL can be revealed as the negative impacts (e.g., environmental 
impacts) brought by the collection points and energy consumption during the 
transportation and remanufacturing processing. (1) Energy consumption B21 

 p s 

 E  ei ti  ET S j  (3) 
 i1 j1                    

where E represents the total energy consumption during transportation and processing; 

ei and ti represent the unit remanufacturing processing energy consumption per hour and 

the mean remanufacturing processing time for the ith component respectively; p 

represents the total number of used components; ET represents the unit transportation 

energy consumption per kilometer; S j represents the transportation distance for the jth 

transportation route; s represents the total number of transportation routes. 

(2) Negative impacts of the distance from usage points to collection points B22 
Negative impacts mean the environmental pollution caused by the emission of 
transportation vehicle from usage points to collection points. According to He et al. 
(2007), it can be shown as follow: 

 
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 

 F  S j                          (4) 
j 

where F represents the negative impact brought by collection point and it is related to 
the distance from usage point to collection point; S j represents the distance from 

collection point to usage point;  represents the negative impact degree parameter 

related to distance, the range of which is [0.5, 1] and the value is related to the scale of 
collection points. 
(3) Harmfulness of the remanufacturing process B23 
In accordance with Golinska et al. (2018), the harmfulness remanufacturing process is 
regarded as a social performance indicator and it denotes the threats to the people in 
workplaces, which is shown as follow. 

N 

 W 300D10SMLk                  (5) 
k1 

where W represents the harmfulness of the remanufacturing process; D , S , and M 
represent the number of threats to the kth workplace with a large risk, a medium risk,  

and a small risk respectively; N and Lk represent the number of work stands performing 

task and the number of people to the kth workplace respectively, which is subjected to 

the impact of hazards ( D , S , and M ). 

3.2.3 Economy 
The economy of RL is mainly related to the cost and profit, and the two criteria are 
shown as follow. 
(1) Cost B31 
The cost for RL is composed of the remanufacturing processing cost and transportation 
cost. 

 p s 

 C  ci ti  CT S j                     (6) 
 i1 j1 

where C represents the total cost during remanufacturing processing and  

 
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transportation; ci represents the unit remanufacturing processing cost per hour for the ith 

component (RMB/h); CT represents the unit transportation cost per kilometer 

(RMB/km).  

(2) Profit B32 
The profit may be different due to the collection mode, recycle distance, and collection 
demand etc. In accordance with Yao et al. (2004), the profit for three collection modes 
can be expressed as follow: 
A. Profit of Third Party Take-Back (TPT) 

K cm2 

 P1                  (7) 

24K tt S 
B. Profit of Retailer Take-Back (RT) 

K cm 2 
 P2                  (8) 

28K St S 

C. Profit of Manufacturer Take-Back (MT) 

2 

Kcm 
 P3  2                   (9) 

8K S  

 

where cm represents the unit cost of virgin products made from raw materials;  

represents the saving cost due to the collection of used components and it equals to the 
difference between the cost of virgin product and the remanufacturing cost of the same 
type used product; S represents the unit collection cost; t represents the transfer price 
when a manufacturer pays for a third party or retailer;  and  represent the positive 
parameters related to the variance of the product price respectively; K represents a 
parameter related to collection rate. 
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3.2.4 Risk 
The risk includes the performance degradation risk and the demand risk of used 
components. The performance degradation may happen when the returned used 
components are not dealt with timely. With time going by, this leads to the performance 
degradation and increase the uncertainty of used components’ quality finally. For 
instance, if the collected gear boxes are not dealt with for a long time, then the surface 
of these component will be rusting. Thus, the performance of gear boxes will degrade 
and the quality will be more uncertain. 
(1) Performance degradation risk B41 
The performance degradation is regarded as an important performance indicator of used 
components, which is greatly influenced by the environment condition. However, it is 
hard to quantify the performance degradation value. The expert scoring method is 
adopted, in which the comment set include {very good, good, normal, bad, and very 
bad} and the corresponding values are {10, 8, 6, 4, 2}.  

(2) Demand risk B42 
The demand risk of remanufactured components is primarily influenced by market 
price. According to Hua. (2006), the demand risk of remanufactured components can 
be shown as: 

 2 f i  Dpi  pi  E 
pi  pi                    (10) where f i  represents the 
demand risk of the ith type remanufactured component 
under a fluctuated market price; i represents the price 
variable for the ith type  

 
remanufactured component; pi and pi represent price of the ith type remanufactured 

component and the mean price of the remanufactured component respectively.  

4. Methods 
In order to accomplish the aforementioned aims, a novel MCDM method is presented. 
In this method, an AHP-EW method is developed to classify the criteria. Then a grey 
MABAC method considering demands of the collection modes/companies is proposed 
to identify the optimum collection mode. Finally, a sensitivity analysis is implemented 
to test the stability of the grey MABAC method; a demands-matching degree is 
introduced to validate the effectiveness and the applicability of the optimal alternative 
and the proposed MCDM method. 

4.1 Integration of AHP and EW for deriving criteria weights 
The aim of this hybrid method is to investigate the major relationship between criteria 
and the details are shown as follow. 
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Step 1: Standardization of criteria data. This step is to obtain the dimensionless criteria 
and it is assumed that there are m collection modes and n evaluation criteria. The value 
of the evaluation criteria is derived from the status condition of used components and 
practical operation condition of collection companies. The initial criteria matrix can be 
shown as follow: 

 

Step 2: Determination of criteria weights. This step considers two methods i.e., AHP 

and EW methods to determine the weight of each criterion wj and w'' j , in which the 

calculation process of EW is shown in Fig. 3. 

 

Step 3: Determination of comprehensive weights. A weight partition coefficient  is 
used to obtain a comprehensive weight which integrates the weights obtained from 
AHP method with weights obtained from EW method. The comprehensive weight can 
be expressed as: 

 wj wj 1wj 01                  (14) 

4.2 Grey MABAC based on demands for decision-making of collection modes Once 
the weight coefficients of evaluation criteria have been obtained, the rank of alternatives 
of the collection modes can be implemented through the grey MABAC method based 
on demands. According to Debnath et al. (2017), the process of implementing this 
method consists of the following steps: 

                (11) i j m n X x 
  1 , 2 , . . . , ; 1 , 2 , . . . , i m j n   

                             (12) 

1 

i j 
i j m 

i j 
i 

x 
y 

x 
 

 

 

Therefore , the standardized evaluation matrix can be obtained: 

                            (13) i j m n Y y 
  

1 
1 l n 

l n 

m 
j i j i j 

i 
E y y 

m  
   

Step  1 Step  2 

1 j j D E   

Step  3 

1 

j 
j n 

j 
j 

D 
w 

D 
 

   

 

Fig. 3. Calculation process of Entropy Weight 
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Step 1: Formation of the initial decision-matrices (X) based on demands. Consider RL 

problems with m collection modes alternativesRi ,i 1,2,...,m, which are evaluated 

based on n evaluation criteriaBj , j 1,2,...,n. Consider Y yij mn is a 

decision matrix based on the demands of collection companies: 

 11 y12, y12   y1n, y1n 

 

 21 y22, y22  y2n, y2n           
 (15) 
     

 

, ym1  ym2, ym2  

 ymn, ymn mn 

where y represents the evaluation grade of Ri in terms of the criteria Bj ; yij and  

y represent the lower and upper limit (i.e., grey correlation border) of the ith criterion  

of jth collection mode respectively; m and n represent the amount of collection modes 
and the total number of criteria respectively. 
Step 2: Normalization of grey decision-making matrix. The aim of this step is to obtain 
the dimensionless criteria, which includes benefit type and cost type criteria. 
A. Benefit type criteria  

y  

 zij zij ,zij ymj ax , ymj ax                    (16) 

 

B. Cost type criteria  

  ymin ymin  

i j i j y  

1 1 

2 1 

1 

, 

, 
i j m n 

m 

y y 

y y 
Y y 

y 

 

    
            
 
 
    

 

i j 

i j 
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i j i j i j  

i j 

1 1 1 1 

1 1 1 1 

1 1 

, 

, 
i j m n 

m m 

f f 

f f 
F f 

f 

 

    
            
 
 
    

 

 zij  zij ,zij     yjij , yjij                    (17) 
matrix can be obtained: 

z 

,z  z ,z   z ,z  
 1111 2121 1n1n 

 

 Z zij mn z11,z11z22,z22  z2n,z2n           
 (18) 

   

zm1,zm1 zm2,zm2   zmn,zmn mn 

Step 3: Calculation of grey decision-making matrix (F). The evaluation indicators of 
the weighted matrix (F) can be calculated based on the following equations: 

 f   f , f  j zij  j  zij ,j zij            (19) 

where z represents the criterion of the normalized matrix (Z) and j represents the 

weight coefficient of criterion j. The weighted matrix (F) can be expressed as follow: 

   f12, f12     f1n, f1n  

    f22, f22     f2n, f2n          (20) 

     
 

, f    fm2, fm2     fmn, fmn mn 

Step 4: Determination of grey border approximation area matrix (U). The grey border 
approximation area for each criterion can be obtained based on the equation as follow: 

where  
ym

j 
in  minyij  

and  
1im 

ym
j 

ax  maxyij . Therefore, the normalized decision  
1im 
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 
 m 1/m  m1/m  

 u j  uj ,u j   


 fij  , fij               (21) 

   i1   i1  
 

where  fij , fij  represents the elements of the weighted matrix (F) and m represents  

the total number of collection modes. Once the value of u j for each criterion function 

is obtained, a border approximation area vector (i.e.,  

u  u1,u1,...,un 1n ) can be formed. The grey border approximation area matrix 

(U) can then be constructed, which is shown as below: 

u1,u1 u2,u2   un,un  
 

 U u1,u1 u2,u2   un,un                  (22) 
       
   

u1,u1 u2,u12   un,un  

Step 5: Calculation of preference criteria matrix (L). According to the Euclidean 
distance between the grey numbers fij and u j , the preference criterion matrix of 
collection modes can be calculated, which is shown as follow: 

d f11,u1  
 

mn d f21,u1  
L  F U lij 

 

d fm1,u1  

d f12,u2  

d f22,u2  
 

d fm2,u2  

 
 
 

 

d f1n,un  

d f2n,un    (23) 
   

 

d 
f
mn,u

n mn 
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as follow: 

fij u j 
               (24) 

fij u j 

fij u j 
 (25) 

  d fij ,u j  if fij u j            

Step 6: Rank of collection modes. The ranking process of alternatives can be 
accomplished through the add operation of the elements’ distance in Eq. (23), which is 
shown as follow: 
 n n 

 RRRi   qij 
 d fij ,u j ; i 1,2,...,m      (26) 

 j1 j1 

5. Case study 
There are three collection modes/companies: TPT, MT, and RT that are engaged in 
collecting used pressurizers, a key part of construction machinery. During the service, 
the pressurizers are damaged and worn under high pressure and high frequent impacts. 
These three collection companies wish to collect the used pressurizers according to their 
demands and the status information of used pressurizers. The data of this case study 
was collected in Wuhan Qianlima Construction Machinery Co., Ltd and its industry 

The preference criteria consist of benefit type and cost type criteria, which are shown  

A. Benefit type criteria 

  

  

, 

, 

i j j 
i j 

i j j 

d f u 
l 

d f u 

    
  

     

i f 
i f 

B. Cost type criteria 

  , i j j 
i j 

d f u 
l 

     
  

i f 
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partners of this proposed research. The demands of the three companies/modes are 
shown in Table 4. 

Table 4 Demands of three companies for collecting used pressurizers 
Criteria B11 B12 B21 B22 B23 B31 B32 B41 B42 

TPT medium low medium low medium low high medium Low 

MT low high medium medium high medium medium low Medium 
RT low high low high medium medium high low High 

A score interval is set to quantify the demands of three companies. The “low”, 
“medium”, and “high” are corresponding to score intervals [1, 3], [4, 6] and [7, 9] 
respectively. 

5.1 Deriving relative importance weights using hybrid AHP-EW method With the 
help of the remanufacturing production, basic condition information of the three 
collection companies, reverse logistics information, and various reports of 
remanufacturing workshop, the criteria’s value of the used pressurizers can be obtained. 
Once the above criteria’s value has been determined, the scores of these evaluation 
criteria (see Table 4) can be obtained through nominalization operation based on the 
mathematic models in Section 2.2. The rank of each criterion can be obtained according 
to the aggregated scores of evaluation criterion (Table 5).  

Table 5 Scores of evaluation criteria  
Criteria B11 B12 B21 B22 B23 B31 B32 B41 B42 

 TPT 3.86 1.28 8.60 3.24 3.20 8.25 4.50 4.00 5.98 
 MT 3.86 1.28 3.19 3.38 5.43 3.42 0.63 4.00 5.98 
 RT 3.86 1.28 0.25 3.47 1.28 0.59 5.76 4.00 5.98 

Table 6 Aggregate scores of evaluate criteria 
Criteria B11 B12 B21 B22 B23 B31 B32 B41 B42 

Aggregate score 3.86 1.28 4.01 3.36 3.30 4.09 3.63 4.00 5.98 

Rank 5 9 3 7 8 2 6 4 1 
In accordance with the scores in Table 5 and the hybrid method in Section 3.1, the 
criteria weighing can be obtained as follow: 

wj
' =(0.1152, 0.0382, 0.1197, 0.1003, 0.1219, 0.1083, 0.0986, 0.1193, 0.1785)  (27) 

w
j
'' =(0.0010, 0.0010, 0.4103, 0.0003, 0.3186, 0.2233,0.0436, 0.0010, 0.0010)  (28) 
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The equations (27) and (28) are obtained using AHP method and EW method 
respectively. Meanwhile, the weight partition coefficient  is set as 0.5 and the 
normalized comprehensive weight is shown in Eq. (29). 

wj =(0.0581, 0.0196, 0.2650, 0.0503, 0.2203, 0.1658, 0.0711, 0.0602, 0.0896)  (29) 

5.2 Evaluation of alternatives of collection using grey MABAC method 
According to grey MABAC methods in Section 3.2, the value of the evaluation matrix 
can be obtained in Eq. (30) and the rank results are shown in Table 7. 

 RRRi  0.6829,-0.3849,-0.8262T ，i 1,2,3            (30) 

Table 7 Closeness coefficients and rankings of collection modes 
On the basis of the values in 

Table 7, the initial collection modes can be ranked as  

 wN
j  1wO

j                           (31) 

where  represents changing rate of the original weight wO
j ; wN

j represents new weight 
of evaluation criteria. 

Table 8 Eight scenarios of criteria weights 
Criteria Original 1 2 3 4 5 6 7 8 

B11 0.0581 0.0531 0.0611 0.0681 0.0631 0.0511 0.0481 0.0589 0.0541 

B12 0.0196 0.0246 0.0166 0.0096 0.0146 0.0266 0.0296 0.0188 0.0236 

Collection modes   i R R R Rank 
TPT -0.6829 2 
MT -0.3849 1 
RT -0.8262 3 

MT >TPT>RT. 

5.3  Sensitivity analysis and demanding matching analysis 
5.3.1   Sensitivity analysis 
In order to test the  stability  of  grey MABAC method , a large amount of sensitivity  
analyses is conducted. According to Moghassem et al. (2013), the modified weights  
of criterion can be obtained as follow: 
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B21 0.2650 0.2680 0.2600 0.2690 0.2950 0.2750 0.2700 0.2150 0.2655 
B22 0.0503 0.0473 0.0553 0.0463 0.0203 0.0403 0.0453 0.1003 0.0498 
B23 0.2203 0.2253 0.2233 0.2503 0.2103 0.2303 0.2703 0.2273 0.2603 
B31 0.1658 0.1608 0.1628 0.1358 0.1758 0.1558 0.1158 0.1558 0.1258 
B32 0.0711 0.0701 0.0711 0.0731 0.0811 0.0711 0.0211 0.0771 0.0711 
B41 0.0602 0.0612 0.0652 0.0602 0.0502 0.0702 0.0602 0.0542 0.0632 
B42 0.0896 0.0896 0.0846 0.0876 0.0896 0.0796 0.1396 0.0896 0.0866 

On the basis of data in Table 8 and the proposed method in Section 3.2, the results of 
eight scenarios can be obtained, which are shown in Table 9 and Fig. 4. 

Table 9 Collection modes rank of eight scenarios based on  

Collection  
Modes 

Original 1 2 3 4 5 6 7 8 

RRi 
(Rank) 

RRi 
(Rank) 

RRi 
(Rank) 

RRi 
(Rank) 

RRi 
(Rank) 

RRi 
(Rank) 

RRi 
(Rank) 

RRi 
(Rank) 

RRi 
(Rank) 

 -0.6829 -0.1520 -0.1687 -0.1260 -0.1389 -0.1808 -0.4111 -0.0723 -0.1209 
TPT 

 (2) (2) (2) (1) (2) (3) (3) (2) (3) 
 -0.3849 0.1279 0.1475 -0.2156 0.1453 0.1320 0.1015 -0.0237 0.3397 

 

Fig. 4. Results of sensitivity analysis 

The sensitivity analysis is to test the stability of the proposed grey MABAC method, 
which has benefit of reliability in decision-making process. Small changes were made 
on criteria, which have little impacts on the ranking of collection modes. The ranking 

MT 
(1) (1) (1) (2) (1) (1) (1) (1) (1) 

RT -0.8262 
(3) 

-0.1862 
(3) 

-0.2026 
(3) 

-0.4949 
(3) 

-0.2231 
(3) 

-0.1422 
(2) 

-0.2172 
(2) 

-0.2397 
(3) 

0.0591 
(2) 

Original 

Scenario 1 

Scenario 2 

Scenario 3 
Scenario 4 Scenario 5 

Scenario 6 

Scenario 7 

Scenario 8 

-1 
-0.6 
-0.2 
0.2 

TPT 
MT 
RT 



ACCEPTED MANUSCRIPT

21

sequence (MT>TPT>RT) accounts for the large percentage among the eight scenarios 
and only Scenarios 3, 5, 6, and 8 are different from others. This is due to that the 
difference value of the maximum and minimum among the Scenarios 3, 5, 6, and 8 are 
larger than that for other scenarios, whilst the values of the criteria for the three 
scenarios are smoothly changed. Among the four different scenarios, Scenarios 5, 6, 
and 8 keep the same top status of MT, while Scenario 3 is reversed (see Table 9). This 
may due to that the weight of B12 in Scenario 3 is much smaller than other scenarios, 
leading to the larger difference when conducting Euclidean distance calculation. 

The rank is still to be consistent unless large difference of the maximum and minimum 
values or among criteria for one scenario. The test of the stability or robustness shows 
the effectiveness in rank sequence (see column 5 of Table 9). MT and TPT enjoy the 
top rank in most scenarios, and the MT can be selected as the optimal collection mode 
since RT and TPT always follow the MT (see Fig. 4). 

5.3.2 Demands matching 
The demands of collection companies/modes reflect the capabilities and conditions of 
handling used components. The higher matching level between the collection 
company’s capabilities and the condition of the used components will lead to the higher 
profit and efficiency for the company. In order quantify the level, the demand match 
degree is firstly introduced including the following two steps: Step 1: Quantification of 
demands matching 

DSimax  DSimin 
DMij  , j 1,2,...,n,i 1,2,...,m   (32) 

CSij  DSimin 

where DMij represents the quantified demands matching; DSimax and DSimin represent the 

upper boundary and lower boundary of demand score for the ith collection mode 

respectively, which are derived on the maximum and minimum scores in Table 4 

respectively. The larger of the quantified demands matching, the better of the collection 

mode is; CS j represents the condition scores of evaluation criteria of used component 

(see Table 5).  

Step 2: Metric of demands match 

 (33) MDi  ,i 1,2,...,m nNi                    
where MDi represents the demands match degree; Ni represents the numbers of 
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satisfied criteria, we could set that if 0.5 DMij 1 (see Fig. 5), then Ni 1, otherwise Ni 

0. 

In accordance with Eq. (33), the quantified value of demands matching level for three 
collection modes can be shown as follow: 

Table 10 Quantified value of demands matching degree for three collection modes 
Collection modes B11 B12 B21 B22 B23 B31 B32 B41 B42 

TPT 0.36 0.04 0.95 0.28 0.27 0.91 0.44 0.37 0.62 

MT 0.65 0.21 0.53 0.56 0.91 0.57 0.11 0.67 1.00 
RT 0.65 0.21 0.04 0.58 0.21 0.10 0.96 0.67 1.00 

On the basis of Eq. (33) and values in Table 10, the demands matching degree and its 
distribution can be obtained in Table 11 and Fig. 5 respectively. 

Table 11 Rank of demands matching degree 

Collection modes DM j Rank 

TPT 1/3 3 

MT 7/9 1 
RT 5/9 2 

 
Fig. 5. Distribution of demands matching degree for three collection modes 

Therefore, the MT has a top demand matching degree for RL followed by TPT and RT 
(Table 11). Among the three collection modes, MT has more satisfied criteria (i.e., 
demands match degree is between 0.5 and 1.0, and the satisfied area is marked with 
dotted box), followed by RT and TPT (Fig. 5).  
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Sensitivity analysis in Section 4.3.1 and the calculation of demands matching degree in 
Section 4.3.2 have jointly validated that MT is the best collection mode for used 
pressurizers. The former demonstrates the stability and of the proposed grey MABAC 
method, and the latter validates the effectiveness and applicability of the proposed 
MCDM method. The integration of sensitive analysis and the calculation of demands 
matching degree may be a meaningful and robust method to select the optimal 
collection mode for used components. 

5.4 Results and discussion 
The weight of each evaluation criterion was obtained through the AHP-EW method, in 
which the AHP method and EW method are used to determine the weights of some 
qualitative criteria and alleviate the subjective impacts of AHP respectively. Table 5 
represents the scores of evaluation criteria for three collection modes that were obtained 
using Eqs. (1)-(10). Based on these scores, the weighs of each criterion can be obtained 
through AHP-EW method (see Eq. (29)). Accordingly, these weights of evaluation 
criteria are applied to obtain the rank of collection modes in grey MABAC through 
Euclidean distance. Table 7 presents the rank results of the three collection modes and 
were obtained on the basis of Eqs. (15)-(26) and Table 4. Tables 8 and 9 illustrate the 
eight different scenarios and the corresponding rank respectively. The generation of 
scenarios is according to the method in Eq. (31). Fig. 4 compares the three collection 
modes among the eight scenarios, and these scenarios show that the MT is the ideal 
collection mode for used pressurizers. The demands matching is firstly proposed to 
match the capacity and the capability of the company with condition of used parts as 
shown in Eqs. (32)-(33). Tables 10 and 11 display the quantified scores of demands 
matching degree and its rank respectively. The results denote that MT has a stable 
demands match degree for night criteria, which may due to the medium degree of 
components’ evaluation criteria scores (see Table 4) and the medium demands for 
criteria of MT in comparison with TPT and RT (Fig. 5). The setting of standard range 
of quantified demands matching ( DMij ) may have influence on the final rank of 
collection modes, which could be decided by the managers according to the company 
condition. The results of demands matching recommend that the MT is superior to the 
RT and TPT collection modes especially in Harmfulness (B23) and except for Profit 
(B32). This validates the effectiveness of the proposed multi-criteria decision-making 
method from the perspective of practical demandcondition matching between the 
company and used components rather than criteria evaluation.  

According to the results above, it can be concluded that the collection mode MT is the 
optimal collection mode for pressurizers with the best performance of reverse logistics 
practices (see Figs. 4 and 5). In accordance with Table 6, the aggregated scores for 
evaluation criteria Demand risk (B42), Cost (B31), and Energy consumption (B21) are 
5.98, 4.09, and 4.01 respectively, which rank as B42> B31> B21> other criteria; while 
Harmfulness (B23) and Remaining service life (B12) are 3.30 and 1.28 respectively, 
which rank B12 < B31 < other criteria. Therefore, it can be found that Demand risk 
(B42), Cost (B31), and Energy consumption (B21) are the top three factors of 



ACCEPTED MANUSCRIPT 
 

24 

importance of reverse logistics, while Harmfulness (B23) and Remaining service life 
(B12) are the least prioritized factors, the analysis of the top three factors is made as 
follow.  

Demand risk: In real-world collection operation, the companies have to consider the 
its situation in terms of the capacity and capability for dealing with used components. 
Because the demands matching degree between the company and the used components 
will determine the company how to process these components and how many they can 
process. In detail, if the condition of used components in terms of quantity and damage 
level is matched greatly with the company, then this company will make a maximum 
profit. Each company has its stable processing capacity and capability, and thus is 
influenced easily by the demands of remanufactured components, which is directly 
associated with the market price. This may be a little different from the viewpoints from 
Zarbakhshnia et al. (2018) who viewed that the financial and operational risk had 
minimal impacts on the decision-making of thirdparty reverse logistics providers. This 
may due to the fact that these risks are focused on the markets/customers or companies 
separately while do not consider the connection between the markets and companies.  

Cost: The cost of operation is widely recognized as a determining factor that influence 
the final decision-making of collection modes (Zarbakhshnia et al., 2018; Shaik et al., 
2018). This research considers the remanufacturing processing cost and transportation 
cost, which are associated with the quality of remanufactured components and the 
transportation routes respectively. The remanufacturing cost is mainly consisted of 
machine cost, tool cost, and labor cost, while the labor cost accounts for the largest 
percent due to the labor-intensive characteristics of remanufacturing (Wang et al., 
2017). Mihi et al. (2014) found that the reverse logistics activities and its type affect the 
cost, and it is important to select he most feasible portfolios of reverse logistics 
activities. On the one hand, the cost will affect the collection company to decide whether 
to collect, how many to collect, and how to process. On the other hand, the processing 
methods driven by cost lead to varied quality of remanufactured components, which 
will impact the acceptability of the markets/customers. The research interestingly shows 
that the determination of the accurate adopted information in terms of quantities and 
prices before acquisition has a strong effect on recovery of used products (Jiao et al. 
(2018); Liu et al. (2016)). 

Energy consumption: Although the reverse logistics is viewed as an important link of 
environmental sustainability through collecting useful materials, used 
products/components, and disposing of waste, many issues like energy consumption 
during the transportation and remanufacturing processing in workshop should be 
considered. The different transportation ways, routes, and remanufacturing method may 
cause varied energy consumption. On the basis of this, Bazan et al. (2016) 
recommended and presented the modeling of energy consumption during production 
with a simplified form. The research shows that the incorporation of energy 
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consumption can make reverse logistics more sustainable, and more representative of 
the real-world intricacy and sophistication. 

6. Conclusion and future work 
A demands-matching orientated MCDM method is established for RL, including 
weights derivation, rank of collection modes, sensitivity analysis, and quantification of 
demands matching degree. An AHP-EW method is used to derive criteria weights, in 
which the damage level and remaining life are incorporated into evaluation criteria. 
Then a grey MABAC is applied to rank collection modes. Finally, a sensitivity analysis 
is implemented to test the stability of proposed method, and the quantification of 
demands matching is proposed to evaluate the feasibility of the optimal collection 
modes. The used pressurizers are taken as the example to validate the effectiveness and 
the applicability of the proposed methods.  

This research adopts a novel hierarchical MCDM method, which considers the demands 
of collection companies and the condition of used components for optimal strategy. The 
demands of collection companies reveal the abilities of handling RL. The closer 
between demands of the company and the conditions of used components, the higher 
profit and efficiency for the company is. Without demands matching, the collection 
modes from the MCDM may not achieve the maximum profit as well we efficiency and 
the minimum environmental impact for collection companies. In detail, the high 
demands matching of the collection company for the same types of used pressurizer can 
improve the utilization efficiency of resource and equipment of the company. This will 
contribute to collection company more profitable and efficient for RL.  

The proposed method can be adopted to determine the best collection modes of used 
components/products for collection companies. This paper is limited to weighing of 
each indicator while ignore the interdependence of them. The utilization of advanced 
information techniques, such as big data, cloud computing, and artificial intelligent will 
make the method more efficient and customized. Future work can be focused on: 1) the 
integration of intelligent techniques so as to construct an intelligent decisionmaking 
system for collection companies; 2) studying the effect of interdependence of criteria 
upon the final decision-making using ANP method. 
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