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Abstract 

NanoRem (Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications 

for the Restoration of a Clean Environment) was a research project, funded through the European 

Commission’s Seventh Framework Programme, which focuses on facilitating practical, safe, econom-

ic, and exploitable nanotechnology for in situ remediation of polluted soil and groundwater, which 

closed in January 2017. This paper describes the status of the nanoremediation implementation and 

future opportunities for deployment based on risk-benefit appraisal and benchmarking undertaken 

in the NanoRem Project.  

As of November 2016, NanoRem identified 100 deployments of nanoremediation in the field.  While 

the majority of these are pilot scale deployments, there are a number of large scale deployments 

over the last five to ten years.  Most applications have been for plume control (i.e., pathway man-

agement in groundwater), but a number of source control measures appear to have taken place.  
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Nanoremediation has been most frequently applied to problems of chlorinated solvents and metals 

(such as chromium VI). 

The perception of risk-benefit balance for nanoremediation has shifted as the NanoRem project has 

proceeded.  Niche benefits are now more strongly recognized, and some (if not most) of the con-

cerns, for example relating to environmental risks of nanoremediation deployment, prevalent when 

the project was proposed and initiated have been addressed.  Indeed, these now appear overstated.  

However, it appears to remain the case that in some jurisdictions the use of nanoparticles (NPs) re-

mains less attractive owing to regulatory concerns and/or a lack of awareness, meaning that regula-

tors may demand additional verification measures compared to technologies with which they have a 

greater level of comfort. 

1 Introduction 

In situ remediation techniques (exploiting biological, chemical, physical stabilization, and/or thermal 

processes within the subsurface) are being increasingly used to avoid excavation of materials or sur-

face treatment of groundwater from “pump and treat” projects.   

Nanoremediation describes the use of nanoparticles (NPs) in the treatment of contaminated 

groundwater and soil. Depending on the properties of different particles, nanoremediation processes 

generally involve reduction, oxidation, sorption, or their combination (Lee et al., 2014).  NPs are usu-

ally defined as particles with one or more dimensions of less than 100 nanometers (nm) (Rauscher et 

al., 2014). In practice, nanoremediation may apply to particles which are larger, for example compo-

sites, but which include activities at nanoscale dimensions such as NanoREM’s CarboIron® UFZ, Leip-

zig, Germany).  NPs used in remediation are primarily metals or metal oxides, most frequently na-

noscale zerovalent iron (nZVI).  They may be modified in various ways to improve their performance, 

for example inclusion of a catalyst (often palladium), use of coatings or modifiers, or emplacement 

on other materials such as activated carbon or zeolites (for iron oxides).  They are generally applied 

in situ via various injection methods, which may include the use of viscosity control agents or other 

materials to facilitate targeted emplacement of NPs in the subsurface. The use of NPs potentially 

extends the range of available in situ remediation technologies, and it may offer particular benefits in 

some applications (O’Carroll et al., 2013; Bardos et al., 2011). 

As a result of their size, NPs can have markedly different physical and chemical properties compared 

to their micro-sized counterparts, potentially enabling them to be utilized for novel purposes, includ-

ing remediation. To date, the most widely used NP in remediation has been nZVI. Whil the possibility 

of unique characteristics gives nZVI promise for beneficial applications, it is simultaneously a cause of 

concern, as there is a degree of uncertainty with regards to particle behavior, fate, and toxicity. As 

produced, most nZVI falls into the 10 to 100 nm size range (O’Carroll et al., 2013; Müller & Nowack 

2010; Karn et al., 2009; Nurmi et al., 2005), although it tends to agglomerate to form larger particles.  

The first documented field trial of nZVI, in 2000, involved treatment of trichloroethylene in ground-

water at a manufacturing site in Trenton, New Jersey, USA (Elliott & Zhang, 2001). Several commen-

tators anticipated that nZVI technology would take off rapidly because of its perceived benefits such 

as rapid and complete contaminant degradation.  In 2007, a European report forecast that the 2010 

world market for environmental nanotechnologies would be around $6 billion (Rickerby & Morrison, 
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2007). In practice, this market was not achieved. However, subsequent uptake of the technology has 

been relatively slow compared to other contemporary process-based technologies.   

NanoRem was a large research project, funded through the European Commission’s Framework 7 

research programme. The NanoRem project focused on facilitating practical, safe, economic, and 

exploitable nanotechnology for in situ remediation. This was undertaken in parallel with developing a 

comprehensive understanding of the environmental risk-benefit for the use of NPs, market demand, 

overall sustainability, and stakeholder perceptions. The project was designed to unlock the potential 

of nanoremediation processes from laboratory scale to end user applications and to support both the 

appropriate use of nanotechnology in restoring land and water resources and the development of 

the knowledge-based economy at a world leading level for the benefit of a wide range of users in the 

EU environmental sector. It has provided a substantial platform of information and guidance, includ-

ing a series of 12 Technical Bulletins (www.nanorem.eu/Displaynews.aspx?ID=938). Comprehensive 

project outcomes are publicly available via an on-line toolbox at 

http://www.nanorem.eu/toolbox/index.aspx#TB1.  

This paper presents results from the NanoRem project on the current status of the nanoremediation 

implementation and on assessment and opportunities for nanoremediation deployment. Current 

status of the nanoremediation was undertaken from literature review and field cases tested in the 

NanoRem Project. Assessment of nanoremediation deployment and future opportunities for its de-

ployment were carried out through risk-benefit analysis and benchmarking of NanoRem with respect 

to in-situ bioremediation and conventional in-situ chemical reduction using macro-scale iron. 

This paper reports on three aspects of NanoRem’s work: 

1. Identification of field-based deployments of nanoremediation, including six deployments by 

NanoRem listed in Exhibit 1 (NanoRem 207a-f); 

2. A risk-benefit appraisal for nanoremediation use; and, 

3. Benchmarking the performance of nanoremediation against its two main market competitors: 

more conventional approaches to in situ chemical reduction (ISCR) and in situ bioremediation 

(ISBR). 

 

http://www.nanorem.eu/Displaynews.aspx?ID=938
http://www.nanorem.eu/toolbox/index.aspx#TB1
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Exhibit 1 NanoRem field-based pilot tests 

Site Name Spolchemie I Spolchemie II Solvay Balassagyarmat Neot Hovav Nitrastur 

Site Primary Inves-
tigator 

AQUATEST AQUATEST Solvay Golder Ben Gurion Univer-
sity of the Negev 

Tecnalia 

Country Czech Republic Czech Republic Switzerland Hungary Israel Spain 

Current use Industry Industry Industrial brown-
field  

Brownfield Industry Brownfield 

Specification of 
contamination 
(source/plume) 

Dissolved plume Residual phase and 
dissolved plume 

Pooled phase and 
dissolved plume 

Dissolved plume Non-aqueous 
phase and plume in 
fractures 

Anthropogenic 
backfill containing 
heavy metals  

Main contami-
nant(s) 

Chlorinated hydro-
carbons 

BTEX (mainly tolu-
ene and xylenes), 
styrene 

Chlorinated hydro-
carbons 

PCE, TCE, DCE TCE, cis-DCE, tolu-
ene 

As, Pb, Zn, Cu, Ba, 
Cd  

Type of Aquifer Porous, unconfined Porous, unconfined Porous, unconfined Porous, unconfined Fractured Porous, unconfined 

Hydraulic conduc-
tivity 

10-6 to 10-4 m/s 10-6 to 10-4 m/s 2 x 10-5 to 8 x 10-3 
m/s 

2 x 10-8 to 5 x 10-3 
m/s 

n/a 10-5 to 2 x 10-4 m/s 

Seepage velocity 0.2 m/d 0.9 m/d 5-20 m/d 0.3 m/d not available 1 m/d 

NP used NANOFER 25S/ 
NANOFER STAR 

Nano-Goethite FerMEG12 Carbo-Iron®  Carbo-Iron®  NANOFER STAR 

NP provided by NANO IRON, s.r.o. University Duisburg 
Essen 

UVR-FIA GmbH ScIDre GmbH UFZ NANO IRON, s.r.o. 

Mass of NP inject-
ed 

200 kg / 300 kg 300 kg 500 kg 176.8 kg 5 kg 250 kg 

Injection System Direct Push Direct Push Wells (with pack-
ers) 

Direct Push Wells (with pack-
ers) 

Wells (with pack-
ers) 

 

Abbreviations: As – arsenic; Ba – barium; Cd – cadmium; Cu – copper; Pb – lead; Zn – zinc; m/d = meters per day 
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2 Status of field based tests and applications of nanoremediation  

In 2011, a review of nanoremediation for the UK Government identified 58 deployments of nZVI in 

the field from pilot tests to commercial applications (Bardos et al., 2011).  By the end of November 

2016 NanoRem extended this listing to approximately 100 field based deployments, taking into ac-

count multiple deployments on one site.  These are listed in the Supplemental Materials. The Sup-

plmental Materials only cite deployment where at least some public domain documentation was 

found. However, it should be considered an indicative rather than an exhaustive listing. Moreover, 

anecdotal information suggests further deployments have taken place, even one or two pilot tests in 

the UK where there is a “voluntary” moratorium on nanoremediation in place.  

The field deployments are distributed across 92 sites as follows: Belgium, 1 site; Canada 4; Czech 

Republic 12; Denmark 2; France 2; Germany 7; Hungary 4; Israel 2; Italy 1; the Netherlands 1; Portu-

gal 2; Spain 2; Switzerland 1; Taiwan 1; and USA 49. This listing includes the NanoRem pilot sites. 

Sixteen of these sites received “full” scale nanoremediation deployments.  The remainder were ei-

ther pilot / field tests or no information on scale was available. Treatments at 79 sites were directed 

at groundwater, including 18 where treatment of aquifer materials or “soil” is also mentioned. 

Treatments at three sites appear to have been directed at “soil only”. There is no information on 

media treated for nine of the sites. The vast majority of deployments are of nZVI, typically modified 

variants. Of the nZVI deployments 18 were bimetallic particles doped with palladium, 4 were in 

emulsions, 3 were stabilized in carbon, and 4 on minerals.  Three recent applications of nanogoethite 

were also identified.   

Nanoremediation at 76 of these sites treated dense nonaqueous phase liquid (DNAPL) (chlorinated 

solvents). In nine of these cases other contaminants were also mentioned including perchlorate, pol-

ychlorinated biphenyls (PCBs), petroleum hydrocarbons, and metals. Metals treatment was the focus 

for six sites, in particular hexavalent chromium (Cr[VI]), with it also occurring in two of the mixed 

contamination sites. For the handful of remaining sites, treatments were aimed at PCBs or pesticides, 

with one nanogoethite application targeted for light nonaqueous phase liquid (LNAPL) contamina-

tion.  The contaminant(s) was not specified at two sites. Other contaminants recorded at test sites 

include Freon, phthalates, polycyclic aromatic hydrocarbons (PAHs), and nitrate. 

Information on risk management application is not provided except in a few cases.  However, 19 of 

these applications (4 at “full” scale) appeared to include DNAPL as a contaminant source, or at least a 

residual source, on the assumption that reported DNAPL concentrations exceeding 10,000 mi-

crograms per liter (μg/L) are likely indicative of a source / residual source. The remainder are more 

likely to be pathway (plume) management applications.  

The most recent deployments use more advanced nanoparticle products produced in Europe (and 

tested by NanoRem) as US and Japanese production and supply has diminished, as a result of low 

levels of use. Where information has been provided, applications of <10 kg of NPs are recorded for 9 

sites; 10 to <100 kg for 16 sites; 100 to <1,000 kg for 27 sites; and >1,000 kg for 11 sites. No infor-

mation on the mass of NPs deployed is available for the other sites. The principle application ap-

proaches are gravity / infiltration based methods or direct push / injection under pressure. Applica-

tion via fracturing was also used in a few instances. 
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While the number of deployments has certainly increased over the last five years, the total number 

of deployments, particularly in a commercial context, remains relatively low compared to conven-

tional ISCR and ISBR.  There are potentially two inter-related sets of reasons for this: the first is the 

level of benefit for using nanoremediation, compared with the level of risk; and also how nanoreme-

diation benchmarks against conventional ISCR and ISBR. The remainder of this paper provides an 

updated risk-benefit appraisal and benchmarking based on the work of the NanoRem project. 

3 Risk-Benefit Appraisal for NanoRem technologies  

3.1 Technology benefits  

This section focuses on how nanoremediation may also offer specific and particular benefits in some 

applications.  It is based on two types of information: (1) literature data published on the use of NPs 

for contaminated land remediation up to 2016 and (2) NanoRem Project results (including laboratory 

testing and field trial results from the sites listed in Exhibit 1). These include benefits related to the 

range of treatable contaminants, the speed by which they can be treated, the range of environmen-

tal conditions under which nanoremediation can perform, the potential for source treatment, and 

potential synergies with other treatments. This section focuses on nZVI for which the best evidence 

base exists; however, other NPs – especially those tested by NanoRem – are discussed wherever 

possible. 

3.1.1 Extended range of treatable contaminants 

For the most part, nanoremediation based on nZVI has been used to treat chlorinated solvent con-

tamination and trace element contamination, in particular CrVI (see Supplemental Materials). Labor-

atory-scale tests from the technical literature indicate that nZVI could treat a wide range of contami-

nants, although relatively few of these have been subjected to field-based treatability studies.  Po-

tentially treatable contaminants include: PAHs, complex chlorinated aromatic compounds (such as 

PCBs), pentachlorophenol (PCP), and the chlorinated benzenes (Cheng et al;, 2010, Chang et al., 

2005, 2007, 200p; Zhu & Lim 2007; Lowry & Johnson 2004; Xu & Zhang, 2000). Chang et al. reported 

two studies focusing on nZVI remediation of soils impacted by PAHs, particularly pyrene, which ap-

peared to demonstrate declining contaminant concentrations over time and as a function of nZVI 

dose, but which did not identify specific degradation mechanisms (Chang et al., 2005, 2007, 2009). 

nZVI has also been considered as a treatment for radionuclides such as radium and uranium 

(Burghardt & Kassahun 2005), with several laboratory studies suggesting this to be feasible (Scott et 

al., 2011; Dickinson & Scott, 2010). Fan et al. (2013) demonstrated the ability of sulfidated nZVI to 

reductively sequester pertechnetate for the remediation of technetium-contaminated groundwater. 

Nanoscale / micro-scale metallic particles have also been shown at laboratory-scale to be a potential 

remediation technique for energetic (explosive) materials (Geiger et al., 2009; Naja et al., 2008). Dop-

ing nZVI with metals such as palladium further improves its reactivity and the range of applicable 

contaminants by introducing extended catalytic properties (Cook, 2009; Sirk et al., 2009; Quinn et al., 

2009; Kim et al., 2008; Saleh et al., 2007; Elliott & Zhang, 2001). In addition, according to the Khari-

sov’s review (Kharisov, 2012), common environmental contaminants that can be transformed by 

nZVI, supported and alloys nZVI, iron oxide, and FeOOH) may include: chlorinated and brominated 

methanes, pesticides (DDT, lindane), organic dyes (Orange II, Chrysoidine, Tropaeolin O, Acid Orange, 

Acid Red), heavy metal ions (Hg2+, Ni2+, Ag+, Cd2+, Cr[VI]), dioxins, other organic contaminants (N-
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nitrosodimethylamine, dinitrotoluene, trinitrotoluene (TNT), RDX [hexahydro-1,3,5-trinitro-1,3,5-

triazine] and inorganic anions [Cr2O7
2-, AsO4

3-, ClO4
-, NO3

-, SO4
2-, HCO3

-]). Laboratory results offer un-

precedented details about the intra-particle reaction mechanisms and demonstrate intrinsic ad-

vantages of nZVI for arsenic encapsulation, treatment, and remediation (Ling & Zhang, 2014; Yan et 

al., 2012).   

At field-scale, most deployments of nZVI have focused on the degradation of chlorinated solvents, 

although pilot studies have also demonstrated successful treatment of benzene, toluene, ethylben-

zene, and xylenes (BTEX), perchlorates, CR(VI), diesel fuel, PCBs, and pesticides. O'Carroll et al. (2013) 

detail the chemical processes involved in the treatment of chlorinated solvents and various metals by 

nZVI. A review of approximately 100 field deployments (see Supplemental Materials) indicates that 

nZVI was used to treat contaminants such as other halogenated organic compounds (methylene 

chloride, 1,2-dichloropropane, 1,2-dichloretheane, vinyl chloride, trichloroethane, hexachlorobutadi-

ene), PAHs (benzo[a]anthracene), (bis[2-ethylhexyl]phthalate, perchlorate, Freon, NO3), PCBs and 

metals (Cr, Ni).  

NanoRem work has included the improvement of nZVI performance (e.g., via the use of air stable 

particles (NanoRem, 2017g) and a range of more novel NP types that potentially extend the range of 

problems treatable by nanoremediation.  It has tested the use of nano-goethite (iron oxide) to stimu-

late ISBR (oxidation) of benzene and toluene group contaminants. This has shown significant poten-

tial at laboratory scale, although pilot-scale test outcomes are less clear cut (NanoRem, 2017b; 

NanoRem, 2017g).  NanoRem has also carried out laboratory and field-based tests of a novel com-

bined particle consisting on nZVI sorbed to activated carbon (Carbo-IronTM;.  The rationale for this 

nanoparticle is to improve the persistence of the nano-scale activity and provide a trap and treat 

capability. NanoRem conducted field tests related to chlorinated solvents (NanoRem 2017d).  In ad-

dition, NanoRem performed laboratory-scale tests using several other NP types, including: 

 “Trap-Ox” Fe-zeolites, microporous alumosilicates, loaded with FeII/III ions by ion exchange, 

as an assist for Fenton’s-based in situ chemical oxidation applications. 

 The use of bionanomagnetite for nanoremediation of chlorinated solvents and trace ele-

ments, as a “green” alternative to chemical synthesis routes (Watts et al., 2015).  

 

3.1.2 Improving the speed of contaminant destruction  

The speed with which contaminants can be degraded or stabilized by NPs can be substantially in-

creased over conventional in situ saturated zone remediation technologies because a greater amount 

of iron is readily available for reaction (e.g., Müller and Nowack, 2010; Li et al., 2008).  This may bring 

wider benefits.  Karn et al. (2009) suggest that shortened timescales (e.g., compared with pump and 

treat) not only reduce costs but also reduce the time that workers are exposed to a contaminated 

site during its treatment.  NanoRem laboratory and field results showed that activation process has 

improved speed and kinetics for an air stable nZVI, NANOFER STAR.  

3.1.3 Improving the extent of contaminant destruction  

A further claim made for nZVI use in remediation is that it offers the potential for rapid and complete 

treatment without the generation of toxic intermediate breakdown products, or that it generates 

more benign reaction products compared with ISBR (Bezbaruah, 2009; Nurmi et al., 2005). Avoiding 
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toxic intermediates could be a major process benefit, if it is achievable in the field, particularly for 

sites where the pathway to potential receptors is relatively short.  

Bench-scale studies indicate that, in the presence of nZVI, tetrachloroethene (PCE) is degraded fully 

to ethane, ethene, or other light non-chlorinated hydrocarbons, without the build-up of toxic inter-

mediates (Taghavy et al., 2010; Wang et al., 2010; Henn & Waddill 2006; Gavaskar et al., 2005). This 

has been compared with the field-scale performance of ISBR for treating chlorinated solvents, which 

can proceed to non-toxic products as well, but where there are instances of the accumulation of 

lesser chlorinated daughter products including the dichloroethenes (mainly cis-1,2-DCE, trans-1,2-

DCE) and/or vinyl chloride (VC) (Interstate Technology and Regulatory Council [ITRC], 2008). The rea-

sons for DCE accumulation are typically site specific; there is a body of evidence suggesting that in 

some cases it is because the local microbial community lacks a competent DCE degrader. This issue 

has been successfully remedied in a number of cases by inoculation of the aquifer with Dehalococ-

coides (ITRC, 2008). Overall, there are few reports of intermediate product accumulation during nZVI 

treatment of chlorinated solvents, although de Boer et al., (2010) reported that there may be some, 

short-lived production of toxic intermediates such as VC. Available evidence, therefore, supports a 

view that process intermediates may accumulate for both ISBR treatments and nZVI applications in 

the field, depending on site-specific circumstances (and the sufficiency of added nZVI). However, it is 

also possible that the process intermediates observed during nZVI use in the field may be a conse-

quence of biological processes rather than abiotic processes. Furthermore, the theoretical outcome 

remains one of complete contaminant destruction. 

NanoRem field tests results on observation of degradation products confirmed existing knowledge 

from previous work, a rapid and total degradation of chlorinated compounds in ethane and, in some 

cases, the presence of cis-DCE, which may be due to secondary biological processes (NanoRem 2017a 

– f). 

3.1.4 Extended range of environmental conditions 

nZVI has been shown to be effective across a broad range of soil pHs, temperatures, and nutrient 

levels (Kharisov, 2012).  Nanoremediation would also not be subject to conditions that might be in-

hibitory to biological processes. For example, as yet unpublished NanoRem laboratory-scale results 

showed that biomagnetite NP had a high resistance to inhospitable aquifer conditions (e.g., pH). Bi-

omagnetites are considered to be reactive against a wide range of environmental conditions and at a 

range of pH values. Very high degradation rates were observed for biomagnetite and Pd-

biomagnetite (Kobs respectively of 6.6 x 10-2 per hour [h] and 1.5/h) for the treatment of Cr(VI) under 

very basic conditions (pH=12). 

3.1.5 Potential for providing source term treatment capability 

There are limitations to the effectiveness of any in situ approach to source removal / destruction. 

However, nZVI deployment may be effective for treating small source areas, for example, what are 

often termed as secondary sources. Secondary sources may be used to describe two types of 

sources: (1) free product that has migrated away from the original source (Deeb et al., 2014); and, (2) 

more colloquially, small product sources on a contaminated site. Summary information from the U.S. 

Environmental Protection Agency (EPA, Federal Remediation Technologies Roundtable [FRTR], 2006) 

describe a pilot application of bimetallic NPs (platinum-doped nZVI; referred to as “BNP”) for dis-
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persed sources of chlorinated solvents, which achieved rapid treatment of dissolved phase chlorinat-

ed solvents at some, but not all, well locations.  

Some of NanoRem’s laboratory findings may be relevant for promoting source treatment. They in-

clude the following:  

(1) inclusion of surfactant in the NP suspension to assist accessibility to DNAPL;  

(2) Carbo-Iron® has advantages for free-phase DNAPLs as the Carbo-Iron® is hydrophobic. 

The carbon fraction sorbs DNAPL; therefore, making it accessible to the iron. The possibility of Carbo-

Iron® entering the NAPL phase has not yet been observed for methodological reasons, but it certainly 

collects at the phase boundary; and:  

(3) The potential for providing source treatment is highly dependent on the existing deploy-

ment techniques and their ability to deliver NPs in the contaminated zone. The aboveground prepa-

ration of the suspension appears to be more critical to success than the actual injection approach. 

There is a need for good information about the permeability of the subsurface to use the right tech-

nology to inject the material. Injection into low permeability layers is not feasible. 

Regarding the NanoRem testing sites, three of the six test sites targeted some types of source treat-

ment (secondary or residual): 

 At the Spolchemie I site, Usti nad Labem, Czech Republic, a DNAPL secondary source area re-

moval was targeted, injection of NANOFER 25S and NANOFER STAR (NanoRem, 2017a). 

 At the Spolchemie II site, Usti nad Labem, Czech Republic, LNAPL contamination, including tolu-

ene, was targeted, mainly in the plume, but including small amounts of residual phase, using iron 

oxide (Nano-Goethite) NPs (NanoRem, 2017b). 

 At the Solvay site, Switzerland, the initial aim was to treat the plume and eventually inject iron in 

a DNAPL secondary source zone where the contaminants are present in pools, as residual phase 

and at the bottom of the aquifer, using milled nZVI particles, FerMEG12 (NanoRem 2017c). 

The degree of contamination treatment success of the NanoRem test sites (listed in Exhibit 1) varied 

depending on the site and the type of NPs injected. These were pilot scale treatments so effects 

were localised and limited in duration. In all cases some reduction in target contaminant levels was 

found. At the Spolchemie site I, the second NANOFER STAR injection showed efficient degradation of 

PCE. At the Solvay site, even if the concentrations of contaminants found in the test area are very 

high compared to the nearest extraction well, it was concluded that a successful treatment of the 

identified secondary source will only have a small impact on the concentration of contaminants in 

the extraction well. The working hypothesis that back diffusion of the contaminants from the clay 

formation is responsible for the groundwater contamination, could not be verified as free phase 

product was present. At the Spolchemie II site, the contaminant concentrations are still very high due 

to a slow bioremediation process, especially under anoxic/anaerobic (iron reducing) conditions. 

3.1.6 Synergy and enhancement effect 

 A number of emerging NP approaches include combined treatments including nZVI with other 

treatments, for example, thermal destruction (Varanasi et al., 2007), electrokinetic treatments 

(Gomez et al., 2015a, 2015 b), and ISBR (Bruton et al., 2015).  Of these combined ISBR and ISCR is the 

most developed, and the synergy between nZVI addition and supporting biological processes of 

dehalorespiration is a significant opportunity for nZVI deployment. 
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Various studies suggest that nZVI may be suitable for deployment in conjunction with other remedia-

tion technologies, with some studies even demonstrating a synergistic effect. For example, Jiam-

jitrpanich et al. (2012) examined the compatibility of nZVI with phytoremediation techniques for 

treating TNT in soil, where TNT contaminated soil was treated with hyperaccumulator plants and 

nZVI applications, as both single and combined treatments. Results suggested TNT removal was high-

est for treatments involving a combination of nZVI and hyperaccumulator plants. Similarly, Baiget et 

al. (2013) found nZVI used in combination with a microbial bioremediator, Shewanella putrefaciens, 

produced synergistic effects for the removal of uranium from contaminated effluent.  

Interestingly, field and laboratory bench-scale observations indicate that nZVI use is synergistic and 

stimulatory for in situ anaerobic biodegradation of chlorinated solvents by dehalorespiration. Labora-

tory studies indicate that nZVI application does not appear to be inhibitory to (and may even be 

stimulatory for) biological reductive dechlorination associated with water-derived cathodic H2 pro-

duction during its anaerobic corrosion (Comba et al., 2011; Kirschling et al., 2010; Xiu et al., 2010). 

Kuang et al. (2013) found corroborating results supporting this theory, demonstrating that both nZVI 

and Ni/Fe composite NPs increased the biodegradation of phenol by Bacillus fusiformis at pH 6 and 8; 

nZVI was also demonstrated to increase biodegradation at low pH (pH 3). These laboratory findings 

are consistent with observations during applications of nZVI in the field, where biological reductive 

dechlorination continues or is stimulated (e.g., He et al., 2010; Kocur et al., 2015). Indeed, Lacinová 

et al. (2013) showed that in field tests sequentially combining nZVI and in situ biostimulation 

achieved greater reduction in chlorinated solvents in a contaminated aquifer (76 percent compared 

to 48 percent for nZVI alone). Koeniga (2016) proposed a unique treatment train combining nZVI and 

organochlorine respiring bacteria (ORB) which, when applied at appropriate doses, can potentially 

treat a wider range of chlorinated aliphatic hydrocarbons (CAHs) than each individual remedy. Com-

bining two Cr(VI) geofixation methods – chemical reduction by nZVI and subsequent biotic reduction 

supported by whey – resulted in a further and long-term decrease in the Cr(VI) and chlorinated sol-

vents concentrations in groundwater (Nemecek, 2015, 2016). 

NanoRem bench-scale results suggest that the carbon in the Carbo-Iron® may provide microbial mi-

crosites and support microbial processes long-term following its application in the field. This was 

strongly supported by field observations (see below). Thus, nZVI use can be readily combined with 

biological treatment.  

At the NanoRem Spolchemie II site, the application of nanogoethite particles was used as an in situ 

technology for enhancing the microbial activity with the aim to degrade BTEX contamination. The 

results indicated possible BTEX mass removal, but BTEX concentrations remained high.  

3.2 Risks of deployment  

Two broad categories of risks can be foreseen during deployment: Human health risks during han-

dling of Nanoparticles and deployment; Environmental risks towards ecology and/or groundwater 

from NP or / and renegade particles. These risks are either associated with the handling phase or 

with the deployment phase. 

3.2.1 Human exposure and Hazards from handling 

The most significant health and safety risks for people working with nZVI are most likely to occur 

during the transportation, handling, and injection of the NP slurries. The most likely route of expo-

sure to and uptake of nZVI is through dermal contact, ingestion, or inhalation. However, the likely 
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consequences of human exposure to nZVI are poorly understood (Moore, 2006). In vitro tests have 

identified that nZVI and iron oxide NPs can be toxic to a number of human and other animal cell 

lines, likely via the production of reactive oxygen species (Keenan et al., 2009; Blaise et al., 2008; Eun 

& Myung, 2007; Brunner et al., 2006). Conversely, absence of nZVI cellular toxicity is reported for 

some in vitro studies (Hildebrand et al., 2010). On the basis of limited testing across DNA from two 

species, Oberdörster et al. (2006) reported no significant toxicity issues for nZVI. Boxall et al. (2007) 

summarize nZVI toxicity risks with a cautionary line, while acknowledging that the environmental and 

human health risks are probably low.  

Until recently, field-scale remediation applications of nZVI used heterogeneous slurries: either nZVI in 

water or in an aqueous mixture with other materials (e.g., surfactants, alcohols, etc.) More recently, 

air stable powder formulations have been developed and are currently commercially available. For 

example, Siskova et al. (2012) have demonstrated an air-stable nZVI formation coated with an inner 

shell of amorphous ferric oxide/hydroxide and an outer shell of glutamic acid.  

Risks from handling are typically countered through pre-existing precautionary regulations which are 

well understood. As with health and safety regulations for other potential hazardous remedial agents 

(e.g., chemical oxidants), appropriate guidance for nZVI handling should follow procedures outlined 

in Safety Data Sheets (SDS) or, in the UK, Control of Substances Hazardous to Health (COSHH) data 

sheets. 

3.2.2 Environmental risks from deployment 

Environmental risks from deployment are governed by two main factors: the travelling distance of 

the NPs and their eco-toxicity. The NanoRem Project produced novel information on both of these 

aspects. 

In terms of the source-pathway-receptor paradigm used in risk-based land management (RBLM), 

renegade NPs are presumed to represent a hazard. Receptors in the form of not yet polluted 

groundwater are assumed to be present. 

NanoRem laboratory and field work has helped refine our understanding of the transport of NPs. 

Most of the upscaling (large containers and field sites) was for porous materials.  The results from 

the large containers and field trials showed maximum travel distances of 2.5 meters (m) and 5m re-

spectively.  NanoRem reported LT99.9% values which are predicted maximum travel distances calculat-

ed using the results of column experiments. Early experiments show predicted transport distances 

just over 20 m (21.8 m).  Column experiments using optimized particles and a design simulating field 

conditions had predicted distances (LT99.9%) of just over 30 m (32.2 m).  

The Neot Hovav NanoRem site is in an industrial zone in southern Israel located over fractured chalk 

with high permeability fractures and a low permeability matrix.  The aim of this trial was to look at 

transport in fractured rock.  Ben Gurion University (NaoRem, 2017e) reported that the NPs travelled 

from the injection point to the pumping well, a distance of 47 m (Personal communication, Noam 

Weisbrod, [2016]).  A maximum distance for NP transport in fractured rock has not been calculated, 

so it could exceed 47 m; further work would be required to evaluate the actual transport distances in 

fractured rock at this site. 

Field trials and other research, which were carried out during NanoRem, has been incorporated into 

a risk screening model (Nathanail et al., 2016).  The risk model for NP applications considers the mac-

ro-scale transport of NPs within saturated media and is based on a modified advection-dispersion 
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equation (Tosco et al., 2016, Bianco et al., 2015).  The methodology depends on calculating values of 

attachment (katt) and detachment (kdet) using the MNMs model (micro-and NP transport, filtration, 

and clogging model suite). The results of the risk screening model and the field trials and laboratory 

studies inform a qualitative and semi quantitative risk assessment protocol on the magnitude of risks 

posed by NPs that escape the zone of contaminated groundwater   intended for remediation . Such 

renegade particles have been found not to migrate distances significant enough to pose a credible 

risk to unaffected groundwater, surface waters, or ecosystems. 

Regarding environmental impact of reactive NPs,  toxicity testing of NanoRem NPs  generally found 

that toxicity was low; typically the limiting concentration was 100 mg/l. 

These findings reinforce the view that it seems reasonable to conclude that overall risks of deploy-

ment are low. 

4 Benchmarking and technologies cross-comparisons 

Nanoremediation technology shares a number of generic benefits with other in situ remediation 

approaches such as minimizing disruption to site operations, minimizing exposure of site workers to 

contaminants and reagents, and reduced generation of processes waste and emissions. In common 

with ISBR and other forms of ISCR, nanoremediation offers the chance to avoid long- term site infra-

structure required for engineered processes such as pump and treat or in situ air sparging.   

This section makes two cross comparisons. The first is with the use of micro- scale iron for remedia-

tion and the second is with respect to the use of ISCR and ISBR. 

4.1 Specific cross comparison with micro-scale ZVI 

This sub-section is a tentative benchmarking of nZVI use against micro-scale iron which has been 

widely deployed in remediation projects, for example in permeable reactive barriers (PRBs) (Envi-

ronment Agency, 2002). Indeed, comparison of the use of these two types of particles for in situ re-

mediation technologies remains a challenging task as the performance of these technologies are 

highly dependent on in situ environmental conditions which are specific to each site and its subsur-

face characteristics.  There is little literature specifically comparing the efficiency of these two-

different size particles for remediation.  However, in many overview or general review papers on 

NPs, the authors express opinions about general pros and cons on the efficiency of NPs compared 

with micro- or macro- scale iron.  On balance, nZVI appears to offer several advantages over larger, 

granular-size ZVI particles as described below. 

Reducing size of Fe0 materials down to nano-size increases the surface area by three orders of mag-

nitude compared with granular iron, which provides a greater proportion of atoms or molecules with 

unsatisfied valence at the surface of the particle and a greater number of sites which are likely to 

adsorb or react with other atoms (e.g., Noubactep et al., 2015; Hosseini et al., 2015; Guan et al., 

2015; Tosco  et al., 2014; Yirsaw, 2016).  

Degradation kinetics are usually considered to be significantly faster for NPs than micro-scale parti-

cles. Based on reaction rate (KM - mass normalized pseudo first order reaction rate), nZVI can de-

grade contaminants one or two orders of magnitude faster than micro-scale ZVI (Velimirovic, 2013). 

However, based on KSA (surface area normalized reaction rate constant), the reactivity of newly pro-

duced micro-scale ZVI was similar to the highly reactive nZVI and even higher (Velimirovic, 2013). 
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This tends to show that the reactivity of the nZVI is very much linked with the increased surface area 

of nZVI. The higher reactivity of nZVI allows to degradation of some contaminants (for example PCBs) 

which are hardly degraded by mmZVI or µmZVI. 

NPs are able to migrate farther in soil and groundwater compared with micro-scale ZVI which is es-

sentially immobile (Mueller, 2012; Lefèvre, 2016).  

NPs are thought to be promising remediation for source zones, which in some cases is believed to be 

faster and more effective compared to other groundwater treatment technologies such as pump and 

treat or PRBs (Comba, 2011; Tosco, 2014; Yirsaw, 2016).  In addition, it appears likely that nZVI has a 

better performance regarding the range of treatable contaminants, the extent and the speed of con-

taminant destruction, and the range of environmental conditions which can be tolerated, as noted in 

Section 3.2.  Microscale iron also stimulates in situ biodegradation (see Section 3.5), but potentially 

nZVI may have a more dramatic effect on changing redox potential and microbial hydrogen availabil-

ity.  

However, some drawbacks of iron NPs have also been highlighted when compared to their bigger 

counterparts and are described below.  

Aggregation, agglomeration and corrosion (and associated volumetric corrosion products) are pas-

sivation mechanisms which are predominant for nZVI and affect their reactivity (Noubaptec, 2012; 

Hosseini, 2015). According to Velimovic experiments (2014), micro-scale ZVI has approximately a 10 

to 30 times lower corrosion ratio than nZVI.  As less reactive particles will sustain reducing conditions 

for longer times and provide better performance, micro-scale ZVI is known to have a longer longevi-

ty than nZVI (Comba, 2011). The lower persistence of nZVI is due to its  higher reactivity.  Hence, 

unsurprisingly, persistence of Fe0 in the subsurface decreases with the size of the Fe particle (milli-

meter ZVI having longer persistence  than micron-ZVI than nZVI (Noubactep, 2012).  Hence there is a 

balance to be struck between the treatment effectiveness, which is higher for nZVI, versus its likely 

persistence in the subsurface which is likely to be lower compared with larger Fe0 particles. 

4.2 Cross comparison with principal remediation alternatives 

To date, land contamination problems addressed by nanoremediation relate to source control 

and/or pathway management for NAPLs, such as chlorinated solvents, and hazardous elements  such 

as arsenic or chromium (see Section 3.11). These relatively few contaminants are highly prevalent 

problems, according to a 2014 report by the European Commission’s Joint Research Centre in ISPRA,  

and account for perhaps more than 50% of contamination problems in Europe (JRC, 2014).  

The main competing in situ remediation alternatives to nanoremediation for non-aqueous phase 

liquids (NAPLs), such as chlorinated solvents, and hazardous elements such as dissolved As or Cr(VI) 

species are ISBR and conventional forms of ISCR using reducing agents (Nathanail, et al., 2007) such 

as micro-ZVI sodium dithionite or calcium polysulphide (US EPA 2018).  

As stressed in the synergy section above, use of nZVI can also be stimulatory for ISBR, and support 

completion past known potential stall points for ISBR (Kocur et al., 2015). Similar synergies are ex-

ploited in commercial reagents for ISCR using microscale ZVI (Peroxychem 2018), but NPs are more 

rapidly effective.  

Conventionally, ISCR and ISBR are primarily pathway (plume) management intervention with limited 

scope to address source areas; they have limited effectiveness against several important contamina-



 

   Page 14 

tion issues such as fuel oxygenates, fluoridated organics, and various other recalcitrant contami-

nants. In addition, ISCR and ISBR may be modify aquifer properties that render them unacceptable in 

some circumstances; and ISBR may be subject to process stall. 

The NanoRem project has developed a range of supporting deployment risk assessment and sustain-

ability assessment tools (available from www.nanorem.eu/toolbox/index.aspx#TB1) to ensure that 

nanoremediation is safe, effective and sustainable, with a level of scrutiny that far exceeds that 

which has been required for many of the subsurface amendments required to initiate ISBR or ISCO/R. 

Error! Reference source not found. provides a comparative benchmarking across risks and benefits 

for nanoremediation and its two main competitor approaches ISBR and ISCR.  Cost indications in 

Error! Reference source not found. are based on a Czech case study (Kvapil et al., 2016). Error! Ref-

erence source not found. provides a more complete comparison of the relative costs used for 

nanoremediation to bioremediation (using lactate injection) and ISCR using microscale ZVI alone. The 

comparison is based on a Czech example and a Czech cost base. It is only illustrative, and there are 

generally few hard and fast rules for cost estimation for in situ remediation technologies. The mod-

elled application is for a pathway management of a chlorinated solvent plume, and is benchmarked 

against nanoremediation in percentage terms. It is based on treatment to Czech regulatory thresh-

olds within three years. In this example, ISBR is substantially cheaper than nanoremediation. 

 Exhibit 1 Benchmarking costs, risks, and benefits of nanoremediation compared to ISBR and ISCR 

  Nanoremediation  Conventional ISCR ISBR 

Risks Human health  Some NPs are hazard-
ous, some are air stable 
and safer to handle. 

No exposure once suc-
cessfully deployed. 

Some reagents, such as 
dithionate, are poten-
tially hazardous. 

No exposure once suc-
cessfully deployed. 

Materials are safe to 
handle. 

No exposure once suc-
cessfully deployed. 

Aquifer  

ecology 

Injections are typically 
in highly disturbed envi-
ronments. No NP specif-
ic ecotoxicity found by 
NanoRem. Ultimate fate 
is as iron oxides which 
are plentiful in soils. 

Injections are typically 
in highly disturbed envi-
ronments. Ecological 
impacts unstudied, but 
assumed minimal. 

Injections are typically 
in highly disturbed envi-
ronments. Ecological 
impacts unstudied, but 
in the long terms as-
sumed minimal

1
. 

Water Injected materials have 
limited lifetimes and 
limited travel distance, 
and are not associated 
with adverse effects of 
subsurface groundwater 
quality. 

Lifetimes and travel 
distance of injected 
dithionite has not been 
widely studied, may be 
extensive. The travel 
distance of mZVI is es-
sentially zero. 

High levels of sulfate 
and low pH remaining 
after dithionate or poly-
sulfide reduction  

Injected substrates to 
stimulate bioremedia-
tion are soluble or re-
lease soluble substrates 
possibly adversely af-
fecting groundwater 
quality

2
.  

Supporting 
measures 

Pre-deployment risk 
assessment available 
and published. 

No pre-deployment risk 
assessment tool. 

No pre-deployment risk 
assessment tool. 

                                                                                 

1 Note ISBR is mediated by deliberate modification of aquifer ecology to stimulate dehalorespiration. 
2
 This concern has led regulators in some regions to prevent ISBR deployment in some cases, e.g. at the Písečná site, CZ 

http://www.nanorem.eu/toolbox/index.aspx#TB1
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  Nanoremediation  Conventional ISCR ISBR 

Benefits Breadth of 
solutions 

Wide range of treatable 
contaminants. 

Source area and path-
way management appli-
cations. 

Suitable for situations 
inhibitory to microbial 
dehalorespiration pro-
cesses. 

Wide range of treatable 
contaminants. 

Tendency to pathway 
management applica-
tions. 

Suitable for situations 
inhibitory to microbial 
dehalorespiration pro-
cesses 

More restricted range of 
treatable contaminants. 

Potential for stall (e.g. 
TCE --> DCE) 

Tendency to pathway 
management applica-
tions. 

May be prevented by 
toxic or other inhibitory 
conditions 

Speed and 
completeness 
of action and 
synergies 

Rapid treatment effects 
owing to nanoscale 
processes. 

Moderate migration in 
the subsurface. 

Tendency to complete 
degradation of contam-
inants. 

Synergistic with ISBR 
and ISCR. 

Slower treatment ef-
fects. 

Microscale ZVI does not 
readily move in the 
subsurface. 

Tendency to complete 
degradation of contam-
inants. 

Synergistic with ISBR 
and nanoremediation 

Slower treatment ef-
fects. 

Soluble substrates mi-
grate rapidly in the 
subsurface 

Tendency to stall for 
some problems

3
. 

Synergistic with 
nanoremediation and 
ISCR. 

Ease of de-
ployment 

Portable systems (not 
requiring fixed infra-
structure). 

Some systems require 
specialized deployment 
interventions. 

NanoRem is addressing 
the issue that deploy-
ment knowledge is 
limited

4
. 

Portable systems (not 
requiring fixed infra-
structure). 

Widespread knowledge 
and systems. 

Portable systems (not 
requiring fixed infra-
structure). 

Widespread knowledge 
and systems. 

Track record Limited track record, 
relatively few suppliers. 

Well established tech-
nology, many vendors, 
moderate track record. 

Well established tech-
nology, many vendors, 
substantial track record. 

Costs  Cost estimat-
ing 

Bespoke cost estimates 
required for each de-
ployment option ap-
praisal. 

Many consultants have 
a good knowledge of 
relative treatment costs. 

Many consultants have 
a good knowledge of 
relative treatment costs. 

Relative Cost 
levels 

100% 70-90% 60% 

 

                                                                                 

3
 E.g., stall at DCE, which may then require additional intervention such as bioaugmentation with Dehalococcoides. 

4
 Inappropriate deployment can be associated with failure to reach target volumes and even daylighting to the surface 
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Exhibit 2 Cost benchmarking of remediation options for an example contaminant 
plume (Kvapil et al., 2016)   

 

 

5 Concluding remarks  

Nanoremediation may offer notable advantages in some remediation applications. These benefits 

are site specific and niche rather than representing some kind of over-arching step change in reme-

diation capabilities.  The principal constraints remain perceived cost and availability of cost and per-

formance data from “real” applications, as opposed to pilot deployments in the field and, in some 

cases, regulatory reluctance at a local level in some regions.  Nonetheless, NanoRem has achieved a 

major shift in the technical discussion of nanoremediation across many practitioners in the interna-

tional contaminated land management market, in that it is now seen as a viable option, albeit it at 

the “early adoption” stage, rather than being seen as an emerging approach of fringe interest.  There 

has always been a minority interest in the technology, but NanoRem has succeeded in placing it as 

something worthy of consideration by many more service providers. 

The perception of risk-benefit balance has also shifted.  Niche benefits are now more strongly recog-

nized, and some (if not most) of the concerns, for example relating to environmental risks of 

nanoremediation deployment, prevalent when the NanoRem project was proposed and initiated, 

have been addressed.  These now appear overstated.  However, it appears to remain the case that in 

some jurisdictions (e.g., the UK) the use of NPs remains less attractive owing to regulatory concerns, 

and in others (e.g., in Italy) impeded by a lack of awareness, meaning that regulators may demand 

additional verification measures compared with technologies with which they have a greater level of 

comfort.  In both cases a higher level of regulatory scrutiny imposes additional project costs and 

complexities which make nanoremediation less appealing as a practical and cost effective remedia-

tion option.  Acceptability depends critically on the availability of well documented case studies 

(Bartke et al., 2018) 

The underpinning constraint does seem to be perceived cost, as reduction in perceived cost would 

likely encourage greater interest in field scale testing and, hence, a more robust track record of de-

ployment experience. One possible route to cost reduction is combining nano and micro-scale ZVI 

use. One example of this is the development by some the Czech NanoRem partners of a combined 

nano/micro ZVI technology that also exploits electrochemical processes to maintain nanoscale activi-

ty that exploits their differences in persistence and behaviour to produce a more robust treatment 

solution (Miroslav Černík, Technical University of Liberec, Personal Communication).  

 

nZVI ISCR (micro) ISBR INR-DC

Material mass (bulk) [%] 100% 500% 1000% 100%

Material costs [%] 100% 20% 10% 40%

No of injections / total time  6 injections / 2 years  6 injections / 3 years  9 injections / 3 years 
3 injections and service

DC / 2 years 

Operation costs [%] 100% 250% 150% 110%

Monitoring costs [%] 100% 150% 150% 100%

Total costs [%] 100% 90% 60% 60%

Risk of failure 100% 130% 70% 80%
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7 Supplemental Materials  

Overview Table of NP Field Applications Identified Worldwide, as of November 15, 2016 

Extended and adapted from Bardos et al., 2011 

Location and citations Scale Geology 
Media treated  
(S - Soil,  
GW - Ground water) 

Contaminant Treated 
Contaminant Con-
centration 

Injection Technique 
(Technology De-
sign) 

NP Type  
Amount 
Applied 

Belgium Herk-de-Stad,  
CITYCHLOR Consortium. 
2013 

Pilot 
Mixed permeabil-
ity aquifer 

GW 
Chlorinated solvents 
(PCE and daughters) 

Some free product 
suspected 

Direct Push Injec-
tion 

nZVI  

Canada,  Brownfield, SK, 
Müller and Nowack 2010 

Pilot 
Unconsolidated 
sediments 

Soil TCE, DCE     

Canada, London, Ontario, 
Chowdhury  et al., 2015 

Field test Sandy silt aquifer GW, TCE   nZVI was injected 
into an existing well 

nZVI produced 
on site  

0.14 kg 

Canada, Sarnia Site, 
Ontario, Karn  et al., 
2009 Supplemental Ma-
terial (O’Carroll 2014), 
Kocur  et al., 2014 and 
2015 

Pilot 
Unconsolidated 
sediments 

GW PCE, TCE TCE 86,000 μg/L 
Gravity injection at 
four points 

nZVI synthe-
sised on site, 
stabilised with 
CMC 

700 L of 1 g/L 
nZVI 
with 0.8 wt % 
CMC polymer 

Canada, Valcartier Garri-
son Quebec***, US EPA 
2016

5
 

Pilot 

Alluvial sands and 
gravel, glacial 
sands, silts and 
gravels  (deltaic 
and proglacial 
sands) 

GW,  Sands and 
clayey silts 

TCE, DCE, VC 
TCE: ~300 μg/L; 
DCE: ~50 μg/L 

Injection Screen 
Wells 

nZVI with a 
palladium cata-
lyst with a soy 
powder surface 
modification 

4.5 tonnes (A 
future full 
scale  applica-
tion is envis-
aged of 100 
tonnes) 

Czech Republic,  
Spolchemie, Usti nad 
Labem, Site 1*, 

Pilot 
Quaternary sand 
and gravel under-
lain by a clay 

GW 
DNAPLs (chlorinated 
solvents) 

 Direct push 
nZVI, NANOFER 
25s 
and NANOFER 

Injection 1: 
200kg 
NANOFER 

                                                                                 

5
 As of 2012 Golders have deployed on 20 field sites in total (Lilley 2012). Lilley, F. (2012). Golder’s Project Experience with Nano Scale Zero Valent Iron  Retrieved from http://s3.amazonaws.com/ebcne-

web-content/fileadmin/pres/4-10-2012_Nanoremediation/4-10-2012_Lilley.pdf. 

http://s3.amazonaws.com/ebcne-web-content/fileadmin/pres/4-10-2012_Nanoremediation/4-10-2012_Lilley.pdf
http://s3.amazonaws.com/ebcne-web-content/fileadmin/pres/4-10-2012_Nanoremediation/4-10-2012_Lilley.pdf
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Location and citations Scale Geology 
Media treated  
(S - Soil,  
GW - Ground water) 

Contaminant Treated 
Contaminant Con-
centration 

Injection Technique 
(Technology De-
sign) 

NP Type  
Amount 
Applied 

(NanoRem Consortium 
2017) 

aquitard STAR (air stable) 25s; 
Injection 2 
~600 kg 
NANOFER 
STAR 

Czech Republic,  
Spolchemie, Usti nad 
Labem, Site 2*, 
NanoRem Consortium 
2017 

Pilot 

Quaternary sand 
and gravel under-
lain by a clay 
aquitard 

GW 
LNAPL (BTEX, primarily 
toluene), 

 Direct push 

Nano-goethite 
(nano-iron 
oxide) - used to 
stimulate mi-
crobial activity 

Test 1 60 kg 
Test 2 300 kg 

Czech Republic, Hluk**, 
Müller and Nowack 2010 

Pilot PRB filter GW Chlorinated Ethenes 5 mg/l Infiltration Wells RNIP
6
, Nanofer

7
 300 kg  

Czech Republic, Ho-
rice**, Müller and 
Nowack 2010, Müller  et 
al., 2012 

Full 
Low permeable 
aquifer 

GW PCE (TCE, DCE) 70mg/l 
High pressure 
pneumatic injection 

nZVI (RNIP and 
Nanofer)  

2 tonne 

Czech Republic, Ku-
rivody**, Müller and 
Nowack 2010 

Several 
Pilot/Full 

Fractured bed-
rock 

GW, overbur-
den, weathered 
bedrock 

Chlorinated Ethenes 15 mg/l 
Infiltration wells, 
infiltration drains 

nZVI, RNIP, 
Nanofer** 

100s kg 

Czech Republic, Per-
mon**, Müller and 
Nowack 2010 

Pilot 
Fractured bed-
rock 

GW Cr(VI) 450 mg/l Infiltration wells nZVI, RNIP 150 kg  

Czech Republic, Pies-
tany**, Müller and 
Nowack 2010 

Pilot 
High permeable 
aquifer 

GW Chlorinated Ethenes 5 mg/l Infiltration wells 
nZVI synthe-
sised on site 

20 kg  

Czech Republic, Pisec-
na**, Müller and Nowack 
2010, Müller  et al., 2012 

Full Sandy / silt GW 
Chlorinated Ethenes 
chlorinated Ethanes 

35 mg/l 
High pressure 
pneumatic injection 

nZVI, RNIP, 
Nanofer 

4.5 tonnes of 
RNIP and 
Nanofer 

Czech Republic, 
Rozmital**, Müller and 
Nowack 2010 

Full 
Fractured bed-
rock 

GW PCB  2 mg/l Infiltration wells 
nZVI, RNIP, 
Nanofer 

1 tonne 

                                                                                 

6
 RNIP were the nZVI nanoparticles produced by Toda Corporation in Japan (these are no longer in production) 

7
 The producers of Nanofer state that they have additional deployments in the Czech Republic and also pilot deployments in Italy, Spain, France, Belgium, Netherlands, Canada, South Korea, and Hungary: 

usually 50-300kg of nZVI.  However, they are not permitted to disclose further information. ### 
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Media treated  
(S - Soil,  
GW - Ground water) 
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Contaminant Con-
centration 

Injection Technique 
(Technology De-
sign) 

NP Type  
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Czech Republic, Spol-
chemie**, Müller and 
Nowack 2010 

Several 
Pilot/Full 

Porous aquifer GW 
Chlorinated Ethenes, 
chlorinated Methanes 

40 mg/l Infiltration wells nZVI, Nanofer** 
Several 
tonnes 

Czech Republic, Uhersky 
Brod**, Müller and 
Nowack 2010 

Pilot Porous aquifer GW Chlorinated Ethenes  Infiltration wells nZVI, Nanofer 150 kg  

Czech Republic, Uzin**, 
Müller and Nowack 2010 

Pilot 
Low permeable 
aquifer 

GW Chlorinated Ethenes 20 mg/l Infiltration drains nZVI, Nanofer 300 kg  

Denmark, Taastrup; 
Danish Environmental 
Protection Agency-2015    

Pilot 
Low permeable 
glacial clay mo-
raine deposits 

unknown unknown unknown 
High pressure injec-
tion 

nZVI unknown 

Denmark, electrical 
substations at three 
locations, Danish Envi-
ronmental Protection 
Agency-2015, Hindrich-
sen  et al., 2015    

Pilot 

The overall geolo-
gy for the three 
sites, is clay till 
with various 
contents of sand 
lenses underlain 
by a sandy sec-
ondary aquifer 

GW (sandy 
aquifer) 

PCE and TCE)and their 
degradation products 
DCE and VC 

 

Injection, in one 
location pre-
injection with mo-
lasses 

nZVI (NANOFER 
25S) 

Site 195 kg; 
site 2, 200 kg; 
site 3 several 
tonnes in two 
campaigns  

France, PRODEM site, 
Toulouse**

 Pilot 
Low permeable 
aquifer 

GW 
Chlorinated Ethenes, 
Cr(VI) 

7 mg/l Infiltration well nZVI, Nanofer 150 kg 

France, SNG site near 
Chalon sur Saone**

 Pilot Porous aquifer GW Chlorinated Ethenes, CN 30 mg/l, 20 µg/L Infiltration well nZVI, Nanofer 25 kg 

Germany, Asperg, Müller 
and Nowack 2010 

Pilot Fractured rock GW Chlorinated Ethenes  
Sleeve-pipe injec-
tion 

nZVI, RNIP  

Germany, Bornheim, 
Müller and Nowack 2010, 
Müller  et al., 2012 

Full (first 
European 
full scale 
application) 

Sandy gravel  
PCB, TCB, PCE, TCA, 
Pesticide, solvents, 
perchlorates  

 Sleeve-pipe injction nZVI, RNIP** 

1 tonne nZVI 
and two 
tonnes micro 
ZVI  

Germany, Gaggenau, 
Müller and Nowack 2010 

Pilot Porous aquifer GW PCE  
Sleeve-pipe injec-
tion 

nZVI, RNIP  

Germany, Hannover, 
Müller and Nowack 2010 

Pilot 
Chemicals storage 
facility 

Soil and GW CHC, BTEX. HC  Aqueous slurry Not specified  

Germany, Schönebeck 
Müller and Nowack 2010 

Pilot Porous aquifer GW VC  Push infiltration nZVI, RNIP  

Germany, site Breite St. 
in Braunschweig, Kober  

Pilot Porous aquifer GW PCE 20 to 50mg/L Direct push injec-
tion 

Milled ZVI with 
a flake-like 

280 kg 



 

 

   Page 27 

Location and citations Scale Geology 
Media treated  
(S - Soil,  
GW - Ground water) 

Contaminant Treated 
Contaminant Con-
centration 

Injection Technique 
(Technology De-
sign) 

NP Type  
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Applied 

et al., 2014 shape and 
thickness of 
<100 nm 

Germany, Thuringia, 
Müller and Nowack 2010 

Pilot Porous aquifer GW 
Chlorinated aliphatic 
hydrocarbons, Ni, Cr, 
NO₃ 

CAH: 104,000 µg/L 
Ni: 4,130 µg/L 
Cr: 1,460 µg/L 
NO3: 70 mg/L 

Injection wells nZVI 120 kg 

Hungary, Balassagyar-
mat*, NanoRem Consor-
tium 2017 

Pilot (plume 
test no 
access to 
source) 

Made ground  
(fill) over alluvial 
deposits over a 
bedrock aquitard 

GW 
Chlorinated hydrocar-
bons, PCE, TCE, DCE 

 Direct injection 

Carbo-Iron® 
stabilised in 
CMC (nZVI 
sorbed to acti-
vated carbon) 

177 kg 

Hungary (industrial site, 
confidential), 2014 ***** 

Full 
Unconsolidated 
sediments 

GW cDCE, VC  Direct injection nZVI 5,300 kg 

Hungary (industrial pro-
duction site, confiden-
tial), 2015 ***** 

Full 
Unconsolidated 
sediments 

GW TCE  Direct injection nZVI 500 kg 

Hungary (chemical stor-
age facility, confidential), 
2014 ***** 

Extended 
Pilot 

Mixed sands GW 

Contaminant mix, vola-
tile aromatic chlorinat-
ed hydrocarbons treat-
ed 

 
Reactive barrier and 
direct injection 

nZVI 700 kg 

Israel Neot Hovav*, 
NanoRem Consortium 
2017 

Pilot 
Fractured bed-
rock (Eocene 
chalk) 

High salinity 
GW 

Not specified  Not specified 

Carbo-Iron® 
stabilised in 
CMC  (nZVI 
sorbed to acti-
vated carbon) 

Not specified 

Israel, Nir Galim, Jacov  
et al., 2012 

Pilot  GW PCE, TCE, dis-DCE  

Groundwater di-
rected through 
column containig 
nzvi composite 

Diatomite sup-
ported nZVI-
vitamin B12 
composite. 

50kg 

Italy, Biella, Müller and 
Nowack 2010 

Pilot Porous aquifer GW TCE, DCE  Gravity infiltration nZVI  

Netherlands, Rotterdam, 
Citychlor Consortium 
2013 

Full Not specified  GW 
Chlorinated solvents 
(PCE and daughters) 

 Injection nZVI Not specified 

Portugal, Lousal, # Pilot 
Low permeable 
aquifer 

GW Heavy metals  Injection wells Nanofer 25S 500kg 
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Contaminant Con-
centration 

Injection Technique 
(Technology De-
sign) 

NP Type  
Amount 
Applied 

Portugal, Lisbon **** Pilot 
Porous aquifer 
below made 
ground 

GW 
Heavy metals, (As, Pb, 
Zn, Cd, Cu and Ni) 

 Gravity injection 
Nano-goethite 
(nano-iron 
oxide) 

300 kg 

Spain, Nitrastur*, 
NanoRem Consortium 
2017 

Pilot 
Made ground (2 
to 9 m deep) 

GW 

Petroleum hydrocar-
bons and heavy metals 
(As, Pb, Zn, Cd, Cu and 
Ni) 

Highest level of 
dissolved As found 
5527 μg/l 

Gravity feed to 
wells 

nZVI, NANOFER 
STAR 

250 kg 

Spain, Nitrastur, Asturias 
Region **** 

Pilot 
Porous aquifer 
below made 
ground 

GW 
Heavy metals, (As, Pb, 
Zn, Cd, Cu and Ni) 

 Gravity injection 
Nano-goethite 
(nano-iron 
oxide) 

300 kg 

Switzerland, industryal 
site*, NanoRem 
Consortium 2017 

Pilot 

Primary source is 
constrained by a 
barrier wall and 
secondary by a 
P&T, highly per-
meable alluvial 
aquifer 
(sand+gravel) 
over bedrock 
(weathered or not 
opalinus clay) 

Soil (weathered 
marlstone –
secondary 
source) and GW 

DNAPL, primarily PCE, 
Hexachloroethane, TCE 
and Hexachlorobutadi-
ene 

Maximum overall 
levels ~20,000 
mg/kg 

Injection under 
pressure into dedi-
cated wells 

First injection: 
Milled iron, 
second: nZVI + 
micro-iron 

500 kg + 300 
kg nZVI mixed 
with 200 kg of 
micro-iron 

Taiwan, Kaohsiung;  Karn  
et al., 2009 Supplemental 
Material, Wei  et al., 
2010 

Pilot 

Medium - coarse 
sand unconfined 
aquifer, 4-18m 
bgs 

Unconfined 
aquifer 

TCA, TCE, DCA, DCE, 
Vinyl chloride 

VC 620-4,562 μg/L, 
EDA 207 μg/L, DCE 
1,151 μg/L, TCE 682 
μg/L 

Gravity feed injec-
tion 

nZVI, Pd-nZVI, 
commercial and 
synthesised 

40kg nZVI in 
2250L dilution 
(commercial); 
20kg in 8500L 
dilution (syn-
thesised). 

USA, Aberdeen, MD, 
Karn  et al., 2009 
Supplemental Material 

 Not specified  
1,1,2,2-TeCA, 1,1,1-TCA, 
TCE, Cr(VI) 

  nZVI  

USA, Active Business Site 
Dayton, Ohio, 
US EPA 2016 

Pilot Not specified GW PCE, TCE 
TCE: 50 μg/L ; 
PCE:150 μg/L 

“Injections” 
Iron-Osorb

TM
. 

nZVI-silica 
hybrid NPs 

45 kg 

USA, Aerospace facility, 
San Francisco Bay, CA, 
Bennett  et al., 2010, Krol  
et al., 2013 

Full 
Course alluvial silt 
clay sediments 

GW PCE, TCE  
Multi-level push-
pull  

CMC stabilised 
nZVI and BNP -  
nZVI-Pd 

~140 g NZVI 
~ 120 g BNP 
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USA, Alameda Point, CA, 
US EPA 2016  

Pilot Not specified GW TCE Average 2,500 μg/L Direct injection 
Surface modi-
fied nZVI 

500 gallons 
slurry (con-
centration of 
nZVI not 
specified) 

USA, Camp Pendleton 
Southern California; ES 
EPA 2016 

Pilot (possi-
bly bench 
scale) 

Not specified GW TCE  Ex situ treatment 
nanoscale zero 
valent zinc 

 

USA, Cape Canaveral 
Launch Complex 15, FL, 
US EPA 2016 

Full 

Groundwater; 
surficial aquifer; 
fine/ medium 
sandy silts  

Soil and GW TCE 
439,000 μg/L Max 
TCE found 

Drop tip injection 
Emulsified nZVI 
(EZVI) 

Described as a 
full scale 
project 

USA, Cape Canaveral, 
Launch Complex 34, FL, 
US EPA 2004; US EPA 
2016 

Pilot 
Surficial aquifer 
with fine / medi-
um grained sands 

Soil and GW TCE 
1,180,000 μg/L Max 
TCE found 

High pressure 
pneumatic injection 
and pressure pulse 
enhanced injection 

Emulsified nZVI 
(EZVI) 

670 US gal-
lons of EZVI 
(17% iron by 
mass) 

USA, Edison, New Jersey, 
US EPA 2016 

Pilot and 
Full 

Fractured bruns-
wick shale bed-
rock and 4-6ft of 
silt and clay soil 

Fractured Bed-
rock 

TCA, TCE, DCA, DCE, 
cholorethane, vinyl 
chloride 

TCA 13,000 to 
1,200,000 ppb) 

Injection wells 

nZVI and emul-
sified vegetable 
oil (nZVI con-
tent not speci-
fied) 

10,000 US 
gallons 

USA, Former Manufac-
turing Site Bridgeport, 
Ohio, 
US EPA 2016 

Pilot (possi-
bly only 
bench scale) 

Not applicable GW TCE, DCE, VC Total to 5,800 μg/L Ex situ treatment   

USA, Frankling Square, 
New York, Karn  et al., 
2009 Supplemental Ma-
terial 

   
PCE, TCE, 1,1,1-TCA, 
Cr(VI) 

  nZVI  

USA, Hamilton Landfill, 
New Jersey, Karn  et al., 
2009 Supplemental Ma-
terial 

   
1,1,-TCA, 1,1-DCA, 1,1-
DCE, Pb, Ni 

  nZVI  

USA, Hamilton Township 
Trenton , New Jersey, US 
EPA 2016, Elliott and 
Zhang, ES&T (2001), 

Proof of 
concept 
(2000) and 
field pilot3 

Middle potomac 
raritan magothy 
(mprm) aquifer. 
Shallow uncon-

GW TCE, DCE, CT 400 - 3000 μg/L 

2000: injection well 
delivery (2 phases) 
with recirculation 
2003: direct push 

2000 Proof of 
concept – 
nZVI/Pd synthe-
sized by Lehigh 

2000: approx. 
1.7 kg 
2003: approx. 
25 kg 
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Contaminant Treated 
Contaminant Con-
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Injection Technique 
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Zhang et al (2006) (2003, 
2007) 

fined sandy aqui-
fer (approx. 7 feet 
bgs to approx. 25 
feet bgs). 

injection 
2007: direct push 
injection 

University 
2003 Pilot – 
nZVI from PARS 
2007 Pilot – 
nZVI from 
Lehigh Nano-
tech LLC 

2007: approx. 
220 kg 

USA, Hampton, SC, Karn  
et al., 2009 Supplemental 
Material 

 

Silty to fine sand 
from 25 - 45 feet 
bgs - then dense 
clay 

GW TCE, PCE TCE 300 ppm  nZVI  

USA, Hanford Site De-
partment of Energy, 
Washington State, US 
DOE 2009 

Pilot 

Sandy gravel to 
silty sandy gravel 
3 to 9 m thick.  
Retrofit to an 
existing well 
based sodium 
dithionite prb  

GW Dissolved Cr (VI) Circa 1000 μg/L 

Injection into exist-
ing well under slight 
pressure (1.8 m 
head of water). 

nZVI (Toda 
RNIP-M2) 

3710 kg 

USA, Hill Air Force Base 
Operable Unit 2, Utah; 
US EPA 2016 

 

Coarse-grained 
soils and overly-
ing clay, silt, and 
fine sand 

Soil and 
groundwater 

TCE 

TCE: 12 mg/kg (Max 
in soil); TCE: 14.3 
mg/L (Max in 
groundwater) 

Well “injection” 
Stabilized Fe-Pd 
bimetallic NPs 
with CM. 

5.2 kg 

USA, Industrial site, 
Ironton, Ohio, 
US EPA 2016 

Pilot 
“Complex hydro-
geology” 

GW TCE TCE: 60 to 250 μg/L 
“Injection”, prefer-
ential flow along 
“seams” reported 

Iron-Osorb
TM

. 
nZVI-silica 
hybrid NPs 

 

USA, Jacksonville, Flori-
da, FRTR 2006; Gavaskar  
et al., 2005; US EPA 2016  

Full 

Silt / fine sands(0-
24ft) and dense 
clay (24-54ft). 
Source zone 
treatment 

Soil and GW 
TCE, TCA, DCE, vinyl 
chloride 

Max soil concentra-
tions: PCE: 4,360 
μg/kg; TCE: 60,100 
μg/kg; 1,1,1-TCA: 
25,300 μg/kg. 
Max GW concen-
trations PCE: 210 
μg/L; TCE: 26,000 
μg/L; 1,1,1-TCA: 
8,400 μg/L ; cis-1,2-
DCE: 6,700 μg/L 

Direct push / closed 
loop recirculation 

BNP 135 kg 

USA, Kearny, New Jersey,    Cr(VI)   nZVI  
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Karn  et al., 2009 Sup-
plemental Material 

USA, Lakehurst, New 
Jersey, FRTR 2006; Ga-
vaskar  et al., 2005; US 
EPA 2016 

Full 

Two plumes 
tested: sand / 
gravel coastal 
plain aquifer 

Soil and GW 
PCE, TCE, TCA, c-DCE, 
vinyl chloride 

900 μg/L Direct push BNP 
1360 kg 
(2005) and 
225 kg (2006) 

USA, Manufacturing 
Plant Middlesex County, 
New Jersey; US EPA 2016 

Pilot 

Made ground (fill) 
underlain by a 
moderately frac-
tured shale bed-
rock 

Soil and 
groundwater 

TCE and daughter com-
pounds 

~500 μg/L 
Two separate “in-
jection events” 

nZVI 410 kg 

USA, Mechanicsburg, PA, 
Karn  et al., 2009 Sup-
plemental Material 

 Fractured rock GW TCE   nZVI with Pd  

USA, Newfields, New 
Jersey, Karn  et al., 2009 
Supplemental Material 

   TCE, cis-DCE, Cr(VI)   nZVI  

USA, North Slope, Pru-
dhoe Bay, Alaska (aban-
doned oil field) AK, US 
EPA 2016 

Pilot 
Organics over 
alluvial gravels 

Soil TCA, diesel fuel 
Max TCA level 
58,444 ug/Kg 

Tested shallow 
physical mixing and 
pressurised injec-
tion at depth 

BNP  

USA, Northern Alabama, 
(abandoned metal pro-
cessing plant ), US EPA 
2016, Zhao and He 2007 

Pilot 

Heterogeneous 
relatively shallow 
semi-confined 
aquifer. 

Soil and GW PCE, TCE and PCB's 
TCE MW-1 (1655 
μg/L) MW-2 (2710 
μg/L) 

Gravity feed injec-
tion 

CMC stabilised 
BNP 

150 US gal-
lons of 0.2 g/L 
Fe-Pd NP 
suspension 

USA, Palo Alto, CA, US 
EPA 2016 

Pilot Ex situ testwork GW PCE, TCE, Freon 
PCE (26,000 μg/L); 
TCE (70,000 μg/L);  

Ex situ, field batch 
reactor 

Starch-
stabilized BNP 
(Fe/Pd) 

 

USA, Parris Island, Ma-
rine Corps Depot former 
dry cleaners,  South 
Carolina, Krug  et al., 
2010; Su  et al., 2012 & 
2013; US EPA 2016 

Pilot 

Shallow uncon-
fined aquifer 
permeable, fine 
to medium sand 
to a depth of 
5.2mbg 

Soil and GW 
PCE, TCE, c-DCE, vinyl 
chloride 

PCE (32,000 μg/L); 
TCE (10,000 μg/L); 
c-DCE (3,400 μg/L); 
Vinyl Chloride (710 
μg/L) 
Max levels found 

Direct push and 
pneumatic injection  

Emulsified ZVI 
(EZVI) Emulsi-
fied  on site 
using nZVI 

0.25 m3 EZVI 
over both 
injection plots 
(consisting of 
10% nZVI, 
38% corn oil, 
1% surfactant 
and 51% tap 
water. 
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USA, Passaic, New Jersey 
Manufacturing Site, US 
EPA 2016, Zhang  et al., 
2006 

Pilot 

High permeability 
sands (to 21 ft 
bgs) with silt lens 
(21-26 feet bgs) 

Soil and GW TCE 

Total VOC concen-
trations range 450 
to 1,400 μg/L.  
Most of the con-
taminant mass was 
bound in a low 
permeability silt 
unit. 

The nZVI and emul-
sified oil were 
emplaced using 
three injection 
points directly into 
the silt lens. Pneu-
matic fracturing 
injections were 
used at two points 
and hydraulic injec-
tion at the other 

nZVI and emul-
sified vegetable 
oil. ZVI com-
bined with 
biostim 

49 kg of nZVI 
slurry of 
unknown nZVI 
concentration 
and 55 kg of 
emulsified oil 

USA, Patrick AFB, FL, US 
EPA 2016 

Full 

Groundwater; 
surficial aquifer; 
fine/ medium 
sandy silts  

Soil and GW 
TCE (and daughter 
contaminants) 

150,000 μg/L (max 
level TCE found) 

High pressure 
pneumatic injection 

Emulsified ZVI 
(EZVI) 

N/A 

USA, Penn-Michigan, 
West Lafayette, Ohio, US 
EPA 2010; US EPA 2016 

Pilot (three 
locations) 

Sand and gravel 
aquifer with a 
high groundwater 
flow 

GW TCE 250 - 1,000 μg/L Direct injection 

nZVI-silica 
hybrid NPs (at 
one location 
with palladium) 
(Iron-Osorb

TM
) 

94 kg material 
in total 

USA, Pharmaceutical 
Facility, Research Trian-
gle Park, NC, US EPA 
2016 

Pilot 

Triassic basin 
sandstone inter-
bedded with 
siltstone grading 
downwards into 
mudstones 

GW in fracture 
bedrock 

PCE, TCE, DCE, VC 

The max concentra-
tion of VOCs was 
around 14,000 
μg/L. 

Injection wells BNP 

1.9 μg/L of 
BNP slurry 
The total NP 
mass injected 
was 11.2 kg. 

USA, Goodyear, AZ, 
(Phase I) , US EPA 2016 

Pilot 

Alluvial deposits 
of western salt 
river valley. Im-
pacted ground-
water zone from 
85-150 feet bgs. 
Consisting of 
upper alluvial 
unit, middle fine 
grained unit, 
lower conglomer-

GW TCE, PCE, perchlorate 

Up to 39,000 μg/L 
total VOCs. Per-
chlorate up to 150 
ppb. 

The field injection 
test consisted of 
the injection of 30 
g/l nZVI slurry in 
water through one 
injection well. 
Note the formation 
was “clogged” by 
injection. 

nZVI 
 
Approx. 10 kg 
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ate unit and 
groundwater at 
85 ft  

USA, Phoenix, Goodyear, 
AZ, (Phase II) , US EPA 
2009a, US EPA 2016 

Pilot As above  GW TCE, PCE, perchlorate 

Total contaminant 
concentration 
ranged from 3,500 
to 11,000 μg/L 

Injection wells nZVI 

10,400 litres 
of a 2.1 g/L 
nZVI slurry 
(total of 22 
kg) 

USA, Phoenix, Goodyear, 
AZ, (Phase III), Haley & 
Aldrich, Inc. 2011, US EPA 
2016,  

Pilot As above GW TCE, PCE, perchlorate 

Max baseline con-
centrations detect-
ed (μg/L): PCE: 3 
TCE: 6,300 cis-1,2-
DCE: 2 

“Jet lance injection 
tool” 

Stabilised nZVI 
(~90% nZVI; 5% 
polyacrylate, 5% 
SHMP

8
, 0.5% 

guar gum by 
mass) 

~640 kg 

USA, Picatinny Arsenal 
Superfund Site, New 
Jersey, US EPA 2009b; US 
EPA 2016 

Pilot “Organic rich soil” GW CCl4, TCE 
CCl4: 250 μg/L; 
TCE: 87 μg/L 

Injection via tempo-
rary wells 

nZVI (Ferragel) ~54 kg 

USA, Ringwood, New 
Jersey, US EPA 2016 

Full N/a GW 
TCE, Bis(2-
Ethylhexyl)phthalate, 
Benzo[a]Anthracene 

TCE (1.1 μg/L); Bis 
(2-Ethylhexyl) 
phthalate (9.8 
μg/L); Ben-
zo[a]Anthracene 
(0.14 μg/L) 

Push injection Nano - Ox™ 375 kg 

USA, Rochester, NY 
(aircraft testing facili-
ty)*** 

Pilot 

Aquifer consisting 
of mostly sand 
and gravel, two 
plumes tested 

Soil and GW 
PCE, TCE, TCA, DCE, 
Vinyl Chloride 

Maximum VOC 
concentration: 900 
µg/L 

Direct push BNP 
1.4 tonnes 
total 

USA, Rochester, NY, 
(former manufacturing 
plant)*** 

Pilot 

Glacial till over-
burden lying 
above fractured 
sedimentary 
bedrock 

GW in till and 
bedrock 

TCE Circa 1,000 µg/L 
Direct push (ge-
oprobe) 

nZVI 

10-20g/L nZVI 
slurry (total 
mass nZVI 60 
kg) 

                                                                                 

8
 Sodium hexametaphosphate 
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USA, Rochester, NY, 
(former manufacturing 
plant), US EPA 2016 

Pilot 

Glacial till over-
burden overlying 
fractured sedi-
mentary bedrock 

GW in bedrock 
Methylene chloride, 
1,2-dichloropropane, 
1,2-dichlorethene 

Total contaminant 
concentration: 
500,000 µg/L 

Gravity feed injec-
tion 

nZVI 

10-20g/L nZVI 
slurry (total 
mass nZVI 100 
kg) 

USA, Rock Hill, SC, Karn  
et al., 2009 Supplemental 
Material 

 
Unconsolidated 
sediments 

GW TCE, DCE   nZVI  

USA, Rockaway Town-
ship, New Jersey, US EPA 
2016 

Pilot Organics rich soil GW 
Carbon tetrachloride, 
TCE 

CCL4 (250 ppb); 
TCE (87 ppb) 

Injection wells nZVI 
54 kg of nZVI 
over 2 wells 

USA, Salem, OH, US EPA 
2007; US EPA 2016 

Pilot 
Glacial till over 
fractures sedi-
mentary bedrock 

GW in fracture 
bedrock 

PCE, TCE, DCE, VC 

PCE: 80 mg/L; TCE: 
21 mg/L; cis-DCE: 
11 mg/L; 1,2-
Dichlorobenzene: 
15 mg/L; Benzene: 
7 mg/L 

Injection wells 

nZVI (injected 
with powdered 
soy as an organ-
ic dispersant 
(20% by mass); 
and also most 
batches incl 
palladium (1% 
by mass) 

100 kg nZVI 

USA, San Francisco, 
Hunters Point Ship Yard, 
US EPA 2016 

Pilot 

Three aquifers 
mentioned, un-
clear which were 
tested 

GW TCE, DCE, VC  
Injection (unspeci-
fied method) 

Uncertain 
(FRTR 2006 and 
Gavaskar  et al., 
2005 report 40 
tonnes of micro 
scale ZVI inject-
ed) 

 

USA, Santa Maria, CA, US 
EPA 2016 

Pilot 

Interbedded 
sands, silts and 
clays (bedrock 
encountered) 

GW TCE, DCE TCE (2.5 mg/L)  BNP 

30g/L  nZVI 
slurry  - 
amount un-
known 

USA, Sheffield, Alabama, 
USA, US EPA 2016 

Pilot 
Unconsolidated 
sediments 

GW PCBs, PCE, TCE, DCE, VC 
10,000 - 24,000 
μg/L 

Single injection 
point 

Polysaccharide 
stabilized bime-
tallic nanoiron  

 

USA, South Carolina, 
Former Manufacturing 
site (Chiang and Darring-
ton 2014) 

Pilot  GW TCE  
Direct push at eight 
points 

nZVI (NANOFER) ~150 kg 
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Location and citations Scale Geology 
Media treated  
(S - Soil,  
GW - Ground water) 

Contaminant Treated 
Contaminant Con-
centration 

Injection Technique 
(Technology De-
sign) 

NP Type  
Amount 
Applied 

USA, State College, Penn-
sylvania, Karn  et al., 
2009 Supplemental Ma-
terial 

   Pesticides (DDE, DDT)   nZVI  

USA, Titusville, PA, Karn  
et al., 2009 Supplemental 
Material 

   PCE, TCE, cis-DCE   nZVI  

USA, Vandenberg Air 
Force Base (missile 
launch site), US EPA 2016 

Pilot 

Mixed alluvial 
layers: interbed-
ded sands, silts, 
and clays 

GW  TCE, DCE TCE (2,500 μg/L Direct injection 

Activated car-
bon impregnat-
ed with nano-
scale porous 
metallic iron 
(BOS100®) 

180 kg 
BOS100®, 

USA, Winslow Township, 
New Jersey, US EPA 2016 

Pilot 

Unconsolidated 
sediments, Poto-
mac-Raritan-
Magothy sands, 
silty sands. 

GW PCE, TCE, DCE TCE  3,000 μg/L 
Gravity feed injec-
tion 

nZVI 150 kg 
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Notes: 
* NanoRem pilot site 
** Additional information supplied by AQUATEST A.S., Prague, Czech Republic  
*** Information from a web listing hosted by the University of Kentucky, USA: 
www.ukrcee.org/Challenges/Documents/Groundwater/NP/Nano_Projects_IN_PLACE.pdf, Accessed January 
2016 

**** July 2016, http://reground-project.eu, and Rainer Meckensck personal communication (University of Es-

sen, Reground co-ordinator) 
***** Information supplied by Intrapore, Essen, Germany 
# Additional information supplied by Geoplano, Portugal, November 2016 
## Additional information supplied by VEGAS, Germany, November 2016 
### Additional information supplied by NANO IRON, s.r.o. Czech Republic,, November 2016 

Supplemental Materials References 

Bardos, P., Bone, B., Elliott, D., Hartog, N., Henstock, J., & Nathanail, P. (2011), Risk/benefit approach 

to the application of iron nanoparticles for the remediation of contaminated sites in the environment. 

CB0440. Report for the Department of Environment, Food and Rural Affairs. Retrieved from 

http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=

0&ProjectID=17502. 

Bennett, P., He, F., Zhao, D., Aiken, B., & Feldman, L. (2010). In situ testing of metallic iron nanoparti-

cle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116(1), 

35-46. 

Chiang, D., & Darrington, M. (2014). Pilot study: Nanoscale ZVI to enhance reductive dechlorination in 

a CVOC hotspot, B-070. In H.V. Rectanus & S. H. Rosansky (Chairs). Preasented at Remediation of 

chlorinated and recalcitrant compounds—2014. Ninth International Conference on Remediation of 

Chlorinated and Recalcitrant Compounds, Monterey, CA, May 2014.  

Chowdhury A. I.A., Krol. M. M., Kocur, C. M., Boparai, H. K., Weber, K. P., Sleep, B. E., & O’Carroll, D. 

M. (2015).  nZVI injection into variably saturated soils: Field and modelling study. Journal of Contami-

nant Hydrology, 183, 16–28 

CITYCHLOR Consortium.  (2013). In situ chemical reduction using zero valent iron injection - A tech-

nique for the remediation of source zones. Retrieved from 

http://rwsenvironment.eu/subjects/soil/projects/citychlor/remediation  

Danish Environmental Protection Agency. (2015). Nano-enabled environmental products and tech-

nologies – Opportunities and drawbacks. Copenhagen, Denmark: Author.  ISBN 978-87-93352-96-4. 

Elliott, D. W., & Zhang, W-X. (2001). Field assessment of nanoscale biometallic particles for ground-

water treatment. Environmental Science and Technology, 35(24) 4922-4926. 

Federal Remediation Technologies Roundtable (FRTR). (2006). Abstracts of remediation case studies,  

Volume 10. Retrieved from https://frtr.gov/pdf/epa542r06002.pdf  

Gavaskar, A., Tatar, L., & Condit, W. (2005). Cost and performance report nanoscale zero-valent iron 

technologies for source remediation, Contract Report CR-05-007-ENV. Retrieved from 

http://www.cluin.org/download/remed/cr-05-007-env.pdf. 

Haley & Aldrich, Inc. (2011). Draft Phase III nano-scale zero-valent iron pilot test report, Former Uni-

dynamics Facility Phoenix-Goodyear Airport-North Superfund Site, Goodyear, Arizona. Retrieved from 

http://www.polymetallix.com/PDF/Phase%20III%20Nano-Scale%20Zero-

Valent%20Iron%20Pilot%20Test%20Report.pdf. 

http://www.ukrcee.org/Challenges/Documents/Groundwater/Nanoparticle/Nano_Projects_IN_PLACE.pdf
http://reground-project.eu/
http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=17502
http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=17502
http://rwsenvironment.eu/subjects/soil/projects/citychlor/remediation
https://frtr.gov/pdf/epa542r06002.pdf
http://www.cluin.org/download/remed/cr-05-007-env.pdf
http://www.polymetallix.com/PDF/Phase%20III%20Nano-Scale%20Zero-Valent%20Iron%20Pilot%20Test%20Report.pdf
http://www.polymetallix.com/PDF/Phase%20III%20Nano-Scale%20Zero-Valent%20Iron%20Pilot%20Test%20Report.pdf


 

 

   Page 37 

Hindrichsen, A.G., Bastrup, J. U., & Slunský, J. (2015). Batch tests and field application of in situ reme-

diation of groundwater contaminated with chlorinated solvents by direct injection of nanoscale zero 

valent iron on three locations in Denmark. Presented at AquaConsoil 2015, Copenhagen, Denmark, 

Session 1C.22, June 2015. 

Jacov, O. M., Cortis, A., & Berkowitz, B. (2012). Catalytic transformation of persistent contaminants 

using a new composite material based on nanosized zero-valent iron. ACS Applied Materials & Inter-

faces, B, 7, 3416-3423. 

Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the ben-
efits and potential risks, Supplemental Material.  Environmental Health Perspectives, 117(12), 1823-
1831. DOI:10.1289/ehp.0900793 
 
Köber, R., Hollert, H., Hornbruch, G., Jekel, M., Kamptner, A., Klaas, N., Maes, H., Mangold, K.-M., 

Martac, E., Matheis, A., Paar, H., Schäffer, A., Schell, H., Schiwy, A., Schmidt, K. R., Strutz, T. J.,  

Thümmler, S.,  Tiehm, A., & Braun, J. (2014). Nanoscale zero-valent iron flakes for groundwater 

treatment.  Environmental Earth Sciences, 72(1). doi:10.1007/s12665-014-3239-0 

Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., Krol, M. 

M., Austrins, L., Peace, C., Sleep, B. E., & O’Carroll, D. M. (2014). Characterization of nZVI mobility in a 

field scale test. Environmental Science & Technology, 48(5), 2862–2869. 

Kocur, C. M. D., Lomheim, L., Boparai, H. K, Chowdhury, A. I. A, Weber, K. P., Austrins, L. M., Edwards, 

E. A., Sleep, B. E., & O’Carroll, D.M. (2015). Contributions of abiotic and biotic dechlorination follow-

ing carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environmental Science & 

Technology, 49(14), 8648–8656. 

Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Xiong, Z. & O’Carroll D. M. (2013). A 

field-validated model for in situ transport of polymerstabilized nZVI and implications for subsurface 

injection. Environmental Science & Technology, 47(13), 7332-7340. doi: 10.1021/es3041412. 

Krug, T., Ohara, S., Watling, M., & Quinn, J. (2010). Emulsified zero-valent nano-scale iron treatment 

of chlorinated solvent DNAPL source area. Final Report. ESTCP Project ER-0431. April 2010. Retrievd 

from https://clu-in.org/download/techfocus/reduction/Emulsified-ZVI-final-Report-ER-0431-FR.pdf. 

Lilley, F. (2012, April 10). Golder’s project experience with nano scale zero valent Iron.  Retrieved from 

http://s3.amazonaws.com/ebcne-web-content/fileadmin/pres/4-10-2012_Nanoremediation/4-10-

2012_Lilley.pdf. 

Müller, N. C., Braun, J., Bruns, J., Cernij, M., Rissing, P., & Nowack, B. (2012). Application of nanoscale 

zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science & Pollution 

Research, 19, 550–558. 

Müller, N. C., & Nowack, B. (2010). Nano zero valent iron – The solution for water and soil remedia-

tion? ObservatoryNANO Focus Report. Retrieved from 

http://www.observatorynano.eu/project/filesystem/files/nZVI_final_vsObservatory.pdf.  

NanoRem Consortium (2017). NanoRem pilot site bulletins 7-12. Retrieved from 

www.nanorem.eu/Displaynews.aspx?ID=938. 

O’Carroll, D. M. (2014). Application of nanoscale zero valent iron for contaminant site remediation: 

results from two field trials. Retrieved from http://www.rpic-

ibic.ca/documents/RPIC_FCS2014/Presentations/1-OCarroll_DMORPIC2014v2ForTranslation.pdf. 

https://clu-in.org/download/techfocus/reduction/Emulsified-ZVI-final-Report-ER-0431-FR.pdf
http://s3.amazonaws.com/ebcne-web-content/fileadmin/pres/4-10-2012_Nanoremediation/4-10-2012_Lilley.pdf
http://s3.amazonaws.com/ebcne-web-content/fileadmin/pres/4-10-2012_Nanoremediation/4-10-2012_Lilley.pdf
http://www.observatorynano.eu/project/filesystem/files/nZVI_final_vsObservatory.pdf
http://www.nanorem.eu/Displaynews.aspx?ID=938
http://www.rpic-ibic.ca/documents/RPIC_FCS2014/Presentations/1-OCarroll_DMORPIC2014v2ForTranslation.pdf
http://www.rpic-ibic.ca/documents/RPIC_FCS2014/Presentations/1-OCarroll_DMORPIC2014v2ForTranslation.pdf


 

 

   Page 38 

Su, C., Puls, R. W., Krug, T. A., Watling, M. T.,  Ohara, S. K., Quinn, J.,W., & Ruiz, N.E. (2012). A two 

and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene 

and its chlorinated daughter products using emulsified zero valent iron nanoparticles.  Water Re-

search, 46, 5071-5084. 

Su, C., Puls, R. W., Krug, T. A., Watling, M. T., Ohara, S. K., Quinn, J. W., & Ruiz, N. E. (2013). Travel 

distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface 

during two and half years. Water Research, 47, 4095-4106. 

U.S. Department Of Energy (US DOE). (2009). Treatability test report on mending the in situ redox 

manipulation barrier using nano-size zero valent iron.  Prepared by CH2M-Hill.  DOE/RL-2009-35 Revi-

sion 0.  Retrieved from https://pdw.hanford.gov/arpir/pdf.cfm?accession=0093979 

U.S. Environmental Protection Agency (US EPA). (2004). Demonstration of in-situ dehalogenation of 

DNAPL through injection of emulsified zero-valent iron at Launch Complex 34 in Cape Canaveral Air 

Force Station, FL..  EPA/540/R-07/006. Retrieved from https://nepis.epa.gov/. 

U.S. Environmental Protection Agency (US EPA). (2009a). International perspectives on environmental 

nanotechnology applications and implications conference proceedings. Volume 1 – Applications, EPA 

905R09032. Chicago, IL, October 7-9, 2008. Retrieved from http://nepis.epa.gov/  

U.S. Environmental Protection Agency (US EPA). (2009b). Record of decision for groundwater and 

surface water at group 3 sites (pica 008), Picatinny Arsenal, New Jersey. Final June 2010. Retrieved 

from 

http://www.pica.army.mil/envRestore/Files/RecordsofDecision/Final%20Record%20of%20Decison%

20for%20GW%20and%20SW%20at%20Group%203%20Sites%20(PICA%20008)%20June%202010.pdf. 

U.S. Environmental Protection Agency (US EPA). (2010, August). Ohio EPA tests TCE reduction capaci-

ty of nanoscale metal-silica hybrid materials. In Technology News and Trends, Issue 49, 4-5. Retrieved 

from http://nepis.epa.gov/  

U.S. Environmental Protection Agency (US EPA). (2016). Selected sites using or testing nanoparticles 

for remediation.  Office of Solid Waste and Emergency Response, Summary Sheet. Retrieved from 

https://clu-in.org/download/remed/nano-site-list.pdf. 

Wei, Y. T., Wu, S. C., Chou, C. M., Che, C. H., Tsai, S. M., & Lien, H. L. (2010). Influence of nanoscale 

zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field 

case study. Water Research, 44(1) 131-140. 

Zhang, W.X., Durant, N., & Elliott, D. (2006). In-situ remediation using nanoscale zero-valent iron: 

Fundamentals and field applications. Presented at Battelle Conference on Remediation of Chlorinat-

ed and Recalcitrant Compounds, Monterey, CA, May 22-25, 2006. 

Zhao, Z. S., & He, F. (2007). Pilot testing an innovative remediation technology for in-situ destruction 

of chlorinated organic contaminants in Alabama soils and groundwater using a new class of zero va-

lent iron nanoparticles.  Report as of FY2006 for 2006AL48B. Auburn, AL: Auburn University. Re-

trieved from http://water.usgs.gov/wrri/06grants/progress/2006AL48B.pdf  

 

https://nepis.epa.gov/
http://nepis.epa.gov/
http://www.pica.army.mil/envRestore/Files/RecordsofDecision/Final%20Record%20of%20Decison%20for%20GW%20and%20SW%20at%20Group%203%20Sites%20(PICA%20008)%20June%202010.pdf
http://www.pica.army.mil/envRestore/Files/RecordsofDecision/Final%20Record%20of%20Decison%20for%20GW%20and%20SW%20at%20Group%203%20Sites%20(PICA%20008)%20June%202010.pdf
http://nepis.epa.gov/
https://clu-in.org/download/remed/nano-site-list.pdf
http://water.usgs.gov/wrri/06grants/progress/2006AL48B.pdf

