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Abstract: Total daily energy expenditure (“total expenditure”) reflects daily energy needs and is 119 

a critical variable in human health and physiology, but its trajectory over the life course is poorly 120 

studied. We analyzed a large, diverse database of total expenditure measured by the doubly 121 

labeled water method for males and females aged 8 days to 95 yr. Total expenditure increased 122 

with fat free mass in a power-law manner, with four distinct life stages. Fat free mass-adjusted 123 

expenditure accelerates rapidly in neonates to ~50% above adult values at ~1 yr, declines slowly 124 

to adult levels by ~20 yr, remains stable in adulthood (20-60 yr) even during pregnancy, then 125 

declines in older adults. These changes shed light on human development and aging and should 126 

help shape nutrition and health strategies across the lifespan. 127 

One Sentence Summary: Expenditure varies as we age, with four distinct metabolic life stages 128 

reflecting changes in behavior, anatomy, and tissue metabolism.  129 

Main Text: All of life’s essential tasks, from development and reproduction to maintenance and 130 

movement, require energy. Total expenditure (MJ/d) is thus central to understanding both daily 131 

nutritional requirements and the body’s investment among activities. Yet we know surprisingly 132 

little about total expenditure in humans or how it changes over the lifespan. Most large (n>1,000) 133 

analyses of human energy expenditure have been limited to basal expenditure, the metabolic rate 134 

at rest (1), which accounts for only a portion (usually ~50-70%) of total expenditure, or have 135 

estimated total expenditure from basal expenditure and daily physical activity (2-5). Doubly 136 

labeled water studies provide measurements of total expenditure in free-living subjects, but have 137 

been limited in sample size (n < 600), geographic and socioeconomic diversity, and/or age (6-9).  138 

Body composition, size, and physical activity change over the life course, often in 139 

concert, making it difficult to parse the determinants of energy expenditure. Total and basal 140 

expenditures increase with age as children grow and mature (10, 11), but the relative effects of 141 



increasing physical activity and age-related changes in tissue-specific metabolic rates are unclear 142 

(12-16). Similarly, the decline in total expenditure beginning in older adults corresponds with 143 

declines in fat free mass and physical activity but may also reflect age-related reductions in 144 

organ metabolism (9, 17-19).  145 

We investigated the effects of age, body composition, and sex on total expenditure using 146 

a large (n = 6,421; 64% female), diverse (n = 29 countries) database of doubly labeled water 147 

measurements for subjects aged eight days to 95 years  (20), calculating total expenditure from 148 

isotopic measurements using a single, validated equation for all subjects (21). Basal expenditure, 149 

measured via indirect calorimetry, was available for n = 2,008 subjects, and we augmented the 150 

dataset with additional published meaures of basal expenditure in neonates and doubly labeled 151 

water-mesaured total expenditure in pregnant and post-partum women (Methods; Table S1). 152 

We found that both total and basal expenditure increased with fat free mass in a power-153 

law manner (Figures 1, S1, S2, Table S1), requiring us to adjust for body size to isolate potential 154 

effects of age, sex, and other factors. Notably, due to the power-law relation with size, the ratio 155 

of (energy expenditure/mass) does not adequately control for body size because the ratio trends 156 

lower for larger individuals (Figure S1). Instead, we used regression analysis to control for body 157 

size (22). A general linear model with ln-transformed values of energy expenditure (total or 158 

basal), fat free mass, and fat mass in adults 20 – 60 y (Table S2) was used to calculate residual 159 

expenditures for each subject. We converted these residuals to “adjusted” expenditures for clarity 160 

in discussing age-related changes: 100% indicates an expenditure that matches the expected 161 

value given the subject’s fat free mass and fat mass, 120% indicates an expenditure 20% above 162 

expected, etc. Using this approach, we also calculated the portion of adjusted total expenditure 163 



attributed to basal expenditure (Figure 2D; Methods). Segmented regression analysis (Methods) 164 

revealed four distinct phases of adjusted total and basal expenditure over the lifespan.  165 

Neonates (0 to 1 y): Neonates in the first month of life had size-adjusted energy expenditures 166 

similar to adults, with adjusted total expenditure of 99.0 ± 17.2% (n = 35) and adjusted basal 167 

expenditure of 78.1 ± 15.0% (n = 34; Figure 2). Both measures increased rapidly in the first year. 168 

In segmented regression analysis, adjusted total expenditure rose 84.7 ± 7.2% per year from birth 169 

to a break point at 0.7 years (95% CI: 0.6, 0.8); a similar rise and break point were evident in 170 

adjusted basal expenditure (Table S4). For subjects between 9 and 15 months, adjusted total and 171 

basal expenditures were nearly ~50% elevated compared to adults (Figure 2). 172 

Juveniles (1 to 20 y): Total and basal expenditure continued to increase with age throughout 173 

childhood and adolescence along with fat free mass (Figure 1), but size-adjusted expenditures 174 

steadily declined. Adjusted total expenditure declined at a rate of -2.8 ± 0.1% per year from 175 

147.8 ± 22.6% for subjects 1 – 2 y to 102.7 ± 18.1% for subjects 20 – 25 y (Tables S2, S4). 176 

Segmented regression analysis identified a breakpoint in adjusted total expenditure at 20.5 y 177 

(95% CI: 19.8, 21.2), after which it plateaued at adult levels (Figure 2); a similar decline and 178 

break point were evident in adjusted basal expenditure (Figure 2, Table S4). No pubertal 179 

increases in adjusted total or basal expenditure were evident among subjects 10 – 15 (Figure 2, 180 

Table S3). In multivariate regression for subjects 1 to 20 y, males had a higher total expenditure 181 

and adjusted total expenditure (Tables S2, S3), but sex had no detectable effect on the rate of 182 

decline in adjusted total expenditure with age (sex:age interaction p=0.30).  183 

Adults (20 to 60 y): Total and basal expenditure and fat free mass were all stable from age 20 to 184 

60 (Figure 1, 2; Tables S1, S2). Sex had no effect on total expenditure in multivariate models 185 

with fat free mass and fat mass, nor in analyses of adjusted total expenditure (Tables S2, S4). 186 



Adjusted total and basal expenditures were stable even during pregnancy, the elevation in 187 

unadjusted expenditures matching those expected from the gain in mothers’ fat free mass and fat 188 

mass (Figure 2C). Segmented regression analysis identified a break point at 63.0 y (95% CI: 189 

60.1, 65.9), after which adjusted TEE begins to decline. This break point was somewhat earlier 190 

for adjusted basal expenditure (46.5, 95% CI: 40.6, 52.4), but the relatively small number of 191 

basal measures for 45 – 65 y (Figure 2D) reduces our precision in determining this break point. 192 

Older adults (>60 y): At ~60 y, total and basal expenditure begin to decline, along with fat free 193 

mass and fat mass (Figures 1, S3, Table S1). Declines in expenditure are not only a function of 194 

reduced fat free mass and fat mass, however. Adjusted total expenditure declined by -0.7  ± 0.1% 195 

per year, and adjusted basal expendiure fell at a similar rate (Figure 2, Figure S3, Text S1, Table 196 

S4). For subjects 90+ y, adjusted total expenditure was ~26% below that of middle-aged adults.  197 

 Our analyses provide empirical measures and predictive equations for total and basal 198 

expenditure from infancy to old age (Tables S1, S2), and bring to light major metabolic changes 199 

across the life course. To begin, we can infer fetal metabolic rates from maternal measures 200 

during pregnancy: if body size-adjusted expenditures were elevated in the fetus, then adjusted 201 

expenditures for pregnant mothers, particularly late in pregnancy when the fetus accounts for a 202 

substantial portion of a mother’s weight, would be likewise elevated. Instead, the stability of 203 

adjusted total and basal expenditures at ~100% during pregnancy (Figure 2B) indicates that the 204 

growing fetus maintains a fat free mass- and fat mass-adjusted metabolic rate similar to adults, 205 

which is consistent with adjusted expenditures of neonates (both ~100%; Figure 2) in the first 206 

weeks after birth. Total and basal expenditures, both absolute and size-adjusted values, then 207 

accelerate rapidly over the first year. This early period of metabolic acceleration corresponds to a 208 



critical period in early development in which growth often falters in nutritionally-stressed 209 

populations (23). Increasing energy demands could be a contributing factor.  210 

After rapid acceleration in total and basal expenditure during the first year, adjusted 211 

expenditures progressively decline thereafter, reaching adult levels at ~20 yr. Elevated adjusted 212 

expenditures in this life stage may reflect the metabolic demands of growth and development. 213 

Adult expenditures, adjusted for body size and composition, are remarkably stable, even during 214 

pregnancy and post-partum. Declining metabolic rates in older adults could increase the risk of 215 

weight gain. However, neither fat mass nor percentage increased in this period (Figure S3), 216 

consistent with the hypothesis that energy intake is coupled to expenditure (24). 217 

 Following previous studies (15, 16, 19, 25, 26), we calculated the effect of organ size on 218 

basal expenditure over the lifespan (Methods). Organs with a high tissue-specific metabolic rate, 219 

particularly the brain and liver, account for a greater proportion of fat free mass in young 220 

individuals. Thus organ-based basal expenditure, estimated from organ size and tissue-specific 221 

metabolic rate, follows a power-law relationship with fat free mass, roughly consistent with 222 

observed basal expenditures (Methods, Figure S6). Still, observed basal expenditure exceeded 223 

organ-based estimates by ~30% in early life (1 – 20 y) and was ~20% lower than organ-based 224 

estimates in subjects over 60 y (Figure S6), consistent with studies indicating that tissue-specific 225 

metabolic rates are elevated in juveniles (15, 16) and reduced in older adults (19, 25, 26). 226 

We investigated the contributions of daily physical activity and changes in tissue-specific 227 

metabolic rate to total and basal expenditure using a simple model with two components: activity 228 

and basal expenditure (Figure 3; Meethods). Activity expenditure was modeled as a function of 229 

physical activity and body mass, assuming activity costs are proportional to weight, and could 230 

either remain constant over the lifespan or follow the trajectory of daily physical activity 231 



measured via accelerometry, peaking at 5 – 10 y and declining thereafter (12, 17, 18) (Figure 3). 232 

Similarly, basal expenditure was modeled as a power function of fat free mass (consistent with 233 

organ-based basal expenditure estimates; Methods) multiplied by a “tissue specific metabolism” 234 

term, which could either remain constant at adult levels across the lifespan or follow the 235 

trajectory observed in adjusted basal expenditure (Figure 2). For each scenario, total expenditure 236 

was modeled as the sum of activity and basal expenditure (Methods). 237 

Models that hold physical activity or tissue-specific metabolic rates constant over the 238 

lifespan do not reproduce the observed patterns of age-related change in absolute or adjusted 239 

measures of total or basal expenditure (Figure 3). Only when age-related changes in physical 240 

activity and tissue-specific metabolism are included does model output match observed 241 

expenditures, indicating that variation in both physical activity and tissue-specific metabolism 242 

contribute to total expenditure and its components across the lifespan. Elevated tissue-specific 243 

metabolism in early life may be related to growth or development (15, 16). Conversely, reduced 244 

expenditures in later life may reflect a decline in organ level metabolism (25-27). 245 

 Metabolic models of life history commonly assume continuity in tissue-specific 246 

metabolism over the life course, with metabolic rates increasing in a stable, power-law manner 247 

(28, 29). Measures of humans here challenge this view, with deviations from the power-law 248 

relationships for total and basal expenditure in childhood and old age (Fig. 1, 2).  These changes 249 

present a potential target for investigating the kinetics of disease, drug activity, and healing, 250 

processes intimately related to metabolic rate. Further, inter-individual variation in expenditure is 251 

considerable even when controlling for fat free mass, fat mass, sex, and age (Figure 1, 2, Table 252 

S2). Elucidating the processes underlying metabolic changes across the life course and variation 253 

among individuals may help reveal the roles of metabolic variation in health and disease.  254 
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Figure Legends 389 

Figure 1. A. Total expenditure (TEE) increases with fat free mass in a power-law manner (black line: TEE= 390 

0.677FFM0.708, r2=0.83, p<0.0001; Table S2) but age groups cluster about the trend line differently. B. Total 391 

expenditure rises in childhood, is stable through adulthood, and declines in older adults. Means±sd for age-392 

sex cohorts are shown. C. Age-sex cohort means show a distinct progression of total expenditure and fat 393 

free mass over the life course. D. Neonate, juveniles, and adults exhibit distinct relationships between fat 394 

free mass and expenditure. The dashed line, extrapolated from the regression for adults, approximates the 395 

regression used to calculate adjusted total expenditure.  396 

Figure 2. Fat free mass- and fat mass-adjusted expenditures over the life course. Individual subjects and 397 

age-sex cohort mean ± SD are shown. For both total (Adj. TEE) (A) and basal (Adj. BEE) expenditure (B), 398 

adjusted expenditures begin near adult levels (~100%) but quickly climb to ~150% in the first year. Adjusted 399 

expenditures decline to adult levels ~20y, then decline again in older adults. Basal expenditures for infants 400 

and children not in the doubly labeled water database are shown in gray. C. Pregnant mothers exhibit 401 

adjusted total and basal expenditures similar to non-reproducing adults (Pre: prior to pregnancy; Post: 27 402 

weeks post-partum). D. Segmented regression analysis of adjusted total (red) and adjusted basal 403 

expenditure (calculated as a portion of total; Adj. BEETEE; black) indicates a peak at ~1 y, adult levels at 404 

~20 y, and decline at ~60 y (see text).  405 

Figure 3. Modeling the contribution of physical activity and tissue-specific metabolism to daily expenditures. 406 

A. Observed total (TEE, red), basal (BEE, black), and activity (AEE, gray) expenditures (Table S1) show 407 

age-related variation with respect to fat free mass (see Figure 1C) that is also evident in adjusted values 408 

(Table S3; see Figure 2D). B. These age effects do not emerge in models assuming constant physical 409 

activity (PA, green) and tissue-specific metabolic rate (TM, black) across the life course. C. When physical 410 

activity and tissue-specific metabolism follow the life course trajectories evident from accelerometry and 411 

adjusted basal expenditure, respectively, model output is similar to observed expenditures.  412 


