Impact of climate change on the carbonation in concrete due to Carbon Dioxide ingress: Experimental Investigation and Modelling

Abbas S. AL-Ameeri (a,b), M. Imran Rafiq (b), Ourania Tsioulou (b) and Oyuna Rybdylova (c)

(a) Engineering College, University of Babylon, Babylon, Iraq.
(b) School of Environment and Technology, University of Brighton, Brighton, UK.
(c) School of Computing, Engineering and Mathematics, University of Brighton, Brighton, UK.

ABSTRACT

Greenhouse gases (GHG), in terms of CO₂ emissions, cause a greenhouse impact leading to changes in the planet’s temperature and relative humidity (RH). These changes in CO₂, temperature and RH (leading to changes in the internal moisture content) have considerable impacts on the depth of carbonation (DoC) in existing concrete structures. However, the models to forecast the DoC as a function of time in the cracked and uncracked concrete members are scarce and have limitations in terms of incorporating key variables relevant to the climate change. This study aims to develop an integrated deterioration model of carbonation in concrete. The combined impacts of variations in the internal factors (such as mechanical properties of concrete, porosity and crack width) and external factors (such as %CO₂, %RH and temperature), on chemical reaction rates due to carbonation in concrete were considered. This model is based on simultaneous solutions of the diffusivity and reaction activites of CO₂(aq) and Ca(OH)₂(aq). The proposed model was validated using the accelerated carbonation experiments involving different properties of concrete and cracks widths. Finally, this model was employed to forecast the DoC in order to identify corrosion state owing to impact of climate change scenarios of the Inter-governmental Panel of Climate Change (IPCC 2014) and the UKCP09 climate projections.

Keyword: Carbonation, numerical model, global warming, phenolphthalein, crack width

1. Introduction and background

Carbon dioxide (CO₂) forms the main gas of greenhouse gas emission (GHG) and due to an increase of human activities that lead to an increase in the average concentration of these gases continuously with time. Hence, greenhouse gas (GHG), in term of carbon dioxide (CO₂) is the main parameter affecting climate change, which considers a major threat to the environment. It is generally agreed that greenhouse gases (GHG) in terms of CO₂ emission is the main contributor to global warming [1]. Where GHG also controls radiation, forcing the climate system into global warming or climate change.
At the same time, the increase in average carbon dioxide (CO_2) concentration and temperature significantly affect the durability of concrete structures, particularly concerning carbonation and chloride penetration.

The latest scenario projections of the Inter-governmental panel on climate change (IPCC), Assessment Report 5 of IPCC (2014 AR-5) [2] has suggested four Representative Concentration Pathways, RCPs (lines), RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 of emissions of GHG, carbon dioxide (CO_2) and temperature. RCP 8.5 is the worst exception scenario of IPCC (2014); it forecasts that carbon dioxide concentration may exceed 1000 ppm and the mean increase of temperature may range between 2.8 to 5.75°C in 2100. Whereas, UKCP09(2010) [3] considered the IPCC (2007) [4], A1F1 scenario to be the worst changes in temperature and CO$_2$ concentration, whereby the average concentration of CO$_2$ would approach 710 ppm.

Premature deterioration of concrete structures currently is a major global concern for the construction industry throughout the world [5]. Therefore, many requirements have been proposed by the codes of practice to maintain the durability of concrete structures in terms of chloride attack, carbonation, and corrosion for the construction of new buildings. The codes of practice recommendations for existing concrete structures focus on the evaluation and monitoring of these structures by non-destructive testing and proposing models to investigate and establish the deterioration in these structures to repair and rehabilitate.

Several models have been proposed to simulate the DoC in concrete that is based on the properties of concrete and a given exposure condition. The CO_2 diffusivity-based models are those chemical-empirical models based mainly on Fick’s laws to predict the depth of carbonation (DoC), as follows;

(i): Carbonation Depth in Concrete Based on Fick’s First Law

Carbonation in concrete is dependent mainly upon the availability of CO_2 and water to form CO_3^{2-}. The speed of carbonation depends on how the CO_2 and/or the CO_3^{2-} can penetrate the concrete and react with cement hydration products. The users of Fick’s First law assumes a constant supply of CO_2 and that the diffusion through the surface of the concrete is constant over time. In this case, diffusion is the mass transportation of CO_2 down a concentration gradient. The diffusion of CO_2 and/or the CO_3^{2-} is based on the steady-state of diffusion of carbonate ions in porous materials as shown in Equation1 [6, 7, 8, 9].

\[
DoC = K \sqrt{t} \tag{1}
\]

where: K (carbonation rate) (mm/\sqrt{y}) in time (t).

This model amalgamates all the external and internal factors, such as environmental exposure conditions, the pore structure of the concrete, the quantity of $Ca(OH)_2$ [10] and uses of supplementary
cementitious materials (SCMs) in concrete [11] into one single constant, K limiting the abilities of the model to predict for a wide range of structures in use. On the other hand, the diffusion of CO$_2$ or the CO$_3^{2-}$ through the unit area of concrete is not constant or non-steady-state [12].

(ii) Carbonation Depth in Concrete Based on Fick's Second Law

The concentration of carbon dioxide in the atmosphere affects carbonation in concrete in two ways; firstly, the movement of carbon dioxide into concrete is a result of diffusion, a higher concentration gradient between the exterior and interior of concrete will lead to a greater rate of diffusion. Secondly, the higher concentration of CO$_2$ will yield a higher rate of reaction to form carbonation, CaCO$_3$ [12].

The diffusion and concentration of CO$_2$ changes both with the depth of concrete exposure to environment CO$_2$ and with time due to changes in the atmospheric CO$_2$ concentration and the amount of CO$_2$ consumed in carbonation. Therefore, non-steady-state of diffusion using Fick's Second Law has been the focus of attention in recent literature where the concentration of CO$_2$ alters with time and location factor, ∂x and ∂t respectively as shown in Equation 2. Fick's Second Law gives alteration in concentration with depth [7].

$$\frac{\partial}{\partial t} (C_{CO_2}) = D_{CO_2} \frac{\partial^2}{\partial x^2} (C_{CO_2})$$

(2)

where: the D_{CO_2} is the CO$_2$ diffusion coefficient, C_{CO_2} is the atmospheric CO$_2$ concentration %.

CEB-FIP (2013) and Dyer (2014) [12,13] proposed the analytical solution or modifications of Equation 2 in Equations 3 could predict the depth of carbonation (DoC) in concrete; this Equation is a function of diffusivity and concentration of carbon dioxide in concrete.

$$DoC = \sqrt{\frac{2D_{CO_2}(C_{CO_2}/100)t}{a}}$$

(3)

where: D_{CO_2} is the CO$_2$ diffusion coefficient, C_{CO_2} is atmospheric CO$_2$ concentration %, a is the amount of CO$_2$ uptake to complete carbonation by assuming the 0.75 of hydrated cement could carbonate.

Talukdar et al. (2012) [10] have proposed a model based on a group of partial differential equations of diffusion of CO$_2$(aq) and Ca(OH)$_2$(aq). These are based on Fick's Second Law to find the concentration of CO$_2$(aq) and Ca(OH)$_2$(aq) in the depth of concrete (x) and the time (t) by using the solution of these equations. Talukdar et al. (2012) [10] assumed one-dimensional diffusion of CO$_2$ and Ca(OH)$_2$ to find the concentration at x and t. Their model did not utilise the minimum concentration of CO$_2$ and Ca(OH)$_2$ required to forms CaCO$_3$ and to establish the DoC. Talukdar et al. (2012) [10] assumed that the CO$_2$ (aq) is consumed by Ca(OH)$_2$ (aq) only, however about one half of CO$_2$ (aq) is consumed in concrete by reacting with Ca(OH)$_2$ (aq) and the second half of CO$_2$ (aq) is depleted by C-S-H [14,15]. The diffusion coefficient D_{CO_2} is a variable that depends on
the microstructures of concrete (connective porosity) and microclimate condition especially the
temperature and the internal moisture of the cement paste in concrete [7,10] as well as the crack in
concrete samples) [16].

Equation 2 signifies that the diffusion coefficient of \(CO_2\) is a major factor in stimulating the models
to find the concentration of \(CO_2\) in order to predict DoC. Therefore, this study aims to develop an
integrated model for the diffusion coefficient and concentration of \(CO_2(aq)\) and \(Ca(OH)_2(aq)\) in existing
concrete structures incorporating factors affected by climate parameters such as carbon dioxide
concentration, temperature, and relative humidity, in addition to the properties of concrete and crack
width to predict DoC. The exposure environments, \(CO_2\), temperature, and RH, have a considerable
correlation between the increase in the \(CO_2\) concentration and the increase in the rate of carbonation.
Drouet et al. (2019) [17] tested two hardened cement pastes using 100% \(CO_2\) at different temperature
and relative humidity (RH) and concluded that the impact of temperature on carbonation rate is
dependent on the types of cement. Even though there is a chemical explanation about the temperature
dependence of the diffusion coefficient based on an Arrhenius Equation [10,12,14], investigations
on the effect of temperature on DoC scarce in the literature. It was also concluded that the decrease
in RH to specific limits causes an increase in the carbonation depth. Where, Roy et al.(1999) [18]
concluded that there is a significant increase in carbonation rate when relative humidity, RH, ranges
between 52-75%. However, there is a reduction in it as the relative humidity increases by up to 84%.

This model is then used to forecast the impact of climate change on the carbonation and
durability of concrete, based on the latest projection scenario, IPCC (2014)[2], since to date the
published literature dealing with the impact of climate change on the durability of concrete, focused
mainly on the projections of the previous scenario of the Inter-governmental Panel on Climate Change
report in 2007(IPCC-2007)[4].

In summary, the increase in atmospheric \(CO_2\) concentration is a significant factor in global
warming of the environment, which causes an increase in temperature and sea level and a decrease in
relative humidity. The listed information related to \(CO_2\) concentration, temperature, relative
humidity, and their changes, as well properties of concrete and crack width will be the main
parameters utilized together in the research methodology of this study to find the relationship of these
parameters to propose an integrated model of carbonation in concrete structures.

2. Experimental Programme

Experimental tests were conducted to quantify the effect of main parameters on the carbonation depth
and for the validation of the developed carbonation model. The tests established the depth of
carbonation under different CO_2 concentration, temperature and relative humidity applying to different concrete types/strengths. The concrete samples were cast, cured, and exposed to accelerated carbonation testing method in a University of Brighton laboratories using a CO_2 incubator. This incubator was able to automatically control temperature, CO_2 concentration, and relative humidity. Portland limestone cement (CEM II/A-LL 32,5R) with a specific gravity of 3.05 was used in this study. The chemical and physical properties of the cement comply with BS EN 197-1: 2011 [19]. Natural sand was used as fine aggregate (particle size < 5mm), and the coarse aggregate used was crushed gravel with the size ranging from 5-14 mm. The grain size distribution, and maximum chloride and sulphate content within the aggregates comply with BS 12620:2002+A1:2008 [20]. To achieve various properties of concrete, different water to cement ratios were used. The mix proportions (water, cement, sand and gravel) were listed in Table 1.

<table>
<thead>
<tr>
<th>Mix symbol</th>
<th>Content per unit volume of concrete (kg / m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w/c</td>
</tr>
<tr>
<td>M 0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>M 0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>M 0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

100*100*500 mm reinforced concrete prisms and 100 mm cubes were cast in two layers, demoulded and cured in a sink filled up with tap water for 28 days. The carbonation prisms were stored in a lab environment condition (25 °C, 60% RH) for some time to dry and achieve a uniform moisture profile at the concrete surface. In this study, four different crack width ranges, (0, 0.05-0.15mm, 0.15-0.25mm and 0.25-0.35mm) were applied to concrete prisms. The flexural method was employed to induce the cracks, reinforced concrete prisms were used by fixing reinforcement in moulds with concrete cover 2 cm to control the crack width in concrete prisms. The one face of the specimens was exposed to accelerated environment conditions in a CO_2 incubator under the different exposure scenarios.

Compressive strength and porosity were also determined for all mixes. The porosity and compressive strength tests were performed in accordance with ASTM C642:2013[21] and BS EN 12390-3:2000[22] respectively by using 100 mm cube specimens. The test method given in BS EN 12390-10:2007[23] was used to determine the depth of carbonation (DoC) using phenolphthalain
solution prepared with one gram of phenolphthalein powder and dissolved into a solution of 70 ml and 30 ml of ethanol and deionized water respectively.

Three CO₂ concentration (1.5%, 3% and 5%), three relative humidity level (65, 75 and 85) and three temperature degree (25, 35 and 45) have been chosen for the experimental work, each exposure scenario lasting 8 weeks duration at the concrete age 30 days. The CO₂ concentration used in experimental works is within concentration that makes the same mineral change in concrete due to carbonation at atmospheric CO₂ concentration [24]. The experimental programme and various exposure scenarios are outlined in Table 2. For each type of mix, and each crack width case and each series, twelve specimens of concrete were prepared. This provides the results from a total of 252 prisms for this study.

After eight weeks of exposure, the prisms were taken out of the CO₂ incubator, and the cracked area of the prisms (250 mm length) were separated using a dry saw-cut. These were then split into two half (using the compression machine) and sprayed with the phenolphthalein indicator to measure DoC (BS EN 12390-10:2007)[23]. For the uncracked regions, the DoC (which is the depth of the colourless region, X_p, after phenolphthalein spray (pH < 9)) was measured at three points perpendicular to the exposed face immediately after spraying the indicator and the average value of the DoC is reported in the results section. Whereas for the cracked regions, the DoC was measured at the location of the crack tip (as the depth of the colourless region perpendicular to the exposed face (see Figure 1-b)). A typical image of the cracked and uncracked sample split face after the phenolphthalein spray is illustrated in Figure1.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Series No.</th>
<th>Environmental exposure condition</th>
<th>Duration of exposure (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CO₂ (%)</td>
<td>Temperature (°C)</td>
</tr>
<tr>
<td>Scenario a</td>
<td>7</td>
<td>1.5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Scenario b</td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Scenario c</td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>
3. Model development and verification

3.1 Carbonation reactions in concrete

Carbonation is the chemical reaction between carbonic acid (H₂CO₃), resulting from a combination of atmospheric carbon dioxide (CO₂) with water, and calcium ion (Ca²⁺) from the dissolution of hydrated cement products such as calcium hydroxyl Ca(OH)₂, calcium silicate hydrates (C-S-H) and calcium aluminates hydrates (C-A-H). The CO₂ is consumed in two steps within the carbonation process. Initially, CO₂ is consumed by the Ca(OH)₂ within the concrete leading to its depletion. This is followed by the consumption of CO₂ by the C-S-H and C-A-S to densify the microstructure of cement products [15,25]. Park (2008) [15] has suggested about half of the CO₂ is consumed in each of these steps. The reactions leading to the formation of calcium carbonate (CaCO₃) are shown in Equations. 4 to 7 [9,26].

\[
\begin{align*}
\text{Equation 4} & \quad \text{CO}_2(gas) + H_2O = H_2CO_3(aq) \\
\text{Equation 5} & \quad \text{Ca(OH)}_2 + H_2CO_3(aq) = Ca_2CO_3 + H_2O \\
\text{Equation 6} & \quad 3\text{CaO}.2\text{SiO}_2.3\text{H}_2\text{O} + 3\text{H}_2\text{CO}_3(aq) = 3\text{CaCO}_3 + 2\text{SiO}_2 + 3\text{H}_2\text{O} \\
\text{Equation 7} & \quad 4\text{CaO}.\text{Al}_2\text{O}_3.13\text{H}_2\text{O} + 3\text{H}_2\text{CO}_3(aq) = 4\text{CaCO}_3 + 2\text{Al(OH)}_3 + 10\text{H}_2\text{O}
\end{align*}
\]

3.2 Framework for Model development

The proposed method of estimating carbonation depth relies upon a numerical model involving the simultaneous solution of equations for the diffusivity of CO₂(aq) and the reaction of Ca(OH)₂(aq) in concrete specimens [15] as shown in Figure 2 and Equation 8-9. One-dimensional diffusion of CO₂(aq) into concrete sample should be simulated assuming non-steady-state diffusion by Fick’s Second Law.

\[
\frac{\partial}{\partial t}[CO_2(aq)] = D_{CO_2} \frac{\partial^2}{\partial x^2}[CO_2(aq)] - \frac{k_x}{2}[CO_2(aq)][Ca(OH)_2(aq)]
\]
\[
\frac{\partial}{\partial t}[Ca(OH)_{2(aq)}] = D_{Ca(OH)_{2(aq)}} \frac{\partial^2}{\partial x^2}[Ca(OH)_{2(aq)}] - \frac{k_c}{2} [CO_2(aq)] [Ca(OH)_{2(aq)}] \quad (9)
\]

where: \(CO_2(aq)\) and \(Ca(OH)_{2(aq)}\) are Aqueous concentration of \(CO_2\) and \(Ca(OH)_{2}\) respectively, \(k_c\) is the rate constant of reaction \(x\) is the depth of concrete and time \(t\).

Figure 2: Mechanism of diffusion of carbon dioxide and concrete carbonation [15]

The numerical analysis of \((CO_2(aq)\) and \([Ca(OH)_{2(aq)}]\)) diffusivity is a function of concrete properties and exposure conditions; some properties were obtained from experimental results such as density, porosity and compressive strength (see Table A.1). While, others were calculated such as the carbon dioxide diffusion coefficient, whilst the modulus of elasticity and Poisson's ratio was based on the proposed equations by AL-Ameeri et al. (2013) and AL-Ameeri and AL-Rawi (2009) [27,28] respectively. While, the thermal conductivity, \(T_c\) is computed according to the relationships proposed in ACI 122R (2002) [29]. The steps of using the simulation are summarized in Figure 3.

3.3 **Diffusion Coefficient of Carbon Dioxide (\(D_{CO_2}\))**

Essentially, the size and connectivity of the pore within the micro-structure of concrete is the main path for the diffusion of \(CO_2\) in concrete. This porous media mainly depends on the ratio of water/cementitious materials (w/cm), and the degree of hydration of cement (Neville, 2011) [26].

Papadakis et al. (1991); Papadakis and Tsimas. (2002) [30,31] proposed an empirical equation to calculate the effective diffusivity of \(CO_2\) in concrete (\(D_{CO_2}\)) based on its porosity by:

\[
D_{CO_2,ref} = 6.1 \times 10^{-6} \left(\frac{(w-0.267(C+kP))/1000}{\rho_c + \frac{w}{\rho_w}} \right)^3 \quad (10)
\]

where: \(C\) is the cement content (kg), \(w\) is the water content (kg), \(\rho_c\) is the absolute density of cement (3050 - 3150 kg/m\(^3\)), \(\rho_w\) is the density of water (1000 kg/m\(^3\)).
The absolute density of supplementary cementing materials is not equal to the absolute density of cement, for example, the absolute density of fly ash ranges between 1900-2800 kg/m³, while, the absolute density of cement is about 3150 kg/m³ and it may be less than 3150 kg/m³ if the cement contains limestone or any additive material that has a density lower than the density of cement. To account for this variability, the above equation is modified to account for these properties of the material as shown in Equation 10.

\[
D_{CO_2, ref} = 6.1 \times 10^{-6} \left(\frac{\rho_w}{\rho_C - \rho_f} \right)^3 \]

(11)

where: \(\rho_p \) is the absolute density of supplementary cementing materials.

Figure 3: Flowchart to determine concentration of \(CO_2 (aq) \) and \(Ca(OH)_2 (aq) \)

Initially, the diffusion coefficient is established for concrete under a defined climatic condition (termed as reference diffusion coefficient), which is then modified to account for the

\[\]
factors related to climate change and change in material properties i.e. temperature, relative humidity and the crack width in concrete, to obtain the DoC after a defined period. Talukdar et al. (2012)[10] considered the effect of temperature, T, pore relative humidity, RH on D_{CO2}, but they did not consider the influence of crack and properties of concrete on the D_{CO2}. On the other hand, Kwon and Na (2011) [16] take into account the effect of crack width, W_c on the D_{CO2}, based on field investigation without consideration to the type of concrete. Because the main objective of this study is to investigate the effect of climate change on the durability of concrete structures. The study should focus on the effects of global climate change, change in CO2 concentrations, temperature, relative humidity as well as crack width and the properties of concrete (different types of concrete) on carbonation. Therefore, these parameters, T, RH, W and properties of concrete will be considered in this study to account for the D_{CO2} as shown in Equation 11 and in predicting the DoC and the initiation of corrosion time, t_i due to carbonation.

\[
D_{CO2} = D_{CO2,ref} f_{c1}(T) f_{c2}(RH) f_{c3}(W_c)
\]

(12)

where: $D_{CO2,ref}$ is the value of D_{CO2} at the reference condition (i.e. at the reference temperature, time and relative humidity) and it can be obtained by Equation 12, $f_{c1}(T)$, $f_{c2}(RH)$, $f_{c3}(W_c)$ are a function of temperature, relative humidity and crack width respectively, which are elaborated further in the following sections.

a. Relative Humidity Dependence on D_{CO2}

Relative humidity impacts the diffusivity of carbon dioxide into the concrete. Based on the experimental tests, Papadikas and Tsimas (2002) [31] proposed the following relationship to establish the D_{CO2} for different relative humidity:

\[
f_{c2}(RH) = (1 - RH)^{2.2}
\]

(13)

where: $f_{c2}(RH)$ is the effective factor of diffusivity of CO2 in concrete due to relative humidity, RH is the ambient relative humidity expressed as a fraction not less than 50%.

b. Temperature Dependence on D_{CO2}

The diffusivity of CO2 and occurring the carbonation products can be broken down into two sequences; the CO2 dissolves into the pore water coating the pore walls and reacts with dissolved Ca(OH)$_2$(aq) to form CaCO$_3$(s) which precipitates out of the solution. The temperature of the environment of concrete can be affected by these sequences[12]. Accordingly, Talukdar et al. (2012); Yoon et al. (2007) [10,14] have employed the Arrhenius Equation (Equation 14) to account for the temperature dependence of the diffusion coefficient of CO2 in concrete.
\[f_{c1}(T) = \exp \left[\frac{U_c}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right] \] (14)

where: \(U_c \) is the diffusion activation energy, the activation energy for CO\textsubscript{2} diffusing in concrete has been experimentally determined as 39,000 J/mole K, \(R \) is the gas constant (8.314 J/mole. K), \(T_{ref} \) is a reference temperature (298 K) and \(T \) is the temperature of interest (K).

The experimental data on the effect of temperature from this study (see Table A.3) and from the literature, e.g. He (2010) [32] demonstrated that the results from the Arrhenius Equation overestimate the effect of temperature. Where an increased percentage in DoC due to the influence of temperature ranged from 3\% to 23 \% for different types of concrete and temperature. Table 3 and Figure 4 show temperature dependence factor, \(f_{c1}(T) \) values of using Arrhenius Equation and data obtained from the analysis of experimental data.

Table 3: \(f_{c1}(T) \) values of applying Arrhenius Equation and values obtained by analysing experimental data

<table>
<thead>
<tr>
<th>Temperature K</th>
<th>(f_{c1}(T)) obtained by applying the Arrhenius Equation</th>
<th>(f_{c1}(T)) proposed by analysing experimental data</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>308</td>
<td>1.67</td>
<td>1.17</td>
</tr>
<tr>
<td>318</td>
<td>2.69</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Figure 4: Temperature dependence factor for using Arrhenius Equation and experimental results of this study and He (2010)[32]
The Arrhenius Equation is modified as shown in Equation 15 using an adjustment factor, \(b \), which is calculated from the experimental data to account for the above different using non-linear regression analysis because the Arrhenius Equation is general is used in a chemical reaction between materials with different temperature. The main data for the series exposed to temperatures 25, 35 °C and 45 °C was used in this analysis to find the temperature influence on \(f_{c1}(T) \). The correlation coefficient (R) was 0.87 and all correlations were statistically significant at the P= 0.000 level confidence 95% (alpha 0.005).

\[
f_{c1}(T) = \exp \left[(b) \frac{u_c}{R} \left(\frac{1}{T_{\text{ref}}} - \frac{1}{T} \right) \right]
\]

where: \(b \) is the adjustment factor (0.322).

c. Crack Dependence on \(D_{\text{CO}_2} \)

The cracks in concrete have a significant impact on the penetrability of carbon dioxide. As a result, the carbonation may be faster in cracked concrete compared with un-cracked concrete [33]. Kwon and Na (2011); Smilauer et al. (2013) [16,34] suggested a model predict the depth of carbonation (DoC) in cracked concrete from field investigations with crack widths ranging between 0.1 mm and 0.2 mm as:

\[
DoC = (2.816 \sqrt{W_c} + 1)K \sqrt{t}
\]

where: \(W_c \) is the crack width, \(K \) is the carbonation rate in the uncracked sample.

In order to achieve crack factor \(f_{c3}(W) \) (DoC cracked/ DoC uncracked), for a wide range of crack width \(W_c \) (0.05 to 0.35 mm), the influence of crack width on the diffusion coefficient of \(\text{CO}_2 \) (\(D_{\text{CO}_2} \)) was based on the experimental data (see Table A.2, A.3 and A.4) and calculated by non-linear regression analysis (least squares) as shown in Equation 16 and Figure 5. The input data was \(f_{c3}(W_c) \) and crack width for the cracked and non-incorporating SCMs specimens for the series exposed to 1.5-5 % \(\text{CO}_2 \) conditions. The correlation coefficient (R) was 0.85 and all correlations were statistically significant at the P= 0.000 level and level confidence 95% (alpha 0.05) and the predicted and observed values are presented in Figure 6.

\[
f_{c3(W_c)} = (11.4 \sqrt{W_c} + 1)
\]

where: \(W_c \) is the crack width in mm and \(f_{c3(W)} \) is the proportion of the diffusion coefficient of carbonation in the cracked sample (\(D_{\text{CO}_2(\text{cracked})} \)) to the diffusion coefficient of carbonation in the un-cracked sample (\(D_{\text{CO}_2(\text{un-cracked})} \)).
3.4 Numerical Formulation of Carbonation Model

Firstly, the gaseous diffusion of CO$_2$ is important in the carbonation of concrete and the diffusion coefficient of carbon dioxide has been described in the previous section. Upon reaching a given point in the concrete sample, the gaseous CO$_2$ dissolves into water and forms dissolved aqueous CO$_2$ (aq) at that location at a concentration governed by Henry's Law [14].

\[
[CO_2(aq)] = HRTCO_2(g)
\]

(18)

where: $CO_2(g)$ is a concentration of CO$_2$ as gas in an environment condition, H is the Henry's constant (mole/m3 atm), R is the gas constant and T is the temperature (K).

Henry's constant is temperature-dependent as shown in Equation 19 [35]:

\[
H(T) = H_{ref} \exp \left[\Delta \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right]
\]

(19)

where: H_{ref} is the reference Henry's constant (34.2 mol/m3 atm) and Δ is an enthalpy constant (2400 K).

For example, the [CO$_2$(aq)] was calculated and used as 1.14 M at 30 °C and 6 % CO$_2$(g).

Secondly, the dissolved aqueous Ca(OH)$_2$(aq) concentration in the solution of concrete depends on the degree of hydration, cement content and cement compounds, C$_3$S and C$_2$S [15]. The total amount of Ca (OH)$_2$ in the solid phase of cementation composite is calculated from the chemical composition of the hydration of cement compounds, C$_3$S, and C$_2$S as shown in Equations [26,36]:

\[
2C_3S + 6H \rightarrow C_3S_2H_3 + 3CH
\]

(20)

\[
2C_2S + 4H \rightarrow C_3S_2H_3 + CH
\]

(21)
where: C_3S is Tricalcium silicate and its molar weight (228 g/mole), C_2S is Dicalcium silicate and its molar weight (172 g/mol) and CH is calcium hydroxide and its molar weight (74 g/mole).

Then;

$$C_{CH} = \frac{M_{CH}}{2 \cdot M_{C_2S}} \cdot C_{C_2S} + \frac{3M_{CH}}{2 \cdot M_{C_3S}} \cdot C_{C_3S}$$ (22)

where: C_{CH} is Ca(OH)$_2$ content, M_{CH}, M_{C_2S} and M_{C_3S} are the molecular weight of Ca(OH)$_2$, C_2S and C_3S respectively, C_{C_2S} and C_{C_3S} are C_2S and C_3S percentage by weight of cement respectively.

Hence, the concentration of Ca(OH)$_2$ can be determined by cement content and degree of cement hydration using:

$$[Ca(OH)_2] = \frac{C_{CH} \cdot C \cdot \propto}{M_{CH}}$$ (23)

where: $[Ca(OH)_2]$ is Ca(OH)$_2$ concentration in mole/m3, M_{CH} is the molecular weight of Ca(OH)$_2$(74 g/mole), C is the weight of cement in m3 and \propto is hydration degree.

For the cement used in this study, the C_2S and C_3S percentages were 15.36% and 55% by weight of cement respectively and taking the hydration of cement as 90% [36], the $[Ca(OH)_2]$ will become:

$$[Ca(OH)_2] = 3.685 \cdot C$$ (24)

For example, $[Ca(OH)_2]$ calculated for cement content mix 380 kg / m3 is 1400 mol/m3 (1.4 M).

The diffusion coefficient of Ca(OH)$_2$ was taken as 1×10^{-12} m2/s in the analysis of diffusivity of calcium hydroxide [30]. Where Park (2008)[15] confirmed that the diffusion coefficient of Ca(OH)$_2$ may be kept at 1×10^{-12} m2/s and the rate of reaction may be increased a thousandfold with a slight change in the depth of carbonation.

Thirdly, it is also significant to find the rate of reaction between CO$_2$(aq) with Ca(OH)$_2$(aq) to form CaCO$_3$, as this is also temperature-dependent. Khunthongkeaw and Tangtermsirikul (2005) [37] proposed a second-order relationship with a rate constant of reaction:

$$k_c = A \cdot e^{-\frac{U}{RT}}$$ (25)

where: k_c is the reaction rate constant for the reaction between CO$_2$(aq) with Ca(OH)$_2$(aq) at the temperature of interest (m3/mol/s), U is the reaction activation energy (40,000 J/mol K) and A is the pre-exponential factor (1390 m3/mol/s).

Fourthly, the domain, the initial and the boundary condition of Eqs 26 to 33 are:

$$CO_2(x, t) \quad 0 \leq x \leq L \text{ and } 0 \leq t \leq \infty$$ (26)

$$CO_2(x, 0) = 0 \text{ for } x > 0$$ (27)
\begin{align}
CO_2(g)(0, t) &= CO_2(g)(\text{atm}) \quad \text{for } t > 0 \quad (28) \\
\frac{d}{dx} CO_2(g)(L, t) &= 0 \quad \text{zero – flux boundary} \quad (29) \\
Ca(OH)_2(g)(x, t) &= 0 \quad \text{for } x \leq L \text{ and } 0 \leq t \leq \infty \quad (30) \\
Ca(OH)_2(g)(x, 0) &= Ca(OH)_2(\text{aq}) \quad \text{for } x > 0 \quad (31) \\
\frac{d}{dx} Ca(OH)_2(\text{aq})(0, t) &= 0 \quad \text{zero – flux boundary} \quad (32) \\
\frac{d}{dx} Ca(OH)_2(\text{aq})(L, t) &= 0 \quad \text{zero – flux boundary} \quad (33)
\end{align}

where: \(L \) is the thickness of the concrete sample

For concrete, the thermal diffusivity is much greater than the mass diffusivity. Therefore, the temperature of the concrete is assumed uniform at any time so that there is no need to also solve the energy equation or to account for the heat of the reaction [10]. A flowchart to demonstrate how Equation 7 and 8 are formulated is shown in Figure 3 and 7.

3.5 Frame Work of Numerical Analysis of Species Diffusion

The finite element methods have become a commonly used method in the engineering field. The finite element method, FEM, is based on dividing a structure into a number of finite elements connected by nodes [38]. In the present study, a non-linear finite element technique (NLFET) was used to determine the depth of carbonation by finding the diffusivity of \(\text{CO}_2(\text{aq}) \) and \(\text{Ca(OH)}_2(\text{aq}) \) in concrete using the FEM package Multiphysics. In this case, the FEM, Transport of Diluted Species in Porous Media Method (tds) was used.

3.5.1 Theory of the Transport of Species (\(\text{CO}_2(\text{aq}) \) and \(\text{Ca(OH)}_2(\text{aq}) \))

The transportation of diluted species interface offers a predefined exhibiting environment for studying the evolution of chemical species transported by diffusion and convection. The interface assumes that all species are dilute; which means that their concentration is small compared to a solvent fluid or solid. As a rule of thumb, a mixture containing several species can be considered dilute when the concentration of the solvent is more than 90 moles %. Due to the dilution, mixture properties such as density and viscosity can be assumed to correspond to those of the solvent. Fick’s law governs the diffusion of the solute's dilute mixtures or solutions [12, 14]. The transportation of diluted species interface supports the simulation of chemical species transport by convection and diffusion in one dimensional (1D), two dimensions (2D), three dimensions (3D) as
Concrete Mixes Properties
- Porosity, ϵ
- Density, ρ
- Thermal Conductivity, T_c
- Initial Content (Initial condition)
- Crack width (W_c)

Exposure Conditions
- Species concentration (CO$_2$%)
- Temperature, T
- Relative humidity, RH

Boundary Condition or Surface Concentration (C_s)

Time of Exposure (t) to CO$_2$ environmental conditions

Diffusion Coefficient of the Species (D_s)

Geometry of the Shape with Dimension
Prism (10*10*50) cm un-cracked and crack Samples with different crack width

Results of Species (CO$_2$$_{(aq)}$ and Ca(OH)$_2$$_{(aq)}$)
Concentration Profile ($C(x, t)$)

Figure 7: Flowchart of numerical analysis using the FEA programme
well as for axisymmetric models by, (i) Mass Balance Equation. (ii) Convective Term Formulation, (iii) Solving Diffusion Equation Only

3.5.2 Model Geometry and Meshing using Programme

The geometry of the full specimen was characterised by a two-dimensional full specimen (100*100*500 mm). The mesh settings determine the resolution of the finite element mesh used to discretize the model. The finite element technique is the method to divide the model into small elements of geometrically simple shapes.

Figure 8 demonstrates the simple schematic of the mesh model geometry of concrete samples (with and without a crack) which were modelled to simulate this model. The concrete was modelled with a 3-node free triangle element available in the programme’s element library. This element type has concentrated integration stiffness [39]. This element can be also used for nonlinear analysis counting that of integration. The maximum and minimum element size of the mesh, and the curvature factor was 1.3 mm, 0.004 mm and 0.6 respectively.

3.5.3 Numerical Analysis of Species Diffusion of CO$_2$(aq) and Ca(OH)$_2$(aq)

To simplify the analysis, a numerical analysis was used to solve these equations simultaneously and determine the concentrations of CO$_2$ (aq) and Ca(OH)$_2$(aq) at a given location and time within the concrete specimen due to exposure to CO$_2$ environment as shown in Figure 9. The simulation of the concentration of CO$_2$ (aq) and Ca(OH)$_2$(aq) profile is presented in Figure 10 and 11 respectively for example in the results test of Talukdar et al. (2012)[10].

The results illustrate the concentration of CO$_2$(aq) reduces with depth due to the decrease of CO$_2$(aq) diffusivity into the concrete depth. Whilst, the concentration Ca(OH)$_2$(aq) raises with depth due
to a decrease of consumption of Ca(OH)$_2$ \((aq) \) into the concrete depth owing to reduced formation of calcium carbonate.

Figure 9: \([CO_2\ (aq)]\) and \([Ca(OH)_2\ (aq)]\) concentration distribution in the samples (cracked and uncracked) due to exposure to 5% CO$_2$, 45 °C and 65% RH for 8 weeks
Finally, the depth of carbonation, DoC can be determined using two assumptions:

- Park (2008) [15] found the pH of concrete drops to 9 at 50% consumption of Ca(OH)$_2$ in the concrete mixes. Therefore, Park (2008) [15] assumed the location of the carbonation front, X_f by modelling to find the location where 50% of the Ca(OH)$_2$ is consumed. The depth of carbonation front X_f relates to the depth beyond which concrete is yet unaffected by the carbonation. Then, the depth of carbonation, DoC is half of the carbonation front depth, X_f [40].

- Ehrlich et al. (2015) [41] reported that CaCO$_3$ will precipitate in an aqueous solution containing $10^{-4.16}$ M of Ca(OH)$_2$ when the concentration of CO$_2$(aq) exceeds $10^{-4.16}$. This is because the product of the concentration of two ions of (CO$_2$(aq) and Ca(OH)$_2$(aq)) could exceed the solubility constant (K$_{sol}$) for CaCO$_3$, $10^{-8.32}$. Therefore, the minimum concentration of CO$_2$(aq) to form the CaCO$_3$ (carbonation components) should be equal to, or more than, $10^{-4.16}$ (6.92*10^{-5} M). Then, the carbonation depth at this point of concentration $10^{-4.16}$ M CO$_2$(aq); beyond this depth, the concentration of CO$_2$(aq) is less and CaCO$_3$ will not precipitate.

Using the above two assumptions, the depth of carbonation, DoC for experimental results are simulated and verified in the next section.

4. Verification of Numerical Modelling for the Carbonation Depth

The model is validated by comparing its results with the available experimental results of this study and other studies in the literature. The CO$_2$(aq) and Ca(OH)$_2$(aq) transportation and reaction in the uncracked and cracked concrete shown in Figure 12 are used in the simulation to find the DoC. The CO$_2$ diffusion coefficient for the samples are computed using Eqs 9-16 and is presented in Tables 4.
Predicted data for the DoC obtained through the model is compared with the respective experimental results scenarios and are presented in Figure 12.

Table 4: D_{CO2} values with pores volume ratio, temperature, relative humidity, and crack width

<table>
<thead>
<tr>
<th>Sample</th>
<th>C_{CO2}</th>
<th>$f_{2}(RH)$</th>
<th>$f_{1}(T)$</th>
<th>D_{CO2} m2/sec *10$^{-8}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Un-cracked</td>
</tr>
<tr>
<td>Series 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 0.4</td>
<td>5</td>
<td>0.099</td>
<td>1.38</td>
<td>0.51</td>
</tr>
<tr>
<td>M 0.5</td>
<td>5</td>
<td>0.099</td>
<td>1.38</td>
<td>1.87</td>
</tr>
<tr>
<td>M 0.6</td>
<td>5</td>
<td>0.099</td>
<td>1.38</td>
<td>3.56</td>
</tr>
<tr>
<td>Series 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 0.4</td>
<td>1.5</td>
<td>0.099</td>
<td>1</td>
<td>0.37</td>
</tr>
<tr>
<td>M 0.5</td>
<td>1.5</td>
<td>0.099</td>
<td>1</td>
<td>1.36</td>
</tr>
<tr>
<td>M 0.6</td>
<td>1.5</td>
<td>0.099</td>
<td>1</td>
<td>2.59</td>
</tr>
</tbody>
</table>

Graphs

- **a:** M 0.4 - (Series 1 - 45 °C, 65% RH and 5 CO$_2$)
- **b:** M 0.5 - (Series 1 - 45 °C, 65% RH and 5 CO$_2$)
- **c:** M 0.6 - (Series 1 - 45 °C, 65% RH and 5 CO$_2$)
- **d:** M 0.4 - (Series 7 - 25 °C, 65% RH and 1.5 CO$_2$)

R^2 values: 0.91, 0.95, 0.96, 0.9
The influence of properties of concrete, the crack width, % RH, CO₂ concentration and temperature were considered in the model in Equations 8 to 9 and verified by experimental results in this study as shown in Figures 12 (a-f). The predicted data of carbonation depth in cracked samples demonstrate that an increase in the crack width and depth increases the penetration and reaction of CO₂(aq) with Ca(OH)₂ to precipitate CaCO₃.

It can be seen from Figure 12, the predicted data resulting from modelling matches well with the experimental data (the R² values of most of these graphs were more than 0.9). The curve fitting is less favourable in these cases; however, the trends are still correct even here. Overall, this model can be used to forecast the carbonation depth for different crack widths in concrete and different scenarios of exposure conditions (e.g. CO₂, temperature and relative humidity).

Secondly, the modelling results are verified using other studies from the literature. (Talukdar et al., 2012) [10] used three concrete cube specimens (10×10×10 cm) cast using OPC. The w/cm ratio and aggregate to cementitious materials (A/cm) were 50% and 4.3 respectively. After 28 days of curing, the specimens were exposed to 6% CO₂, 65% RH and 30 °C for 8 weeks. The computational results showed $f_{C2(RH)} = 0.099$, $f_{C1(T)} = 1.1$ and $D_{CO2} = 1.5 \times 10^{-8} \text{ m}^2/\text{sec}$, and the calculation of this case compared with experimental results are presented in Figure 14-a. (Chi et al., 2002) [42] used three cube concrete specimens (10×10×10 cm) cast using ordinary Portland cement. The w/cm was 48%. After 28 days of curing, the specimens were exposed to 5% CO₂, 55% RH and 30°C for 8 weeks. The computational results showed $f_{C2(RH)} = 0.133$, $f_{C1(T)} = 1.1$ and $D_{CO2} = 1.6 \times 10^{-8} \text{ m}^2/\text{sec}$, and the calculation of this case compared with experimental results are presented in Figure 14-b. The carbonation depth was measured using the phenolphthalein technique in both cases. Both cases were used to verify the numerical modelling. The predicted data and experimental results for both cases are presented in Figures 13.
From Figure 13, there is a qualitative difference in trend between the experimental results and those predicted by the model as shown in R² values. The analytical data obtained by employing the model illustrated that the shape of the carbonation depth profile matched well (regression factor, R² = 0.94) with the literature results. The difference between the analytical results and experimental data may be the model assumptions of reaction for CO₂(aq) and Ca(OH)₂(aq) or in the factors that affect carbon dioxide coefficient such as relative humidity factor. On the other hands, the experimental results are based on the change in the colour of carbonated concrete which has a pH ≤ 9 investigating by the phenolphthalein alkalinity indicator. This method of investigating carbonation only determines the full carbonated zone [42,43].

Overall, this model can be used to predict DoC in existing concrete structure with future global warming or climate change scenarios.

5. Prediction of DoC in Concrete Structure due to Climate Change using Proposed Model

As mentioned previously, climate changes affect the CO₂, T, and RH, which in turn changes the carbonation depth within concrete. The atmospheric temperature and carbon dioxide concentrations of IPCC(2014), as shown in Figure 14, will be used in this study to forecast the change in carbonation depth numerically.
Figure 14: Prediction of atmospheric CO\(_2\) % and progress in temperature over the period 2000-2200 for scenarios, RCP 8.5 and RCP 6.0 in (IPCC, 2014-AR5)[2]

The city of London was selected, and carbonation progression depth for a hypothetical concrete structure, having w/cm ratios, 0.4, 0.5 and 0.6 and properties of these mixes as shown in previous sections, were modelled. Based on the data of temperature and relative humidity of London - UK in the ten years from the beginning of this study, 2004-2014 which are supplied by Met Office- UK, were considered in the initial environmental exposure conditions in prediction first. Secondly, in Assessment Report –Working Group III in Emission Scenarios (IPCC, 2014-AR5,WGIII)[2], two emission scenarios were considered, the worst-case scenario (RCP 8.5), case scenario (RCP 6.0), and the control scenario (CO\(_2\) levels held constant at initial levels of 400 ppm). Corresponding to the forecast of mean global temperature increases are obtained by data reported in the (IPCC, 2014-AR5) [2] as shown in Figure 15. A simplified climate model was employed which allowed for the development of equations for emissions, temperature, and humidity over the next 100 years for the city of London.

The numerical carbonation model to predict the DoC, considering for the first time, time-varying concentrations of CO\(_2\), temperature, and humidity. This model was used to determine the carbonation in the case of no climate change effects (CO\(_2\), T, and RH) and the other cases with the effect of change in (CO\(_2\), T, and RH) due to climate change depending on time as shown in Figure 14. The concrete members, having different w/cm ratios (un-cracked samples) and environmental conditions were considered to forecast the DoC up to 100 years due to exposure conditions for the three scenarios. Assuming the building goes into service in the year 2000, the carbonation depths for each mix for the three scenarios are presented in Figure 15 (a-c). On the other hand, changes in climate change parameters for different crack widths for two scenarios were considered for the carbonation depth as shown in Figure 16.
From these figures, some of the observations are made.

(i): The analytical results of carbonation depth in concrete members exposed to CO₂ environment condition due to the influence of climate change parameters for IPCC (2014) models
(RCP 8.5 and RCP 6.0 scenarios) increased with the increase in CO₂, temperature and reduction humidity for both exposure condition scenarios. The percentage increase in the ultimate carbonation depths comparing the control condition for the two scenarios is listed in Table 5. While, the percentages increase in carbonation depth for the cracked concrete members (different crack widths and w/cm ratios) due to exposure condition scenario, RCP 8.5 was 63%, 69% and 63% for M 0.4, M 0.5 and M 0.6 respectively.

Table 5: Effect of climate change scenarios RCP 8.5 and RCP 6.0 on carbonation progress in concrete members in the city of London

<table>
<thead>
<tr>
<th>Mix designation</th>
<th>Scenario</th>
<th>Percentage increase in the ultimate carbonation depth (mm) at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2020</td>
</tr>
<tr>
<td>M 0.4</td>
<td>RCP 8.5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>RCP 6.0</td>
<td>25</td>
</tr>
<tr>
<td>M 0.5</td>
<td>RCP 8.5</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>RCP 6.0</td>
<td>25</td>
</tr>
<tr>
<td>M 0.6</td>
<td>RCP 8.5</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>RCP 6.0</td>
<td>33</td>
</tr>
</tbody>
</table>

(ii): The Carbonation progress due to the change in CO₂ and temperature is higher due to the increase of porosity of concrete (properties of concrete dependent). Carbonation progress for Mix M 0.6 with w/cm ratio 0.6 for both scenarios was higher than carbonation depths for mixes M 0.4 and M 0.5. It is seen that climate change does not begin to seriously affect the rate of carbonation until about 30 years into the future (in these simulations, the year 2030). It is only after 30 years that we start to see the carbonation depth curves for the RCP 8.5 and RCP 6.0 scenarios begin to seriously divert from the control curves for all mixes.

(iii) Finally, it is noticed that over 100 years, for these cases, there is an obvious impact of climate change on carbonation depths. However, it is also important to consider what the actual effects of climate change will be on the service life of a structure. As mentioned previously, it is observed that corrosion may occur when the distance between the carbonation depth and the reinforcement bar surface is less than 1-5 mm [14,44,45]. However, probabilistic analyses for assessing durability design specifications tend to ignore this effect [13]. Hence, the time to corrosion initiation, \(t_i \) occurs when the carbonation depth is equal to the depth of concrete cover. The times to initiation, \(t_i \) due to carbonation induced corrosion for each of the mixes (assuming the concrete cover is 25 mm) for two cases of structures in London are listed in Table 6.

Table 6: Time to corrosion initiation due to carbonation – constructed in the Year 2000
<table>
<thead>
<tr>
<th>Mix designation</th>
<th>Scenario</th>
<th>Time to initiation (year)*</th>
<th>Ultimate carbonation Depth (mm)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 0.4</td>
<td>Control condition</td>
<td>> 100</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>RCP 8.5</td>
<td>> 100</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>RCP 6.0</td>
<td>> 100</td>
<td>10</td>
</tr>
<tr>
<td>M 0.5</td>
<td>Control condition</td>
<td>> 100</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>RCP 8.5</td>
<td>60</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>RCP 6.0</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>M 0.6</td>
<td>Control condition</td>
<td>60</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>RCP 8.5</td>
<td>21</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>RCP 6.0</td>
<td>24</td>
<td>50</td>
</tr>
</tbody>
</table>

*Time to initiation of corrosion is the time at the DoC ≥ 25 mm.
**Ultimate carbonation Depth is at the Year 2100.

The main factors affecting an increase in the carbonation depth is the increase of carbon dioxide concentration as well as the increase in temperature and decrease in the relative humidity. The IPCC (2014), (AR5-RCP 8.5)[2] has forecasted the change in carbon dioxide over the (21st) century will reach up to double concentration by 2100 compared with 2000 that lead to an increase in the average temperature of 4.2°C as shown in Figure 14. The atmospheric carbon dioxide concentration, temperature, and humidity of the exposure environment are the main driving force for carbon dioxide penetration in concrete structures [14,46]. The model of the rate of carbonation is based on surface exposure conditions, CO2, RH and T and properties of concrete structure [7].

Finally, considering that the structures in these cases would likely be subjected to deterioration by means other than carbonation during the same time, the reduction in initiation time caused by climate change factors would be one of many factors affecting the service life. Secondly, it is noted that there is a minimal reduction in propagation time (the difference between the time to initiation and time to failure) between the control cases, and the climate change cases, for each respective mix. Therefore, in the short term, it is reasonable to conclude that climate change will not significantly affect the durability of our concrete infrastructure. However, it was noted earlier that the effects of climate change become significant after approximately 30 years.

6. **Conclusions and future work**

In this study, a modelling approach was proposed to predict the carbonation depth. This approach is based on mechanisms of the \(CO_2(aq) \) diffusion and \(Ca(OH)_2(aq) \) reaction mechanisms in cementitious materials, in concrete exposed to carbon dioxide environment conditions. The following conclusions can be drawn from the results.
1- In models of carbonation depth, D_{CO2} considered internally affected factors such as the porosity and tortuosity of voids in concrete.

2- In the modelling of carbonation, the diffusion of carbon dioxide coefficient, D_{CO2} considered the impact of crack width and externally affected factors such as temperature and relative humidity.

3- An integrated carbonation model was developed to predict the depth of carbonation in non-pozzolanic, uncracked and cracked concrete specimens, considering properties of concrete, concentrations of CO$_2$, temperature and humidity together. The numerical model was verified by accelerated experimental results from this study and other studies for two cases of concrete, uncracked and cracked concrete samples.

4- The influence of climate change due to the increase in CO$_2$ and temperature and reduction in the relative humidity has a considerable impact on the depth of carbonation in the long term. This impact is much higher with an increase in the w/cm ratio due to an increase in the porosity and diffusivity of CO$_2$ in concrete structures.

5- There are two main cases of exposure environment, which can be investigated looking at two levels of CO$_2$ concentration according to the two worst scenarios of IPCC 2014, RCP 8.5 and RCP 6.0, which applied on concrete structures in London and those can be employed on other cities in the world in further studies.

6- Climate change could affect the progression of carbonation and induce corrosion in our concrete structures. Ultimate carbonation depths will be much higher in the long term and harsher exposure conditions such as the worst-case scenario of RCP 8.5.

7- Based on the IPCC 2014 climate change predictions, climate change appears to have an unnoticeable impact on the durability of concrete structures constructed in the Year 2000 in the short term; the significant effects of the climate change will become evident after approximately 30 years. Therefore, climate change mitigation measures should be put in place with the above predictions in mind to avoid expensive repair and maintenance costs in the future.

7. Appendix

Table A.1: Fresh and microstructure properties of mixes used in the study*

<table>
<thead>
<tr>
<th>Mixes Designation</th>
<th>$\frac{w}{c}$</th>
<th>Slump mm</th>
<th>Density kg/m3</th>
<th>Porosity %</th>
<th>Water absorption %</th>
<th>Compressive strength MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 0.4</td>
<td>0.4</td>
<td>110</td>
<td>2467</td>
<td>10.01</td>
<td>4.6</td>
<td>51.5</td>
</tr>
<tr>
<td>M 0.5</td>
<td>0.5</td>
<td>130</td>
<td>2416</td>
<td>11.1</td>
<td>5.2</td>
<td>40.1</td>
</tr>
<tr>
<td>M 0.6</td>
<td>0.6</td>
<td>140</td>
<td>2389</td>
<td>12.3</td>
<td>5.7</td>
<td>36.3</td>
</tr>
</tbody>
</table>

Table A.2: Effect of CO$_2$ concentration on DoC for Scenario a*
<table>
<thead>
<tr>
<th>Sample</th>
<th>binder</th>
<th>Crack width mm</th>
<th>Carbonation depth (mm) for Temperature 25 °C, Relative humidity 65% and CO₂=1.5% (7)</th>
<th>CO₂=3% (6)</th>
<th>CO₂=5% (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 0.4</td>
<td>0.4</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05-0.15</td>
<td>14</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15-0.25</td>
<td>18</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25-0.35</td>
<td>20</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>M 0.5</td>
<td>0.5</td>
<td>0</td>
<td>7.5</td>
<td>10</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05-0.15</td>
<td>18</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15-0.25</td>
<td>23</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25-0.35</td>
<td>33</td>
<td>34</td>
<td>38</td>
</tr>
<tr>
<td>M 0.6</td>
<td>0.6</td>
<td>0</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05-0.15</td>
<td>22</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15-0.25</td>
<td>27</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25-0.35</td>
<td>35</td>
<td>42</td>
<td>48</td>
</tr>
</tbody>
</table>

Table A.3: Effect of Temperature on DoC for Scenario b*

Sample	binder	Crack width mm	Carbonation depth (mm) for Temperature 25 °C, Relative humidity 65% CO₂=5% and		
		0	8	9	9.5
M 0.4	0.4	0.05-0.15	19	20	21
		0.15-0.25	23	25	23
		0.25-0.35	36	35	36
M 0.5	0.5	0	11.5	13	13.5
		0.05-0.15	26	24	27
		0.15-0.25	30	29	31
		0.25-0.35	38	40	42
M 0.6	0.6	0	15	16	17
		0.05-0.15	26	28	30
		0.15-0.25	35	35	33
		0.25-0.35	48	50	47

Table A.4: Effect Relative humidity on DoC for Scenario c*

<table>
<thead>
<tr>
<th>Sample</th>
<th>binder</th>
<th>Crack width mm</th>
<th>Carbonation depth (mm) for Temperature 25 °C, CO₂=5% and Relative humidity 65% (5)</th>
<th>Relative humidity 75% (4)</th>
<th>Relative humidity 85% (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 0.4</td>
<td>0.4</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05-0.15</td>
<td>19</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15-0.25</td>
<td>23</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25-0.35</td>
<td>36</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>M 0.5</td>
<td>0.5</td>
<td>0</td>
<td>11.5</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05-0.15</td>
<td>26</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15-0.25</td>
<td>30</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25-0.35</td>
<td>38</td>
<td>40</td>
<td>37</td>
</tr>
<tr>
<td>M 0.6</td>
<td>0.6</td>
<td>0</td>
<td>15</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05-0.15</td>
<td>26</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15-0.25</td>
<td>35</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25-0.35</td>
<td>48</td>
<td>46</td>
<td>50</td>
</tr>
</tbody>
</table>

*This means the results of these tests are an average for three sample
References

