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ABSTRACT: Simulation of artificial earthquakes in agreement with the provision of in-

ternational seismic codes is addressed. Due to the importance of nonstationary fre-

quency content on the seismic assessment of structures, in this paper a new method for 

generating spectrum compatible fully nonstationary earthquakes is proposed. The me-

thod assumes that the ground motion is modeled by the superposition of two contribu-

tions: the first one is a fully nonstationary counterpart modeled by a recorded earth-

quake; the second one is a corrective random process adjusting the recorded earthquake 

in order to make it spectrum compatible. Several examples show the accuracy of the 

proposed method. 
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1 INTRODUCTION 

For a number of applications connected with the seismic assessment of structures it is 

necessary to generate accelerograms which are compatible with a design response spec-

trum. To date, international seismic codes [1,2] do not give a method for generating the 

time-histories imposing only the matching of the mean simulated response spectrum 

with the target one according to certain spectrum compatible criteria. As a consequence, 

several methods have been proposed in literature coping with the generation of spec-

trum compatible accelerograms. Earlier contributions on this subject can be found in 

[3]. Based on either a deterministic or stochastic approaches two main parallel strategies 

are usually adopted for defining suitable earthquake time histories. Namely, based on a 

deterministic approach the spectrum compatible accelerogram is usually determined via 

an iterative alteration of the frequency content of synthetic or recorded time-histories. In 

reference [4] a single spectrum compatible accelerogram using an artificial deterministic 

signal resulting by the superposition of a number of harmonics with amplitude scaled so 

as to mach the target response spectrum has been determined. Neural network based ap-

proach for generating accelerograms through the knowledge of the inverse mapping 

from response spectra to earthquake accelerograms is proposed in [5]. Wavelet-based 

methods modifying recorded accelerograms such that those are compatible with a given 

response spectrum can be found in [6-8].  

Deterministic-based approach possesses the advantage to lead generally to spectrum 

compatible accelerograms nonstationary in both amplitude and frequency; on the other 

hand it suffers the major drawback to produce a single spectrum compatible accelero-

gram from and individual recorded signal. Therefore since for design purpose it is re-



 3

quired [1,2] the use of a number of accelerograms the application of a deterministic ap-

proach could be prohibitive whereas few records are allowable. 

Furthermore, being the response spectrum determined smoothing and averaging the 

response spectra pertinent to a number of recorded signals and due to the widely recog-

nized random nature of the seismic action, stochastic approach appears more attractive. 

In this regard, many common approaches rely on modeling the seismic action as a reali-

zation of a stationary or quasi-stationary stochastic process. Moreover, in the framework 

of stochastic dynamics, spectral representation of random processes is usually preferred. 

Accordingly, by modeling the seismic input as a stationary Gaussian process, the spec-

trum compatible power spectral density is first determined. Vanmarcke and Gasparini 

[9] pointed-out the fundamental relationship between the response spectrum and the 

power spectral density of the input via the so-called “first passage problem”. Based on 

this relationship various procedures have been proposed in literature for determining the 

spectrum compatible power spectral density. (see e.g. ref. [9-18]). An iterative scheme 

to generate seismic ground motion time histories at several location on the ground sur-

face that are compatible with prescribed response spectra correlated according to a giv-

en coherence function has been proposed in [19]. After determining the power spectral 

density of the base acceleration, samples of spectrum compatible time histories can be 

simulated through the superposition of harmonics with random phase [20]. Even if the 

above described approaches represent the seismic action reliably reflecting its inherent 

random nature, it suffers the major drawback of neglecting the nonstationary characte-

ristics of the real records.  Remarkably, it is well known that the dynamic response of 

nonlinear structures is highly influenced by the nonstationary behavior of the input 

[21,22]. Thus, more reliable simulations have to take into account the time variability of 
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both intensity and frequency content of the ground motion. Considering an earthquake 

time history as a realization of a nonstationary stochastic process Spanos and Vargas 

Loli [23] derived an approximate analytical expression of the spectrum compatible evo-

lutionary power spectrum. The simulated time-histories are iteratively adjusted a post-

eriori in order to match the response spectrum. Generation of nonseparable artificial 

earthquake accelerograms has been also proposed in [24]. The method assume an em-

pirical model of the evolutionary power spectral density function possessing the feature 

that high frequency component are magnified in the early part of the process and the 

iterative correction of the simulated accelerograms. Nonstationary characteristics from 

recorded earthquakes have been taken into account in [25] by means of phase spectrum 

for generating spectrum compatible signals. Ensemble of spectrum compatible accele-

rograms using stochastic neural networks has been proposed in [26]. Recently, the pro-

cedure originally established in Spanos and Vargas Loli [23] has been modified by Gia-

ralis and Spanos [27] by means of the use of harmonic wavelets transform for iteratively 

improve the matching between the target and the simulated response spectra.  

In this paper a method based on the spectral representation of stochastic processes is 

proposed. The method assumes that the ground motion is modeled by the superposition 

of two contributions: the first one is a fully-nonstationary counterpart modeled by a rec-

orded earthquake, that takes into account the time variability of both intensity and fre-

quency content; the second one is a corrective term represented by a quasi-stationary 

process adjusting the response spectrum of the nonstationary signal in order to make it 

spectrum compatible. Remarkably, the simulated earthquakes do not require any further 

iterative correction leading the proposed procedure very handy and competitive from a 

computational point of view. Therefore, the influence of the corrective term on the non-
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stationary behavior of the original recorded signal has been scrutinized via a pertinent 

study of the mean instantaneous energy and frequency of the spectrum compatible 

earthquakes. Various examples show the accuracy and the efficiency of the proposed 

method. 

 

2 GENERATING QUASI-STATIONARY SPECTRUM COMPATIBLE 

EARTHQUAKES 

Assume that a target pseudo-acceleration response spectrum 0( , )RSA   (for a given 

natural frequency, 0 , and damping ratio,  ) is specified. The problem of simulating 

spectrum compatible earthquakes is addressed on a probabilistic basis under the as-

sumption that an earthquake time history is considered as a realization of a random 

process. In this section the simplest hypothesis of zero-mean stationary Gaussian ran-

dom process, fully defined by the so-called power spectral density function, is assumed. 

Accordingly, the problem is recast to determine the power spectral density function 

whose response spectrum match the target one. This can be pursued via the following 

first crossing problem [9]  

2
0 0 0, 0 1, 0 2, 0 0, 0( , ) ( , 0.5; ( , ), ( , ), ( , )) ( , ) ,U s U U U URSA T p                     (1) 

where U  is the peak factor given by the equation 

  1 22ln 2 1 ln 2.
U U U UN exp N         

,               (2) 

with 



 6

  12, 0

0, 0

( , )
ln

2 ( , )
Us

U
U

T
N p

  
 

   
,               (3) 

and  

2
1, 0

0, 0 2, 0

( , )
1

( , ) ( , )
U

U
U U

  
  

     
,               (4) 

where sT  is the time observing window, and p  is the not-exceeding probability. Fur-

thermore , , 0( , ) ( 0,1,2)i U i     are the response spectral moments defined as 
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in which   12 2 2 2 2 2 2
0 0 0( , , ) ( ) 4H


           is the energy transfer function and 

( )
guG   is the unilateral power spectral density function of the ground acceleration 

process that have to be determined. It is noted also that in eq. (1) the 50% fractile has 

been approximated by the mean value of the peak values.  

A handy recursive expression determining the power spectral density compatible with 

a given response spectrum has been proposed in reference [18]. Specifically, 

  0 0
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where the peak factor U  is given by equation  (2) along with the following approx-

imate parameters  

  1
ln

2
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U i

T
N p

  


,               (8) 

1
2 2

2 2

1 2
1 1 arctan

1 1
U

       
        

,                    (9) 

determined assuming that the input PSD possess a smooth shape  and 1  . Moreover 

1 rad/ secl  is the lowest bound of the existence domain of U . The accuracy of eqs. 

(6) and (7) can be also improved via the following iterative scheme [9] 
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 ( )j
RSA  being the approximate pseudo-acceleration spectrum determined at the j-th 

iteration through equations (1-5). 

After determining the spectrum compatible power spectral density ( )
guG   the simu-

lation of spectrum compatible ground acceleration earthquakes is performed via the su-

perposition of aN  harmonics with random phases. Specifically, the k-th artificial earth-

quake is given by the equation 

( ) ( )

1

( ) ( ) 2 ( ) cos( )
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u t t G i i t    


      ,              (11) 
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where ( )k
i  are independently random phases uniformly distributed in the interval 

[0,2 ) and ( )t  is a  modulating function. In order to preserve the stationary condition 

of the response process within a segment of duration sT  (i.e. the time-observing win-

dow), the modulating function proposed in [28] is selected. That is, 
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             (12) 

with 2 1 st t T   .  

Remarkably, Using this approach the spectrum compatible criteria provided by seis-

mic codes are satisfied [18]. So that the earthquake ground acceleration samples gener-

ated using equations (6-12) can be used for design applications.  

 

3 GENERATING FULLY NON-STATIONARY SPECTRUM COMPATIBLE 

EARTHQUAKES: PROPOSED METHOD 

To date, the suite of artificial accelerograms established by seismic codes is based on 

the positive matching of the simulated response spectrum with the target one. No rules 

have been imposed regarding the duration, the input energy, the stationary or nonsta-

tionary behaviour of the simulated time-histories. On the other hand, the importance of 

non-stationary frequency content on the response of nonlinear structures has been mani-

fested in various studies [21,22]. Thus, more reliable simulations have to take into ac-

count the time variability of the frequency content of the ground motion.  
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According to that, in this paper a new strategy for simulating spectrum compatible 

fully nonstationary earthquakes is proposed. To this aim, it is assumed that the nonsta-

tionary spectrum compatible earthquake is modeled by the superposition of two contri-

butions: the first one is a fully-nonstationary known counterpart modeled by a recorded 

earthquake, that takes into account the time variability of both intensity and frequency 

content; the second one is a corrective term represented by a stationary zero-mean 

Gaussian process adjusting the response spectrum of the nonstationary signal in order to 

make it spectrum compatible. That is, 

( ) ( ) ( )R S
g g gu t u t u t    ,              (13) 

 
where )(tu R

g  is the recorded (R) earthquake time history that is assumed known,  is a 

scaling coefficient  and ( )S
gu t  is the stochastic (S) corrective term whose power spectral 

density has to be determined. Accordingly, let consider the equation governing the mo-

tion of a single-degree-of-freedom system 

2
0 0( ) 2 ( ) ( ) ( ( ) ( ))R S

g gu t u t u t u t u t          .              (14) 

The response displacement time-history can be cast in the form 

( ) ( ) ( )R Su t u t u t  ,              (15) 

whose counterparts are solution of the two independent differential equations 

2
0 0( ) 2 ( ) ( )R R R R

gu t u t u t u       ,              (16) 
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2
0 0( ) 2 ( ) ( )S S S S

gu t u t u t u       .              (17) 

Accordingly, the response spectrum 0( , )RSA    of the ground motion  ( )gu t  given in 

eq. (13) can be approximately determined by the equation 

2 2 2
0 0 0( , ) ( , ) ( , )R SRSA RSA RSA        ,              (18) 

where 0( , )RRSA    is the response spectrum of the recorded ground motions, )(tu R
g , 

and 0( , )SRSA    is the response spectrum pertinent to the stochastic zero-mean statio-

nary Gaussian  process , )(tu S
g . The latter can be approximately determined through the 

first crossing problem given by the equation 

0

2
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              (19) 

formally analogous to eq. (1). Let assume now that 0( , )RSA    represents the known 

target response spectrum (i.e. defined by the seismic code). Combining eqs. (18) and 

(19), it follows that 
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(20) 

It has to be emphasized that equation (18) hold only if  
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0 0( , ) ( , )(R)RSA RSA                 (21) 

 

 Accordingly, in the case in which the response spectrum of the recorded ground motion 

is greater than the target response spectrum the coefficient   have to be less than 1. In 

order to respect eaquation (21) and to minimize the difference between the target and 

the recorded response spectrum the following value of the coefficient   is herein pro-

posed  
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.                                 (22) 

 

Note that, in the case in which response spectrum of the recorded ground motion is low-

er than the target response spectrum the coefficient   can be set equal to 1 for let the 

natural accelerograms unmodified. However, in the case in which the response spectrum 

of the natural accelerograms lies very below the target response spectrum equation (22) 

can be again retained for reducing the influence of the corrective term on the overall 

model. 

Therefore, modifying the solution proposed in [17] the power spectral density of the 

corrective stochastic stationary process )(tu S
g  is given by 

  0 0
g

S
u lG      ,                 (23) 
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with SU
  approximately posed equal to 

U
 defined in eq. (2) and ( )U  is the unit 

step function, introduced for avoiding eventual negative solutions. After determining the 

spectrum compatible power spectral density ( )
g

S
uG   the simulation of fully nonstatio-

nary spectrum compatible ground acceleration earthquakes is performed via the equa-

tion  

( ) ( )

1

( ) ( ) ( ) 2 ( ) cos( )
a

g

N
k R S k

g g u i
i

u t u t t G i i t     


                      (25) 

where ( )t  is the modulating function defined in equation (12). Depending on the rec-

orded earthquake time history iterative improvement of the power spectral density of the 

corrective term could be necessary for satisfying code provisions. To this aim, by mod-

ifying eq. (10), the following iterative scheme is proposed  



2
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                (26) 

in which 
( )

( , )
j

RSA    represents the mean response spectrum of the ground accelera-

tion ( )gu t  determined at the j-th iteration.   

Remarkably, via the proposed procedure spectrum compatible fully nonstationary 

earthquakes in agreement with code provisions can be simulated. The nonstationary be-

havior relies on the recorded signal that would be chosen so as to reflect local geotech-
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nical and seismological characteristics. The spectrum compatible criteria are satisfied by 

the superposition of the corrective quasi-stationary Gaussian random process whose 

power spectral density have been determined through a handy recursive formula. 

 

4 INFLUENCE OF THE CORRECTIVE TERM 

In previous sections it has been proposed an approach for generating fully nonstatio-

nary spectrum compatible earthquakes. By the proposed approach recorded time-

histories are modified via a corrective term enhancing the frequency content of the orig-

inal signal. In order to clarify how the corrective term modify the nonstationary content 

of the signal two parameters are scrutinized, namely the mean instantaneous energy and 

frequency [29]. The term instantaneous implies that both energy and frequency are va-

luated locally so as to describe their evolution in time. Specifically, it can be shown [30] 

that the mean instantaneous energy ( )E t  can be determined directly by the knowledge 

of the evolutionary power spectral density function ( , )
guG t  of the ground motion 

process by the equation 

0,

0

( ) ( ) ( , )
g gu uE t t G t d



                            (27) 

where the brackets stands for mean value. Taking into account eq (13) and owing to the 

statistical independence of the random corrective term and the deterministic recorded 

earthquake, the following equation holds 

ˆ( , ) ( , ) ( , )
g g g

R S
u u uG t G t G t      .                             (28) 
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where 2ˆ ( , ) ( , )
g g

R R
u uG t G t     is the scaled joint time-frequency distribution of the rec-

orded accelerogram [29, 31-33], while ( , )
g

S
uG t  is the separable power spectral density 

of the corrective term given by the equation 

2( , ) ( ) ( )
g g

S S
u uG t t G    .                           (29) 

In which ( )t  is the modulating function defined in eq (12) and ( )
g

S
uG   has been de-

fined in equations (23) and (24).  Furthermore, using equation (27) after simple algebra 

it can be shown that  

( ) ( ) ( )R SE t E t E t                                (30) 

where ( )RE t  is the mean instantaneous energy of the recorded signal given by the 

equation 

0

ˆ( ) ( , )
g

R R
uE t G t d



                                  (31) 

 

while ( )SE t  is the mean instantaneous energy of the corrective term given by the 

equation  

2
0,

0

( ) ( ) ( ) ( )
g g

S S S
u uE t t t G d



        ,                     (32) 

Equation (30) emphasizes that the corrective term provides an increment of the origi-

nal energy of the recorded signal, strictly related to the amplitude of the signal, measur-

able by the knowledge of equation (32). 

In order to scrutinize the variation of the frequency content with respect to time the 

mean instantaneous frequency is introduced [29, 33, 34], 
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By using the same arguments to determine the mean instantaneous energy, after simple 

algebra it can be shown that  
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where ( )R t  is the mean instantaneous frequency of the original record given by the 

equation 
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while S  is the mean instantaneous frequency of the quasi-stationary corrective term, 

clearly independent with respect to time. The latter can be easily determined by the equ-

ation 
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S
c  being the central frequency of the quasi-stationary corrective process. Equation (34) 

shows that the nonstationary frequency content of the original record manifested 

through the evolution of the mean instantaneous frequency ( )R t , is modified due the 

adding of the corrective term in a weighted mean sense. As a consequence the more the 
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mean instantaneous energy content of the corrective term is negligible the more the lo-

cal nonstationary behavior of the simulated spectrum compatible earthquakes tends to 

that one pertaining to the original record. 

 

5 NUMERICAL RESULTS 

In this section the proposed method for generating fully nonstationary spectrum compat-

ible earthquakes is applied to the target response spectrum defined in Eurocode 8 [2]. 

Specifically, for a 5% damping ratio the response spectrum is given by the equations  
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              (37) 

 

According to Eurocode 8, consistency (i.e. spectrum compatibility) is considered to be 

achieved if the condition 

    
 

max 100 10%
RSA T RSA T

RSA T

    
  

              (38) 

is satisfied over the range of periods between 10.2T  to 12T ; 1T  being the fundamental pe-

riod of the structure under study in the direction where the accelerogram is applied;  and 

if 
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  0 gRSA a S ,              (39) 

  RSA T  being the mean response spectrum from at least three simulated earthquakes.  

 

5.1 Example 1 

In this numerical example Type B soil (deposits of very dense sand, gravel, or very stiff 

clayground) and Type 1 seismicity has been selected. Table 1 shows the pertinent re-

sponse spectrum parameters. Furthermore, the maximum ground acceleration ga it has 

been set equal to 0.35g . Nonstationary characteristics have been modeled using the 

time-histories pertinent to two real earthquake records having quite different spectral 

content changing in time. The first record corresponds to the SOOE (N-S) component of 

the Imperial Valley earthquake of May 18, 1940, recorded at El Centro site. The second 

record is the NOOW (N-S) component of the san Fernando earthquake of February 9, 

1971, recorded at Orion Boulevard site, extensively studied in reference [31]. 

 

5.1.1 EL CENTRO 1940, NORTH-SOUTH COMPONENT 
 

El Centro (1940) earthquake is used first. Pertinent ground motion time history is plot-

ted in Figure 1a. In order to apply the proposed procedure the duration of the time ob-

serving window sT  has to be set along with the parameters of the modulating function 

defined in equation (12). These parameters can be determined through the so called Hu-

sid function [36] defined by the equation 
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H H ,              (40) 

30ft s  being the duration of the recorded earthquake ground motion. Accordingly, 

the duration of the strong motion phase, that will be assumed coincident to duration of 

the time-observing window, is 2 1sT t t  , where 1t  and 2t  are the time instants in which 

( )tH  is equal to 0.05 and 0.95, respectively. Figure 1b shows the evolution of the Hu-

sid function. Pertinent parameters are: 1 1.65t s , 2 25.51t s  and 23.86ssT  . Fur-

thermore the parameter   defining the decay of the modulating function after 2t  has 

been set equal to 23 /( )ft t  so reducing the amplitude of the simulated signal of about 

95% for ft t . Since the response spectrum of the recorded earthquake lies below the 

target one no scaling coefficient have been used for this example (i.e. 1  ). 

The stationary power spectral density function of the corrective stochastic process has 

been then determined via the proposed procedure and depicted in Figure 2. Just five ite-

rations has been required for satisfying equation (38).  One hundred spectrum compati-

ble artificial earthquakes have been simulated by using equation (25) setting 400aN   

and 0.25 /rad s   .  Three trajectories are plotted in Figure 3 manifesting the ran-

domness of the simulated accelerograms.  

It is noted that the simulation of artificial accelerograms could lead to velocity and dis-

placement trajectories possessing unrealistic drift. This phenomenon, widely addressed 

in literature for real earthquakes [36], have been also manifested in previous studies on 

the simulated accelerograms (see e.g.[14],[27]). It has to be emphasized that the correc-
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tion of this physically unrealistic drift is crucial for the analysis of nonlinear behaving 

structures as well as linear behaving structures with very long period [14, 27]. To date 

there is no unique criterion for correcting the artificial accelerograms. A comparative 

study of many common techniques applied for correcting real earthquakes have been 

presented in [36].  Herein, a modified version of the second order polynomial baseline 

correction presented in [14] has been applied in this paper. Specifically, each individual 

simulated trajectory ( ) ( )k
gu t  is modified as follows  

( ) ( ) 2
0 1 2ˆ ( ) ( ) ( )k k

g gu t u t a a t a t                           (41) 

where the coefficients 0a , 1a , and 2a  of the polynomial have been herein determined 

approximating ( ) ( )k
gu t  in a least square sense. It is noted that this approach can be re-

garded as an application of a low band filter to the simulated trajectory ( ) ( )k
gu t . Figure 4 

shows the physical reliable behavior of both velocity and displacement trajectories 

computed from a selected corrected accelerograms.  

In order to check the suitability of the simulated artificial earthquakes according to 

EC8 provisions in Figure 5 the mean response spectrum is compared with the target re-

sponse spectrum. The perfect matching manifests the accuracy of the proposed proce-

dure and the suitability of the generated artificial accelerograms for design purposes.   

For sake of clarity Figure 6 shows the flow chart of the procedure proposed for simulat-

ing the spectrum compatible accelerograms. 

The nonstationary features of the artificial spectrum compatible earthquakes have been 

then scrutinized through the study of the joint time frequency power spectral density 

function. According to equation (28) the joint time-frequency power spectral density 

function is given by the superposition of two contributions. The first one is given by the 
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joint-time frequency distribution of the nonstationary natural accelerogram while the 

second one is given by the separable power spectrum of the random corrective term. 

The former contribution can be determined through various approaches (Short Time 

Fourier Transform, Wavelets Transform, etc.).  A comprehensive study on the current 

procedures can be found in [29, 32, 33]. The analytical model proposed for the El Cen-

tro 1940 earthquake proposed by Conte and Peng [31] is used in this paper and depicted 

in Figure 7a. Figure 7b shows the separable power spectral density function of the cor-

rective term determined through equations (12), (23), (24) and (29) while, in Figure 7c 

the spectrum compatible evolutionary power spectral density function of the artificial 

ground motion acceleration determined by the proposed approach through equation (28) 

is depicted. Furthermore, the mean instantaneous energy (Figure 8) and frequency (Fig-

ure 9) have been evaluated by using equations (30) and (34). Remarkably, the time va-

riability of both these quantities manifests the fully nonstationary behavior of the spec-

trum compatible artificial accelerograms preserving also similar shape (distribution of 

peaks and valleys) of that determined for the original earthquake record. 

 

 

5.1.2 ORION BOULEVARD 1971, NORTH-SOUTH COMPONENT 
 

The proposed procedure for simulating fully nonstationary spectrum compatible earth-

quakes has been also applied to the Orion Boulevard 1971 earthquake record. Ground 

motion acceleration time history along with Husid function is depicted in Figures 10. 

Pertinent estimated parameters are: 1 3.94t s , 2 18.88 t s  and 14.94ssT  . The sta-

tionary power spectral density function of the corrective stochastic process has been 



 21

then determined and depicted in Figure 11. Also in this case one hundred samples of the 

spectrum compatible artificial earthquakes have been simulated. Three of these trajecto-

ries are plotted in Figure 12. Evidence of the effectiveness of the baseline correction 

adopted can be found in Figure 13. The mean response spectrum has been then com-

pared with the target response spectrum in order to check the suitability of the simulated 

artificial earthquakes according to EC8 provisions. Remarkably, the perfect matching 

showed in Figure 14 manifests the efficiency of the proposed procedure and the suitabil-

ity of this second set of artificial accelerograms for design purposes.  

Time variability of the spectral content of both original and modified spectrum compat-

ible earthquakes is shown in Figures 15. Due the strong nonstationary characteristics of 

the Orion Boulevard 1971 ground acceleration record the influence of the corrective 

term is herein more evident. Nevertheless, the spectrum compatible artificial earth-

quakes still preserve fully nonstationary characteristics as shown in Figures 16 and 17. 

 

 

5.2 Example 2 

The two numerical examples shown in previous section posses the common characte-

ristic that the response spectrum of the recorded accelerograms lies below the target re-

sponse spectrum. Since the response spectra of both the accelerograms are very close to 

the target one at some frequencies, no scaling parameter has been used (i.e. 1  ). In 

this numerical example the case in which the response spectral coordinates of the origi-

nal recorded accelerogram attain higher values from the target spectrum at some fre-

quencies/natural periods (for which the scaling parameter 1   is required) and the 

case where the response spectral coordinates of the original recorded accelerogram lies 
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very below the target spectrum is addressed. Type A (Rock or other rock-like geological 

formation, including at most 5 m of weaker material at the surface.), and Type D (De-

posits of loose-to-medium cohesionless soil, or of predominantly soft-to-firm cohesive 

soil) have been selected for this purpose. El Centro 1940 ground acceleration record has 

been also selected. For both cases the parameter  has been determined through equa-

tion (22) obtaining 0.44   and 1.16   for Type A and Type D response spectrum 

cases, respectively. Clearly, the value 0.44  , manifests that the response spectrum of 

El Centro 1940 earthquake attains values higher about twice the value the target re-

sponse spectrum for a given natural frequency. After scaling the recorded accelerograms 

the procedure is applied. Figure 18 shows the accuracy of the proposed approach also in 

these cases. The joint time-frequency distribution of the El Centro 1940 earthquake is 

shown in Figures 19 and 20 pertaining Type A and Type D response spectra, respective-

ly. By the comparison of Figures 19(a) and 19(b) it is observed that the corrective term 

represents the major contribution to the whole spectrum compatible power spectral den-

sity function. By the exam of Figures 20(a) and 20(b), on the other hand, the contribu-

tion of the corrective term appears comparable with the scaling joint time frequency dis-

tribution of the El Centro 1940 earthquake. This is clearly related to the different target 

response spectra considered. Furthermore, by the exam of Figures (19) and (20) it can 

be appreciated as the corrective term modifies the original time variability of both mean 

instantaneous energy and frequency. Specifically, the greater is the energy content of 

the quasi stationary corrective term, such as in the case response spectrum A, the greater 

is the difference between the original and the modified mean instantaneous energy and 

frequency functions. 
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6 CONCLUSIONS 

In this paper a method for generating fully nonstationary spectrum compatible earth-

quakes has been proposed. The method is based on the spectral representation of sto-

chastic processes. Specifically, it is assumed that the ground motion is modeled by the 

superposition of two contribution: the first one is a fully-nonstationary counterpart 

modeled by a recorded earthquake that takes into account the time variability of both in-

tensity and frequency content; the second one is a corrective term represented by a sta-

tionary process adjusting the response spectrum of the nonstationary signal in order to 

make it spectrum compatible. The corrective term is determined using a handy recursive 

formula determining the pertinent power spectral density function. The method is quite 

versatile and it has provided accurate results in all the cases analyzed.  

Remarkably, the simulated earthquakes do not require any further iterative correction 

leading the proposed procedure very handy and competitive from a computational point 

of view. Moreover the method allows to determine the evolutionary spectrum compati-

ble power spectral density that can be used for reliability studies.  

The influence of the corrective term on the nonstationary characteristics of the origi-

nal record has been studied by the mean of both instantaneous energy and frequency 

time evolution. Interestingly, two sets of artificial earthquakes possessing quite different 

nonstationary characteristics and fulfilling Eurocode 8 provisions have been determined. 

Accordingly, both sets can be used for design purpose. Future works will be aimed to 

study the influence of this multiple solutions on the seismic assessment of structures.  
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Fig.1 (a) Original ground acceleration time history and (b) Husid function of El Centro 1940 earth-

quake record 
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Fig.2 Stationary power spectral density function of the corrective stochastic process for El Centro 

1940 earthquake ground acceleration 
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Fig.3 Artificial spectrum compatible ground acceleration time histories starting from El Centro 

1940 earthquake record 
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Fig.4 Samples of ground motion spectrum compatible acceleration, velocity and displacement time 

histories  based on El Centro 1940 earthquake record compatible with Eurocode 8 type B response 

spectrum. 
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Fig.5 Comparison among the target response spectrum (EC8), the original response spectrum and 

the modified mean response spectrum of El Centro 1940 earthquake ground acceleration 
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Fig.6 Flowchart of the proposed procedure for simulating fully non-stationary spectrum compatible accelerograms 
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Fig.7 (a) Original time frequency distribution (after [31]) , (b) separable power spectral density of 

the corrective term and (c) evolutionary power spectral density based on El Centro 1940 earthquake 

ground with EC8 type B response spectrum. 
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Fig.8 Comparison between original and modified mean instantaneous energy of El Centro 1940 

earthquake ground acceleration 
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Fig.9 Comparison between original and modified mean instantaneous frequency of El Centro 1940 

earthquake ground acceleration 
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Fig.10 (a) Original ground acceleration time history and (b) Husid function of Orion Boulevard 

1971 earthquake record 
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Fig.11 Stationary power spectral density function of the corrective stochastic process for Orion 

Boulevard 1971 earthquake ground acceleration 
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Fig.12 Artificial spectrum compatible ground acceleration time histories starting from Orion Boule-

vard 1971  earthquake record 
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Fig.13 Samples of ground motion spectrum compatible acceleration, velocity and displacement time 

histories  based on Orion Boulevard 1971 earthquake record compatible with Eurocode 8 type B re-

sponse spectrum. 
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Fig.14 Comparison among the target response spectrum (EC8), the original response spectrum and 

the modified mean response spectrum of Orion Boulevard 1971 earthquake ground acceleration 
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Fig.15 (a) Original time frequency distribution (after [31]) ,  (b) separable power spectral density of 

the corrective term and (c)  evolutionary power spectral density based on Orion Boulevard 1971 

earthquake compatible with EC8 type B response spectrum 
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Fig.16  Comparison between original and modified mean instantaneous energy of Orion Boulevard 

1971 earthquake ground acceleration 
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Fig.17 Comparison between original and modified mean instantaneous frequency of Orion Boule-

vard 1971 earthquake ground acceleration 
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Fig.18 Comparison among target response spectra (EC8), the original response spectrum and the 

simulated mean response spectra based on El Centro 1940 earthquake ground acceleration 
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Fig.19 (a) Scaled ( 0.44α = ) time frequency distribution (after [31]) , (b) separable power spectral 

density of the corrective term and (c) evolutionary power spectral density based on El Centro 1940 

earthquake compatible with EC8 type A response spectrum. 
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Fig.20 (a) Scaled ( 1.16α = ) time frequency distribution (after [31]) , (b) separable power spectral 

density of the corrective term and (c) evolutionary power spectral density based on of El Centro 

1940 earthquake compatible with EC8 type D response spectrum. 

 

[ ]/rad sω[ ]t s

2

2

3

( , )
g

R
uG t

cm

s

α ω

 
 
  

�� )a

[ ]/rad sω
[ ]t s

2

3

( , )
guG t

cm

s

ω

 
 
  

��

)c

2

3

( , )
g

S
uG t

cm

s

ω

 
 
  

��

[ ]/rad sω
[ ]t s

)b



 21 

 

 

 

 

 

 

 

original

modified

 

 

Fig.21Comparison between original and modified mean instantaneous energy of El Centro 1940 

earthquake ground acceleration 
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Fig.22 Comparison between original and modified mean instantaneous frequency of El Centro 1940 

earthquake ground acceleration 
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Table 1: Values of the parameters describing the Eurocode 8 elastic response spectra for the 
selected ground type 

 

Ground Type S   [ ]BT s [ ]CT s [ ]DT s

A  1.0  0.15  0.4  2.0 

B  1.2  0.15  0.5  2.0 

D  1.35 0.2  0.8  2.0 

 


