

Static Microservice Architecture

Recovery Using Model-Driven

Engineering

Nuha Alshuqayran

A thesis submitted in partial fulfilment of the

requirements of the University of Brighton

for the degree of Doctor of Philosophy

May 2020

2

Acknowledgements

Undertaking this PhD has given me numerous meaningful insights and knowledgeable

experiences, and completion of this work would not have been possible without the

participation and support I obtained from several people. I wish to thank my

supervisors, Dr Nour Ali and Dr Roger Evans, for imparting their profound knowledge

and consistently guiding me. I would not have been able to complete my PhD without

adequate guidance, constant encouragement and meaningful feedback from my

supervisors. Their supervision, from the introductory level of thesis to the concluding

level, enabled me to develop proper understanding of the subject and helped me in

completing each phase with maximum efficacy. I would also like to thank my husband

for being a strong support system throughout my PhD, as he quit his job during this

time to travel with me so that I could complete my thesis. His support has been

commendable. Furthermore, I would like to extend deepest regards to my family

members, including my parents, brothers and sisters for supporting me by rendering

their constant, love, affection and encouragement during the writing of my thesis and

at every step of my life. I feel extremely fortunate to have had the guidance, strength

and support of my father and mother in accomplishing this stepping stone in my

professional life.

3

Declaration

I declare that the research contained in this thesis, unless otherwise formally indicated

within the text, is the original work of the author. The thesis has not been previously

submitted to this or any other university for a degree, and does not incorporate any

material already submitted for a degree.

NUHA ALSHUQAYRAN

May 2020

4

Abstract

The architecture of software systems plays a significant role in the different stages of

the software lifecycle, including, for example, evolution, maintenance and re-use.

Software architecture represents the high-level design of a software system, consisting

of software elements and the relationships that allow the architecture to properly

function. During the last decade, changes in the software development industry have

led in the direction of developing software in a new architectural style called

microservice architecture. This thesis presents research in support of this. Software

developed using microservice architecture is complex and distributed, and involves

several technologies and components. Reverse engineering, and specifically

architecture recovery, can aid in the understanding and maintenance of microservice

systems. This thesis presents a Microservice Architecture Recovery (MiSAR)

approach, based on the paradigm of Model-Driven Engineering (MDE), that recovers

the architecture of microservice systems statically. MiSAR aims to comprehend the

complexities of microservice architecture by developing a bottom-up reverse

engineering process. The process of reverse engineering starts from the code to a

Platform-Specific Model (PSM) that supports the technology of the implemented

microservice system, leading to a Platform-Independent Model (PIM) at the

architectural level. MiSAR follows an MDE approach and includes two key

components: a metamodel, which abstracts the concepts of a particular microservice

architecture in a technology-independent manner, and mapping rules, which map an

implemented microservice-based system into an architectural model which

instantiates the metamodel. To design and develop MiSAR, two empirical studies

were conducted which analyse existing software systems that employ the microservice

architectural style. Based on the results of these studies, MiSAR can produce effective

and expressive architectural models of implemented microservice systems, which are

crucial for developers.

5

Table of Contents

 1. Introduction .. 16

1.1. Introduction ... 16

1.2. Research Aims and Objectives .. 20

1.3. Research Motivation and Research Questions .. 21

1.4. Research Contributions ... 22

1.5. Thesis Structure ... 24

1.6. Publications ... 25

 A Systematic Mapping Study in Microservice Architecture 26

2.1. Introduction ... 26

2.2. The Need for a Systematic Mapping Study ... 26

2.3. Research Method ... 27

2.4. Results ... 33

2.5. Discussion ... 40

2.6. Summary ... 43

 Background and Related Work .. 44

3.1. Introduction ... 44

3.2. Background ... 44

3.2.1. Microservice Architecture .. 44

3.2.2. Model-Driven Engineering .. 47

3.2.3. Characteristics of Model Transformation Approaches 51

3.2.4. Major Categories of Model Transformation Approach 53

3.2.5. Model Transformation Languages, Tools and Standards 56

3.2.6. Re-engineering and Reverse Engineering .. 57

3.2.7. Software Architecture Recovery .. 59

3.2.8 Architecture Recovery Frameworks ... 66

3.3. Related work .. 70

6

3.3.1 Overview of Model-Driven Architecture Recovery Approaches 70

3.3.2 Microservice Architecture Recovery Approaches 81

3.3.3 Model-Driven Approaches for Microservices 87

3.3.4 Comparison of the Related Approaches ... 90

3.4. Research Gap ... 92

3.5. Summary ... 94

 Research Methodology... 97

4.1. Introduction ... 97

4.2. Research Methodology .. 97

4.3. System Studies .. 102

4.4. Summary ... 103

 Microservice Architecture Recovery (MiSAR) ... 104

5.1. Introduction ... 104

5.2. Overview of MiSAR ... 104

5.3. Microservice Application Platform-Specific Model 106

5.4. Empirical study to define MiSAR ... 107

5.4.1. Selection of Systems to Study .. 109

5.4.2. Research Design ... 111

5.4.3. Results .. 122

5.5. Summary ... 141

 Improving the Initial Artefacts of MiSAR: An Empirical Study 142

6.1. Introduction ... 142

6.2. MiSAR Abstraction Levels ... 142

6.3. Identification of PSM metamodel ... 143

6.4. Study Design ... 149

6.4.1. Study Aim and Research Questions ... 149

6.4.2. Selecting the Case Studies ... 150

7

6.4.3. Research Design ... 151

6.5. Results ... 154

6.6. Summary ... 200

 MiSAR Metamodels and Mapping Rules: Features and Implementation 202

7.1. Introduction ... 202

7.2. MiSAR Implementation Environment .. 202

7.3. Ecore Metamodel Implementation .. 203

7.4. QVT, the Transformation Rules Implementation 205

7.4.1. Model Type Definitions ... 208

7.4.2. Transformation Declaration ... 208

7.4.3. Main Function .. 208

7.4.4. Mapping ... 209

7.5. Mapping Rule Features ... 214

7.6. Summary ... 223

 An Evaluation of MiSAR Artefacts through Microservice Architecture Recovery:

A Case Study .. 224

8.1. Introduction ... 224

8.2. Evaluation Methodology ... 224

8.3. Case Study ... 226

8.3.1. Design .. 226

8.3.2. Case Selection .. 227

8.3.3. Application of MiSAR ... 229

8.3.4. Consistency Checks ... 246

8.3.5. Results .. 266

8.3.6. Updates to MiSAR’s Repository .. 270

8.4. Summary ... 271

 Discussion .. 272

8

9.1. Introduction ... 272

9.2. Discussion of Study 1 and Study 2: Empirical Studies 272

9.3. Discussion of Study 3: Evaluation .. 282

9.4. Previous Studies .. 285

9.5. Considerations and Positive Aspects of MiSAR 292

9.6. Observations and Lessons Learned ... 295

9.7. Summary ... 297

 Conclusions and Further Work .. 298

10.1. Introduction ... 298

10.2. Major Topics Addressed ... 298

10.3. Research Stages ... 300

10.4. Summary of Contributions .. 301

10.5. Threats to Validity ... 302

10.6. Future Directions ... 306

 References .. 308

 Appendices ... 319

9

List of Figures

Figure 1-1: The growing number of searches for the keywords ‘microservice

architecture’, according to a Google Trends report. .. 18

Figure 1-2: Thesis structure diagram. .. 25

Figure 2-1: The top 10 keywords in the literature.. 34

Figure 2-2: The distribution of microservice challenges in the literature. 35

Figure 2-3: Research approaches against the number of papers with different

challenges. .. 36

Figure 3-1: The MDA framework (Miller et al., 2003). .. 48

Figure 3-2: The four-layer meta-modelling architecture (Di Ruscio et al., 2012). 50

Figure 3-3: Basic concepts of model transformation (Di Ruscio et al., 2012). 51

Figure 3-4: Reverse and forward engineering (Chikofsky and Cross, 1990). 58

Figure 3-5: A process for SAR (Ducasse and Pollet, 2009, p. 576). 61

Figure 3-6: A bottom-up process (Ducasse and Pollet, 2009). 62

Figure 3-7: A top-down process (Ducasse and Pollet, 2009)..................................... 62

Figure 3-8: A hybrid process (Ducasse and Pollet, 2009). .. 63

Figure 3-9: Extract-abstract-present paradigm... 66

Figure 3-10: The filtering and clustering framework (Mendonça and Kramer, 1996).

 .. 67

Figure 3-11: The compliance checking framework (Mendonça and Kramer, 1996). 67

Figure 3-12: The main conception considered in the approaches. 70

Figure 3-13: General principles of a) model discovery and b) model understanding

(Brunelière et al. 2014). ... 73

Figure 3-14: Overall approach (Cosentino et al., 2012). .. 74

Figure 3-15: MARBLE framework (Pérez-Castillo, De Guzmán, et al., 2011). 76

Figure 3-16: a) The PSM metamodel. b) The DCD metamodel (El Beggar et al., 2013).

 .. 78

Figure 3-17: Fleurey et al.’s (2007) reverse engineering process. 79

Figure 3-18: MicroART metamodel for microservice-based systems (Granchelli,

Cardarelli, Francesco, et al., 2017). ... 82

Figure 3-19: Data model (Mayer and Weinreich, 2018). ... 86

Figure 3-20: The architecture extraction process. .. 87

Figure 3-21: Metamodel proposed by Düllmann and van Hoorn (2017). 88

file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928089
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928090
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928091
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928092
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928092
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928093
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928095
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928096
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928097
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928099
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928100
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928102
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928102
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928103
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928104
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928105
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928105
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928107
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928108
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928108
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928109
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928110
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928110
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928111
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928112
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928113

10

Figure 3-22: Metamodels a, b and c proposed by Rademacher, Sorgalla, et al., (2019).

 .. 89

Figure 3-23: Technology Modeling Language defined by Rademacher et al. (2019)

 .. 90

Figure 4-1: Research framework (Hevner et al., 2004, p. 80). 98

Figure 4-2: MiSAR methodological approach. .. 101

Figure 5-1: Approach overview. .. 105

Figure 5-2: Representation of microservice concept at PSM/PIM layer. 107

Figure 5-3: Study steps. ... 108

Figure 5-4: Packages and classes extracted from source code. 114

Figure 5-5: Using Zipkin to trace transactions. .. 115

Figure 5-6: Dynamic analysis using Zipkin. .. 115

Figure 5-7: The bridge concept. ... 117

Figure 5-8: Concrete example for API gateway concept. .. 117

Figure 5-9: Microservice conceptual map.. 118

Figure 5-10: Microservice architecture concerns. .. 119

Figure 5-11: Sketch of the related architectural concepts under one cluster. 120

Figure 5-12: Architectural concepts, counts and system references. 124

Figure 5-13:Microservice architecture metamodel at the PIM level. 127

Figure 5-14: The partial instance diagram of case study 1 after the recovery of the

registry microservice. ... 141

Figure 6-1: MiSAR abstraction levels. .. 143

Figure 6-2: The PSM metamodel identification steps.. 144

Figure 6-3: PSM model tree. .. 145

Figure 6-4: PSM metamodel (Java PSM metamodel is reduced). 147

Figure 6-5: Java PSM metamodel. ... 148

Figure 6-6: Empirical process for enhancing and refining MiSAR. 151

Figure 6-7: PIM instance recovered for edge-service from case study 7 using PIM

metamodel (Version 1). .. 156

Figure 6-8: Enhanced PIM instance recovered for edge-service, discovery-service and

config-service microservice from case study 7. ... 161

Figure 6-9: (a) PIM instances recovered for Kafka microservice from case study 4

based on PIM metamodel (Version 1). (b) Enhanced PIM instances recovered for kafka

microservice based on enhanced PIM metamodel (Version 2). 163

file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928114
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928114
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928118
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928119
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928120
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928121
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928122
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928123
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928124
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928125
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928126
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928127
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928128
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928130
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928131
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928131
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928132
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928133
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928134
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928135
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928136
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928138
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928138
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928139
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928139
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928140
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928140
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928140

11

Figure 6-10: PIM metamodel (version 2)... 164

Figure 6-11: Synchronous request-response between card-statement- composite, card

and statement microservices from case study 1. .. 166

Figure 6-12: PIM instance recovered for card-statement-composite microservice from

case study 1 based on PIM metamodel (version 2). ... 167

Figure 6-13: PIM metamodel (version 3)... 169

Figure 6-14: Enhanced PIM instance recovered for card-statement-composite

microservice from case study 1 based on enhanced PIM metamodel (version 3). .. 170

Figure 6-15:Asynchronous message-driven inter-service communication between

weatherservice and weatherbackend microservices (case study 2). 172

Figure 6-16: Internal setup of rabbitmq message broker from case study 2. 173

Figure 6-17: PIM metamodel (version 4)... 176

Figure 6-18: Enhanced PIM instance recovered for weatherbackend microservice from

case study 2 based on PIM metamodel (version 4). ... 177

Figure 6-19: PIM instance recovered for recommendation-service microservice from

case study 4 based on PIM metamodel (version 4). ... 179

Figure 6-20: Final PIM metamodel (version 5). .. 180

Figure 6-21: Enhanced PIM instance recovered for recommendation-service

microservice from case study 4 based on enhanced PIM metamodel (version 5). .. 181

Figure 6-22: MiSAR mapping rule metamodel ... 184

Figure 6-23: Recovered PSM instance of Microservices Sample. 192

Figure 6-24: Recovered PIM instance of Microservices Sample. 193

Figure 6-25: Architecture diagram at architectural level of the recovered PIM instance.

 .. 195

Figure 6-26: Microservice diagram of recovered PIM instance of service-one

microservice. .. 196

Figure 6-27: Recovered PIM Instance of service-one microservice. 196

Figure 6-28: Documented architecture diagram of Microservices Sample provided by

the developer. ... 198

Figure 6-29: Documented architecture diagram of service-one microservice in

Microservice sample. ... 199

Figure 7-1: The relationship between transformation rules, models, metamodels. . 203

Figure 7-2: The four classes of Ecore used in the Ecore implementation (Barendrecht,

2010). ... 204

file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928146
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928146
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928150
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928150
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928153
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928154
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928156
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928156
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928157
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928157
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928161

12

Figure 7-3: Ecore implementation (XMI tree view) of MiSAR PSM. 204

Figure 7-4: Ecore implementation (XMI tree view) of MiSAR PIM. 205

Figure 7-5: Ecore implementation (Ecore diagram) of MiSAR metamodel at PSM

level. ... 206

Figure 7-6: Ecore implementation (Ecore diagram) of MiSAR metamodel at PIM

level. ... 207

Figure 7-7: A mapping rule instance. ... 217

Figure 7-8: Lines in POM file of the “account-service” project that originated the

mapping rule... 218

Figure 7-9: An alternative mapping rule instance. ... 219

Figure 7-10: Lines in configuration file of the “service-one” project that originated the

alternative mapping rule. .. 219

Figure 7-11: MiSAR mapping rules classification. ... 221

Figure 8-1: Steps of the MiSAR architecture recovery process. 225

Figure 8-2: TrainTicket architectural diagram. .. 228

Figure 8-3: Artefact collection. .. 229

Figure 8-4: Resulting PSM model as viewed in Eclipse QVTo project (from left to

right). .. 230

Figure 8-5: Docker Container definition instance retrieved for “ts-auth-service”

container. .. 232

Figure 8-6: Lines that generated Docker Container definition instance for “ts-auth-

service”. .. 232

Figure 8-7: DependencyLibrary instance retrieved for “ts-auth-service” Spring Java

project. .. 232

Figure 8-8: Lines that generated DependencyLibrary instance for “ts-auth-service”.

 .. 233

Figure 8-9: ConfigurationProperty instance retrieved for “ts-auth-service” Spring Java

project. .. 233

Figure 8-10: Lines that generated ConfigurationProperty instance for “ts-auth-

service”. .. 234

Figure 8-11: DependencyLibrary instance retrieved for “ts-auth-service” Spring Java

project. .. 234

Figure 8-12: Lines that generated DependencyLibrary instance for “ts-auth-service”.

 .. 235

file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928164
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928165
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928165
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928166
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928166
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928167
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928168
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928168
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928169
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928170
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928170
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928172
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928175
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928175
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928178
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928178
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928179
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928179
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928181
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928181

13

Figure 8-13: JavaClassType instance retrieved for “ts-auth-service” Spring Java

project. .. 236

Figure 8-14: Java source code that generated the Java Class Type instance for “ts-auth-

service”. .. 236

Figure 8-15: DockerContainerDefinition instance retrieved for non-JVM projects.

 .. 237

Figure 8-16: MicroserviceProject instance retrieved for non-JVM projects. 237

Figure 8-17: PIM model for TrainTicket recovered by MiSAR. 239

Figure 8-18: Infrastructure microservice instance recovered for “ts-auth-service”. 240

Figure 8-19: Microservice instance recovered for “ts-ui-dashboard”. 242

Figure 8-20: Microservice instance recovered for “ts-voucher-service”. 243

Figure 8-21: Microservice instance recovered for “ms-monitoring-core”. 243

Figure 8-22: Microservice instance recovered for “ts-ticket-office-service”. 244

Figure 8-23: Microservice instance recovered for “ts-news-service”. 245

Figure 8-24: Microservice instance recovered for “jaeger”. 245

Figure 8-25: TrainTicket’s documentation for “ts-auth-service”............................. 248

Figure 8-26: Generating PSM attribute for recovered infrastructure pattern component

element. .. 250

Figure 8-27: Generating PSM attribute for recovered service dependency element.

 .. 250

Figure 8-28: TrainTicket’s documentation for “ts-ui-dashboard”. 251

Figure 8-29: TrainTicket’s documentation for “ts-voucher-service”....................... 257

Figure 8-30: Generating PSM attribute for recovered service dependency element.

 .. 258

Figure 8-31: Docker Container Link instance retrieved for “ts-voucher-service”. .. 259

Figure 8-32: Lines that generated DockerContainerLink instance for “ts-voucher-

service”. .. 259

Figure 8-33: TrainTicket’s documentation for “ts-ticket-office-service”. 263

file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928185
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928185
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928187
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928188
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928197
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928197
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928200
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928203
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928203
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928204

14

List of Tables

Table 2-1: The research questions and their motivations... 27

Table 2-2: The selection criteria. ... 28

Table 2-3: Publications selected... 29

Table 2-4: Keywords associated with the challenges in the literature. 34

Table 2-5: The diagrams used in the literature and their annotations. 37

Table 2-6: The quality attributes mentioned in the literature and their alternatives. . 39

Table 3-1: Research questions guiding the study. .. 71

Table 3-2: The main mapping rules for transformation (written in a natural language)

(El Beggar et al., 2013). ... 77

Table 3-3: Transformation mappings between the PIM and PSM metamodels

(Akkiraju et al., 2012). ... 81

Table 3-4: Mapping of the extracted information and the MicroART-DSL(Granchelli,

Cardarelli, Francesco, et al., 2017). ... 84

Table 3-5: Comparison of the related approaches.. 95

Table 5-1: The research questions and their motivation .. 108

Table 5-2: The selection criteria .. 109

Table 5-3: Studies selected for analysis ... 110

Table 5-4: Technology mapping to microservice concerns 119

Table 5-5: Mapping rules to identify API Gateway. .. 131

Table 5-6: Mapping rules to identify containerisation. .. 132

Table 5-7: Mapping rules applied for registry microservice in case study 1

(PiggyMetrics). .. 133

Table 6-1: Selected systems ... 153

Table 6-2: Mapping rules applied in edge-service in case study 7 157

Table 6-3: Mapping rules applied in bookstore-consul-discovery in case study 9 .. 158

Table 6-4: Mapping rules applied in Kafka in case study 4 162

Table 6-5: Technologies encountered in the systems analyzed 182

Table 6-6: Sample of MISAR mapping rules structured dataset. 185

Table 6-7: Sample of mapping rules analysis .. 188

Table 6-8: Artefacts collected for Microservices Sample from its GitHub repository

 .. 191

Table 7-1: Resolve functions (Barendrecht, 2010). ... 214

file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928230
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928230
file:///C:/Users/USER/Desktop/Nuha-phd/Thesis-Nuha-Alshuqayran-University%20of%20Brighton-final.docx%23_Toc46928231

15

Table 8-1: All recovered PIM elements for “ts-auth-service”. 240

Table 8-2: All recovered PIM elements for “ts-ui-dashboard”. 242

Table 8-3: All recovered PIM elements for “ts-voucher-service”. 243

Table 8-4: All recovered PIM elements for “ms-monitoring-core”. 244

Table 8-5: All recovered PIM elements for “ts-ticket-office-service”..................... 244

Table 8-6: All recovered PIM elements for “ts-news-service”. 245

Table 8-7: All recovered PIM elements for “jaeger”. .. 245

Table 8-8: Expected elements for “ts-auth-service” as per the documentation vs

MiSAR result. .. 249

Table 8-9: Expected elements for “ts-ui-dashboard” as per the documentation vs

MiSAR result ... 251

Table 8-10: Expected elements for “ts-voucher-service” as per the documentation vs

MiSAR result. .. 258

Table 8-11: Expected elements for “ms-monitoring-core” as per the documentation vs

MiSAR result. .. 261

Table 8-12: Expected elements for “ts-ticket-office-service” as per the documentation

vs MiSAR result. .. 263

Table 8-13: Expected elements for “ts-news-service” as per the documentation vs

MiSAR result. .. 265

Table 8-14: Expected elements for “jaeger” as per the documentation vs MiSAR result.

 .. 266

Table 8-15: Evaluation metrics for MiSAR recovery of TrainTicket system 268

Table 8-16: Time spent at each stage of MiSAR recovery for TrainTicket............. 269

16

Chapter 1

 Introduction

1.1. Introduction

Software architecture is the backbone of any software system. It is an important asset

for many software engineering activities, including migration, impact analysis, and

system knowledge and maintenance. Software architecture refers to a software

system’s high-level structure and the particular discipline of designing such structures,

as well as the proper reporting of them (Krikhaar, 1997).

Although software architecture has a variety of definitions, it is clear that it is a core

aspect of any software system. The most widely accepted definition is that of Bass et

al. (2003, p. 21), which states that software architecture is the ‘the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them’. Based on this

definition, there are three main aspects of software architecture: a structure or

structures, elements, and relationships. A structure can be defined as a number of

components or elements related to each other and that are held together. Software

systems are comprised of many structures (Mens et al., 2010). As such, a single

structure cannot be considered architecture. Relationships refer to how different

elements within a structure and different structures within a system affect each other,

and influence how the structure or system functions.

During the last decade, software technology industries have witnessed rapid

development and a dramatic increase in demand for new systems and software. This

has boosted the technology economy. A software application will go through

continuously evolving changes in its lifecycle, and with every change in an application

there will be a resulting change and evolution in its architecture. Not only do

architectures change, but developers and teams also change, and where understanding

of a current architecture is implicit, knowledge can be lost as the documentation may

be either incomplete or outdated (Pashov and Riebisch, 2004).

17

As a software application evolves, its conceptual architecture often no longer

represents the true nature of its implemented architecture. This phenomenon is known

as architectural erosion, drift or mismatch (Ducasse and Pollet, 2009). It is therefore

hard for developers to be able to successfully refactor, migrate, upgrade or change a

system, as they need to have a holistic understanding of the system, and it is critical

that they understand its underlying structures (Garlan, 2000). To overcome these

issues, the technique known as software architecture recovery (SAR), or reverse

architecting, has recently received considerable attention (Ducasse and Pollet, 2009;

Ali et al., 2018). SAR is used for the purpose of obtaining the actual architectural

structure of a large system, and for obtaining a description of the software architecture

from system artefacts such as code. This allows developers to have control over and

understanding of improvements in the system and software.

Software companies today emphasise continuous delivery in order to provide

increased value to their customers. Microservice architecture (MSA) is among the

most effective strategies for achieving this (Pahl et al., 2018). Many enterprises have

built software using the microservice architectural style and it is becoming

increasingly popular. Microservices are characterised as having fast release and

development lifecycles, which is helpful when new features have to be introduced

regularly in order for a business to stay competitive (Lewis and Fowler, 2014).

The MSA style views each system as a collection of small-granularity and independent

service components, where each service component contains one or more modules and

all modules are microservices (Dragoni et al., 2017). According to Namiot and Sneps-

sneppe (2014), microservice architecture is a software architecture pattern which helps

in developing a distributed application that contains a number of small independent

components that can be termed microservices. ‘Microservice’ can be considered a new

term in reference to software architecture, and demonstrates a new trend in the field

(Newman, 2015). There were no major studies of the microservice phenomenon

before 2014, because of a lack of consensus (Pahl and Jamshidi, 2015). After 2015, as

shown in Figure 1-1, Google searches have started to reflect the perspective of MSA

as a growing concept.

18

Figure 1-1: The growing number of searches for the keywords ‘microservice architecture’,

according to a Google Trends report.1

The MSA style emerged due to the dynamics and pace of today’s world. Software

applications need to keep up with the fast pace of change and be as agile as possible,

to maintain themselves firmly in the market, accommodate ever-changing business

needs, and satisfy their diverse clients, such as desktop/mobile browsers, native mobile

applications and third parties through APIs. It is very difficult to fulfil these

requirements using monolithic applications. This has led to an architectural shift from

the monolithic style -a single logical executable- to the microservice style (Lewis and

Fowler, 2014; Rahman and Gao, 2015a). MSA evolved from traditional service-

oriented architecture and is used to perform highly cohesive business functions

compared to SOA. SOA focuses on a wider scope of enterprises services while the

microservices focus on doing one thing well (Newman, 2015). In order to perform

these functions, microservices divide a system into small fragments, making this the

dominant architectural style (Lewis and Fowler, 2014).

Various benefits are encountered in the utilisation of MSA, such as reliability,

increased agility, resilience, scalability, developer productivity, maintainability,

separation of concerns and ease of deployment (Lewis and Fowler, 2014; Newman,

2015; Daya et al., 2015). However, MSA introduces a level of complexity into

applications. The challenge of not fully knowing a real software architecture and

understand its underlying structures is increased due to the nature of MSA, as

microservices are dynamic (Woods, 2016), small and distributed, and MSA composed

of many microservices which have dependencies among each other and different

services may use different technologies (Lewis & Fowler, 2014; Eberhard, 2016).

1 https://trends.google.com/trends/explore?date=2009-09-01%202016-10-

03&geo=US&q=Microservice%20architecture.

https://trends.google.com/trends/explore?date=2009-09-01%202016-10-03&geo=US&q=Microservice%20architecture
https://trends.google.com/trends/explore?date=2009-09-01%202016-10-03&geo=US&q=Microservice%20architecture

19

Each microservice is fine-grained and running independently of the others, each in

their own distributed container. By definition microservices are developed quickly and

provides more agility of the system, which result in continuous architectural changes;

therefore, it can be stated that not every system is built using a well-documented

architecture, and often the documentation of the architecture is not kept up to date,

especially if the MSA is operated by multiple teams and disciplines (Sorgalla et al.,

2018; Cerny et al., 2018). Moreover, these architectures follow an evolutionary design,

which is very hard to manage, and which makes it difficult to keep track of the

architectural constraints that may be put in place by architects. Software architects

often have little knowledge of the as-implemented architecture of their systems, and

often face the challenge of not knowing in detail the underlying structures of the

software system architecture (Lewis and Fowler, 2014).

Architecture recovery is a promising approach to aiding comprehension of the

complexity of MSA in a way that allows developers/architects to understand an

architecture’s implemented structure. Architecture recovery is supported by use of the

Model-Driven Engineering (MDE) approach (Brambilla et al., 2017). The MDE

approach brings various benefits. The main one is that it considers models as first class

citizens, which abstract the complexities of the systems and support their

comprehension. MDE approach raises the abstraction level of the development

lifecycle because it shifts the emphasis from code to models (Kent, 2002; Gaševic et

al., 2009)

This thesis outlines the Microservice Architectural Recovery (MiSAR) approach,

which supports the recovery of architectural models of microservice systems and that

can unveil their architectural aspects. MiSAR follows the MDE paradigm and aims to

comprehend the complexities of MSA by developing a bottom-up, model-driven

transformation, use of static analyses for recovering architecture by modelling the

artefacts themselves. This study focuses on the Platform-Independent Model (PIM)

and Platform-Specific Model (PSM) abstraction levels in regard to modelling MSA.

These models are the critical core of reverse engineering; PIM supports the

architectural model recovered and PSM supports the technology of the implemented

microservice system.

20

To define MiSAR, an empirical study was conducted on eight open-source

microservice-based systems implemented in the Java and Spring Cloud frameworks,

with the aim of identifying the MiSAR artefacts. The study resulted in initial MiSAR

artefacts: the metamodel, which supports the creation of microservice architectural

models, and mapping rules, which map microservice source systems into the

metamodel. Next, another empirical study on nine open-source microservice-based

systems was conducted. The focus here was on refining existing MiSAR artefacts

incrementally and achieving improved artefacts. The study resulted in a refined

version of the MiSAR artefacts, which are able to generate architectural models of

implemented microservice systems. The efficiency and effectiveness of the MiSAR

technique were measured and evaluated in a case study, using precision and recall

metrics. This case study involved a large open-source microservice system. It

demonstrates that MiSAR artefacts can produce effective and expressive architectural

models of implemented microservice systems.

1.2. Research Aims and Objectives

The main objective of this research was to develop an approach that allows software

engineers to recover the architecture of microservice systems and which addresses the

problem of understanding the complexity of microservice architecture. To achieve this

objective, the following sub-objectives had to be achieved:

Obj1- To identify the microservice architectural elements/concepts needed to recover

a microservice-based system and relate these concepts together.

Obj2- To define mappings between a given microservice architecture and the

implementations of that architectural style.

Obj3- To identify the information that needs to be extracted from source artefacts in

order to allow microservice software architecture to be properly recovered.

Obj4- To develop a process that allows software engineers to recover the architecture

of microservices.

Obj5- To develop a prototype tool/technique that will validate this approach.

Obj6- To validate the approach and technique by conducting empirical studies.

21

1.3. Research Motivation and Research Questions

The popularity and success of architecture recovery solutions in extracting

architectural information is commendably strong in the area of architecture recovery

in general (Ducasse and Pollet, 2009; Raibulet et al., 2017). Nonetheless, there is a

dearth of available research analysing architecture recovery within the area of

microservices. Architecture recovery for microservices is a gap in the current state of

the art. This awareness became apparent from a recent literature survey by Di

Francesco et al. (2017, p. 1), who report that ‘in the literature area only little work on

reverse engineering and architecture recovery in microservice architecture has been

described’, and this was confirmed by my own literature survey (Chapter 2, Section

2.6) (Alshuqayran et al., 2016). The motivation for the work presented in this thesis

was to provide architectural recovery support for this emerging architectural style. The

work presented here provides an approach to such a recovery process. This research

topic is new and academically immature, which means there are great opportunities

for further research into the discipline’s concepts and various areas.

The main research question of this thesis is: What are the architecture recovery

processes that allow software engineers to recover the architecture of microservice

systems? This main question is divided into the following sub-questions:

RQ1- What are the microservice architectural elements/concepts that need to be

present in metamodels in order to abstract microservice-based systems at a platform-

independent model level? (Obj1)

RQ2- What are the mapping rules that can transform microservice-based

implementations into architectural models? (Obj2)

RQ3- What are the suitable elements in the source model to be able to create a

platform-specific model for the recovery of the architecture model? (Obj3)

RQ4- What is an appropriate process/technique for microservice architecture

recovery? (Obj4, Obj5 and Obj6)

22

1.4. Research Contributions

The main contribution of this thesis is to provide practitioners and researchers with a

theoretical background for the recovery process that allows the recovery of

architectural models of existing microservice systems. This research will have

significant implications for future research, as it presents an effective approach to

recovering microservice architectural models. The following are explanations of all

the original contributions made by this thesis:

C1: A systematic mapping study: The systematic mapping study presented here

outlines the gaps and prevailing trends in microservice architecture research.

C2: A modelling language for microservice architecture: A systematic approach

was used in developing a modelling language, known as a metamodel. This approach

has been developed empirically to support comprehension of recovered architectural

models. It enhances the effectiveness and efficiency of the recovery of architectural

models. The use of a metamodel in particular is an effective approach for architectural

system recovery.

C3: Mapping rules transformation: Another key contribution of this thesis is a set

of mapping rules that transform microservice implementations to architectural

concepts. Such mapping rules are essential when developing automatic model

transformation and in abstracting the hidden complexities of a software architecture.

These mapping rules act as a catalyst that allows tool developers to create reverse

engineering tools. In the area of model transformation, this thesis contributes model

transformations (Code-to-PSM-to-PIM), which enable the generation of the

architectural model from the microservice architecture implementation. The key

contribution here lies in the transformations specification which show how the

mapping rules of high-level models to actual code is carried out.

C4: MiSAR, a microservice architecture recovery approach: MiSAR is a novel

approach that follows a bottom-up approach using model-driven engineering based on

static analysis, aiming to generate architecture models of existing microservice

applications, and to provide a proper understanding of existing microservice

23

architectures. I present an in-depth empirical investigation into microservice-based

systems for the purposes of defining and evaluating MiSAR. In addition to this, it was

verified and proved that MiSAR artefacts are feasible in practice.

C5: Microservice architecture recovery process: The thesis provides a complete

description of a microservice architecture recovery process, and provides an

application of one full instance of a process that can be used directly for the recovery

of software system architectures. I verified that the recovery process is efficient for

the architecture recovery of small, medium-sized and larger software systems.

C6: Contributions to Practice: This thesis contributes to the knowledge base

concerning microservice architecture recovery. The findings of this thesis have

significant implications for academic study. The research findings will be useful for:

a) Creating architecture documentation: The approach offers comprehensive

knowledge and detailed information pertaining on individual microservices

and its components and offers the overall view of all microservices in the

system architecture, their types and dependencies.

b) System understanding: A software system data is captured on a fine-grained

level and is depicted at an optimum level of abstraction, this approach is

necessary to explain the design of the software and provide information on

microservices and its dependencies. This knowledge assists in understanding

the structure of the system, to reason about its components and properties, help

in taking decisions considering the constraints of design, and to check the

conformance of architecture recovered against the planned system

architecture.

c) Choosing existing reverse engineering tools: Considering the engineers’ need

for reusing and further prolonging the current reverse engineering tools, it is

mandatory to compare them and choose the most suitable piece after ensuring

the successful fulfilment of their objectives. MiSAR can be helpful in the

comparison of the criteria with the metamodels, model transformation on the

grounds of the features construed in MiSAR.

d) MiSAR can act as a reference for reverse engineering groups of practitioners

and researchers. It provides the community with an important body of

24

knowledge to guide future research on metamodels, transformation rules and

the corresponding reverse engineering tools.

1.5. Thesis Structure

The following map of the thesis, as also shown in Figure 1-3, indicates the thesis

chapters and the relationship between them.

Chapter 2, A Systematic Mapping Study in Microservice Architecture, introduces the

literature review performed in regard to the microservice architecture style.

Chapter 3, Background and Related Work provides an overview of related work in

the areas of microservice architecture, software architecture recovery and model-

driven engineering.

Chapter 4, Research Methodology, describes the research methodology used to

accomplish the objectives of this thesis.

Chapter 5, MiSAR: Microservice Architecture Recovery Approach, provides an

overview of MiSAR. This chapter presents the first version of MiSAR produced by

conducting an empirical study to define the initial MiSAR artefacts (metamodel and

mapping rules) that support the architectural recovery of microservice systems.

Chapter 6, Improving the Initial Artefacts of MiSAR: An Empirical Study, presents

a second empirical study, which validates and enhances the initial artefacts of MiSAR

presented in Chapter 5, in order to define the final version of MiSAR.

Chapter 7, MiSAR Implementation, describes how the metamodels and mapping

rules were implemented using MDE tools and standards.

Chapter 8, Evaluation of MiSAR via a Case Study, assesses the proposed MiSAR

approach and its outcomes.

Chapter 9, Discussion, discusses the results of the empirical studies and states the key

findings of this thesis.

Chapter 10, Conclusion, summarises the outcomes of this research and outlines the

essence of the thesis by briefly discussing the outcomes. It highlights the limitations

of the research and proposes directions for future studies.

25

1.6. Publications

The following publications were a result of research performed in this thesis:

Alshuqayran, N., Ali, N., and Evans, R., 2016, November. A Systematic Mapping

Study in Micro Service Architecture. In Service-Oriented Computing and

Applications (SOCA), 2016 IEEE 9th International Conference on Service-Oriented

Computing and Applications (SOCA) (pp. 44-51). Cited 188 times as of May 5th,

2020. (Chapter 2.)

Alshuqayran, N., Ali, N., and Evans, R., 2018, April. Towards Micro Service

Architecture Recovery: An Empirical Study. In 2018 IEEE International Conference

on Software Architecture (ICSA) (pp. 47-4709). Cited 6 times as of May 5th, 2020.

(Chapter 5.)

Empirically Defining a Model-Driven Microservice Architecture Recovery Approach.

Submitted to IEEE Transactions on Software Engineering (TSE). (Chapter 6 and

Chapter 7.)

Figure 1-2: Thesis structure diagram.

26

Chapter 2

 A Systematic Mapping Study in Microservice

Architecture

2.1. Introduction

The primary goal of this chapter is to identify whether there is a gap in the state of the

art in the area of microservice architecture recovery at the time of conducting this

work. As the microservice architecture area, is an emerging one, the secondary goal is

to obtain an overview and explore how previous research has supported microservices.

At an initial stage, a systematic mapping study is conducted in order to depict the

relevant gap and trends in previous research. I also attempted to discover any specific

areas of microservice architecture that were not explored, and identify areas where

there is a lack of published research. As this review was conducted at the start of the

research, the state of the art review considers only research conducted until 2016. The

state of the art review after 2016 that is related to the thesis topic will be presented in

Chapter 3.

2.2. The Need for a Systematic Mapping Study

Even though microservices emerged from the software industry and have been the

focus of practitioners during the last decade (Newman, 2015; Lewis and Fowler,

2014), academic researchers have not kept pace. They have only recently started

investigating this approach and providing original research to support it, such as new

methodologies, processes and tools (Newman, 2015). The motivation of this mapping

study was the lack of available studies regarding the microservices style. One such

study was located (Pahl and Jamshidi, 2015); however, the study was limited to

providing a temporal overview of microservice research.

27

2.3. Research Method

Systematic mapping studies are comprehensive and rigorous reviews of specific

research questions in an area or a topic, and aim to identify gaps in the literature and

where new or better primary studies are needed (Kitchenham and Charters, 2007). In

this section, a systematic mapping study of microservice architecture is presented,

following the guidelines outlined in Budgen et al. (2008), Kitchenham and Charters

(2007), Petersen and Feldt (2008), and Fernandez et al. (2011). Initially, a set of

research questions were drafted for investigation during the study. The motivation

behind each research question was reviewed and refined. Subsequently, selected

papers were assessed against quality criteria, and a classification scheme was

iteratively developed, closely following a synthesis method. In summary, the review

was established by conducting the following steps:

A) Research questions: The research questions and the motivations are outlined in

Table 2-1.

Table 2-1: The research questions and their motivations.

B) Search strategy: The terms ‘micro-service’, ‘micro service’, ‘microservice’ and

‘micro-service architecture’ were searched in articles published in journals,

conferences and workshops. Sources from books, theses, talks and blog posts were

excluded. The research was restricted to articles published between 2014 and

2016, as there was no consensus on the term microservice architecture in the field

prior to that date, according to Pahl and Jamshidi (2015). Three online libraries

were used: IEEExplore, ACM DL and Scopus (which includes Springer).

Research Question Motivation

RQ1: What are the architectural challenges that

microservice systems face?

The aim was to explore all the published studies

that were relevant to microservices, to highlight

their gaps and look for future solution foundations.

RQ2: What architectural diagrams/views are used

to represent microservice architectures?

The aim was to identify and investigate the possible

methods and models that best describe different

aspects and levels of microservice architecture.

RQ3: What quality attributes related to

microservices are presented in the literature?

The aim was to recognise and disclose the gaps in

current research and hence set the direction for

future research.

28

C) Selection of primary studies: Before selection, articles were initially cross-

checked for relevance against the relevant research questions. The titles, abstracts

and keywords were scanned to determine the relevance of the articles, and whether

they should be included or excluded for the purposes of this study, based on the

criteria listed in Table 2-2. After applying the exclusion and inclusion criteria, a

total of 33 articles were collected. Table 2-3 lists all the selected publications.

Table 2-2: The selection criteria.

 Criteria

Inclusion

• Studies presenting a definition of microservice architecture.

• Studies that focus on microservice architecture and implementation.

• Studies that focus on a platform to run systems following a microservice-

style architecture.

• Studies that focus on a specific challenge within microservices (e.g. fault

tolerance, acceptance testing, etc.).

• Studies that implement microservice style architecture for a specific

business or technical domain.

• Studies that make comparisons between monolithic and microservice

architectures.

Exclusion

• Papers using the term microservice but not to refer to the architectural

style.

• Papers which do not have real data to support the proposed

design/methodology/architecture.

• Studies that do not have microservices as their primary research topic or

analysis.

• Studies that focus on platforms that are not primarily designed to run

microservices, though they may allow it.

29

Table 2-3: Publications selected.

ID Paper Name Format

1 Sustaining runtime performance while incrementally modernizing

transactional monolithic software towards microservices (Knoche, 2016).

Conference

2 The hidden dividends of microservices (Killalea, 2016). Journal

3 An architecture for self-managing microservices (Toffetti et al., 2015). Workshop

4 Synapse: A microservices architecture for heterogeneous-database web

applications (Viennot et al., 2015).

Conference

5 A reference architecture for real-time microservice API consumption

(Gadea et al., 2016).

Workshop

6 Exploring the impact of situational context: A case study of a software

development process for a microservices architecture (Rory et al., 2016).

Workshop

7 Evaluating the monolithic and the microservice architecture pattern to

deploy web applications in the cloud (Villamizar et al., 2015).

Conference

8 Microservice-based architecture for the NRDC (Le et al., 2015). Conference

9 Container and microservice driven design for cloud infrastructure DevOps

(Kang et al., 2016).

Conference

10 Scalable microservice-based architecture for enabling DMTF profiles

(Malavalli and Sathappan, 2015).

Conference

11 Experience on a microservice-based reference architecture for

measurement systems (Vianden et al., 2014).

Conference

12 Microservice based tool support for business process modelling (Alpers et

al., 2015).

Workshop

13 Designing a smart city Internet of Things platform with microservice

architecture (Krylovskiy et al., 2015).

Conference

14 Microservices (Thones, 2015). Journal

15 A reusable automated acceptance testing architecture for microservices in

behavior-driven development (Rahman and Gao, 2015b).

Conference

16 Microservices architecture based cloudware deployment platform for

service computing (Guo et al., 2016).

Conference

17 Security-as-a-service for microservices-based cloud applications (Yuqiong

et al., 2015).

Conference

18 CYCLOPS: A microservice-based approach for dynamic rating, charging

and billing for cloud (Patanjali et al., 2015).

Conference

19 Microservices validation: Mjolnirr platform case study (Savchenko et al.,

2015a).

Conference

20 Data-Driven workflows for microservices: Genericity in Jolie (Safina et

al., 2016).

Conference

21 Distributed systems of microservices using Docker and Serfnode (Stubbs

et al., 2015).

Workshop

22 Location and context-based microservices for mobile and Internet of

Things workloads (Bak et al., 2015).

Conference

23 Performance evaluation of microservices architectures using containers

(Amaral et al., 2016).

Conference

24 CIDE: An integrated development environment for microservices (Liu et

al., 2016).

Conference

25 Microservices and their design trade-offs: a self-adaptive roadmap (Hassan

and Bahsoon, 2016).

Conference

30

26 SeCoS: Web of Things platform based on a microservices architecture and

support of time-awareness (Zeiner et al., 2016).

Journal

27 Apache airavata as a laboratory: Architecture and case study for

component-based gateway middleware (Marru et al., 2015).

Workshop

28 Microservices validation: Methodology and implementation (Savchenko

and Radchenko, 2015).

Workshop

29 Learning-based testing of distributed microservice architectures:

Correctness and fault injection (Meinke and Nycander, 2015).

Conference

30 Automated deployment of a microservice-based monitoring infrastructure

(Ciuffoletti, 2015).

Journal

31 A microservice approach for near real-time collaborative 3D objects

annotation on the web (Nicolaescu et al., 2015).

Conference

32 Multi cloud deployment with containers (Jambunathan and Kalpana,

2016).

Journal

33 Migrating healthcare applications to the cloud through containerization

and service brokering (François et al., 2015).

Conference

D) Key wording and classification: Once papers were selected, a qualitative

assessment was conducted to create an outline model for the quality of work. This

helps to abstract various possible dimensions for characterisation and

categorisation. As a result, the research classification approach performed in

Wieringa et al. (2006) was found to be generally applicable for this research and

was used to classify the papers as: evaluation research, opinion paper, solution

proposal, experience paper, validation research and philosophical paper.

Subsequent to the first round of review, the following keywords were identified to

be mapped and linked to the challenges of creating microservice-style systems

(RQ1).

 Communication/integration: Communication and integration have many

facets in a microservice-style architecture. Defining a correct communication

strategy is vital to the design. The strategy involves identifying the right

protocol, response time expectations, timeouts and API design.

Keywords: API, REST, sockets, TCP, gateway, circuit breakers, load

balancer, proxy.

31

 Service discovery: This is the ability of various services to discover each other

in a consistent manner. It is important for a system to have a standard and

consistent process via which services can register and announce themselves.

This helps the consuming services to discover the endpoints and locations of

other services. It also involves deciding the right consumer strategy and

specifying how API gateways are configured to report service availability and

discovery.

Keywords: discovery, registration, service registry.

 Performance: It was commonly observed that introducing microservice

architecture to the software industry often adds more ‘chatty’ communication

between different services. For example, fulfilling one single business

functional requirement would result in orchestrating multiple service calls

together, which in return introduces additional lag to the end-user experience.

Due to bounded contexts, data that is frequently used by a single microservice

is often owned by another. This requires creating data sharing and

synchronisation primitives to avoid the communication overhead caused by

data copying, which happens during the service invocations.

Keywords: QoS, performance, service-level agreement (SLA), speed,

simulation.

 Fault tolerance: This is the ability of a system to recover from a partial failure.

It is up to microservice developers to take this into consideration and provide

proper mechanisms to gracefully recover or stop any failure from cascading or

migrating to other parts of the system. This is normally expected in cloud

environments where infrastructure as a service (IaaS) causes inevitable

failures.

 Keywords: fault, failure, recovery, tolerance.

32

 Security: Security is a major challenge that must be carefully thought through

in microservice architecture. Services communicate with each other in various

ways, creating a trust relationship. For some systems, it is vital that a user is

identified in all the chains of a service communication happening between

microservices. OAuth and OAuth2 are well-known solutions that are employed

by designers to handle security challenges.

Keywords: secure, authentication, authorisation, OAuth, OAuth2, encryption,

vulnerability, attack.

 Tracing and logging: In microservice-based systems, tracing and central

logging are vital for developers to understand the system’s behaviour as a

whole. Breaking up monolithic systems into microservices involves techniques

that are traditionally employed for debugging and profiling systems. Various

techniques and solutions are emerging to solve this problem. Distributed

tracing is the ability of a system to track a chain of service calls to identify a

single transaction or a single user request. Logging is another critical

component of any system. Logs are important for auditing and debugging

purposes. Special attention must be paid in carefully designing a central

logging and aggregation system for developers to continue debugging systems

in an appropriate manner.

 Keywords: tracing, logging, debugging, profiling.

 Application performance monitoring (APM): APM is an infrastructural

characteristic. It involves measuring individual microservices’ performance to

assess the health of and existing SLAs for a system.

 Keywords: monitoring, APM, health monitoring.

 Deployment operations: Deployment operations and scaling are fundamental

infrastructure concerns. Selecting the right platform significantly influences

the architecture of a microservice system. Container orchestration tools and

structured platform as a service (PaaS) solutions provide various features that

make deployment and operations very trivial activities. However, selecting the

right solution is critical, as all of these platforms come with their own set of

assumptions and opinions, which the designer has to follow in order to utilise

33

the selected platform to its potential. Scaling microservices can become a

challenge if the right architecture is not followed. There are several guidelines,

such as 12-factor application and cloud-native designs2, which need to be

followed to make service scaling easier. Most of these guidelines demand

statelessness and portability by decoupling service runtime from OS and

platform resources.

Keywords: operations, orchestration deployment, scaling, auto-scale, rolling

upgrades, images, container.

E) Data extraction strategy and quality assessment: Data for this study was

extracted using a machine learning-based PDF extraction library called GROBID,3

which extracts the PDF data into structured TEI-encoded documents, with a

particular focus on technical and scientific publications. Kibana4 was used to

perform the visual analysis and generate various charts. First, the selected

keywords for the ‘challenges’ part were analysed using Kibana visualisation, in

order to understand their distribution in the underlying population. This gave a

quantitative indication of the possible classifications. The selected papers were

then classified based on a review of actual content where the research questions

are the driving element of the analysis.

2.4. Results

➢ Significant keywords

At a high level, the following are the most significant keywords from the previously

mentioned keyword lists. Figure 2-1 lists the top terms found in the literature. It can

be observed that ‘deployment’, ‘cloud’ and ‘performance’ are the words that dominate

the papers; ‘deployment’ is the most discussed topic, appearing in 31 out of 33 papers,

followed by ‘cloud’ and ‘performance’, in 23 papers.

2 https://12factor.net./
3 https://github.com/kermitt2/grobid
4 https://github.com/elastic/kibana

https://12factor.net./
https://github.com/kermitt2/grobid
https://github.com/elastic/kibana

34

➢ Challenges of microservice system architecture (RQ1)

I identified papers which actively address one or more of the challenges mentioned in

Section 2.3, D. The classified papers either present a solution, address a challenge as

their primary or secondary topic, or discuss a challenge to a certain depth.

Furthermore, I quantitatively searched for earlier presented keywords associated with

the challenges in the papers, and presented the count of papers mentioning one or more

of those keywords. Table 2-4 and Figure 2-2 show the results of the above

classification.

Table 2-4: Keywords associated with the challenges in the literature.

Challenges Keywords Mentions

Communication/Integration API, REST, sockets, TCP, gateway, circuit

breakers, load balancer, proxy, routing, router

29

Service Discovery Registration, service registry 11

Performance QoS, performance, SLA 28

Fault Tolerance Fault, failure, recovery, tolerance, healing 23

Security Secure, authentication, authorisation, OAuth,

OAuth2, encryption, vulnerability, attack

13

Tracing and Logging Tracing, logging, debugging, profiling 8

Application Performance

Monitoring

Monitoring, application performance

monitoring

24

Deployment Operations Operations, orchestration deployment,

configuration, scaling, auto-scale, rolling

upgrades, images, container

34

Figure 2-1: The top 10 keywords in the literature.

35

➢ Research paper approaches

Papers were classified using approaches presented in Wieringa et al. (2006). Since the

microservice architectural style is an emerging field, a lot of research is focused on

presenting evaluation research or solution proposals, followed by validation research.

A lack of experience reports and opinion papers is also a clear indication of the

emerging nature of the research. Figure 2-3 presents the approaches plotted against

the number of papers with different challenges, which gives a combined view of the

selected studies and their distribution over these two dimensions. The size of the

bubble represents the number of papers. It can be observed from the figure that

‘communication’ and ‘deployment’ are well ahead of the other challenges. It can also

be noticed that the ‘communication’ and ‘deployment’ challenges have more

validation and evaluation papers.

Figure 2-2: The distribution of microservice challenges in the literature.

36

➢ Microservice architectural views/diagrams (RQ2)

Solution proposal and validation research types of papers were the main sources to

answer this question, as they paid more attention to architectural modelling than other

papers. In particular, the design and implementation sections of these papers provided

figures with views/diagrams, along with their detailed explanations. However,

although component/context diagrams were dominant in the literature, a wide variety

of other graphical modelling views was also presented, although with no clear

justification provided for the choice of a particular diagram. This lack of consistency

in diagrammatic presentation may indicate a need to propose a comprehensive

modelling view/language that best covers and describes microservice-based

architecture. The graphical architectural views found in the literature were various and

can be categorised into informal drawings with free boxes and lines, sets of UML

diagrams each covering different aspects of the architecture, graphs with vertices and

arrows, and finally diagrams for SQL/NoSQL relational databases.

Figure 2-3: Research approaches against the number of papers with different challenges.

37

Table 2-5 shows the diagrams used in the literature and their annotations, and sets of

papers that included each type of diagram. Interestingly, it was noticed that there is no

distinction between component diagrams and container diagrams in the literature. This

implies that the trend in microservice architecture is to suggest placing one

microservice, i.e. component, in one running environment, i.e. container, in order to

achieve the ultimate independence and isolation of the microservices. In addition to

the description diagrams covered earlier, description languages are also included in

the literature to provide a more elaborate view of architecture details. Categories of

different formats of description languages mentioned in the study included:

• Standard modelling languages, e.g. RAML and YAML.

• Specifically-designed modelling languages, e.g. CAMLE.

• Standard specification languages, e.g. JavaScript (Node.js), JSON, Ruby.

• Specifically-designed specification languages, e.g. Jolie.

• Pseudocode for algorithms.

Table 2-5: The diagrams used in the literature and their annotations.

Diagram Annotation Paper ID numbers

Component/

Container

Each microservice is represented as a

square/rectangle/oval and each line represents

communication or data flow between components

1, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 15, 16, 17,

18, 19, 20, 22, 23, 24,

25, 26, 27, 28, 29, 30,

31, 32 and 33

Process/Behavi

our

Each process of a microservice is a rounded

square/rectangle and each arrow indicates an activity

flow

1, 9, 11, 15, 22, 27 and

28

Sequence UML diagrams 3, 5 and 18

Execution

Timeline

Time grows from left to right on the x-axis 4 and 9

Deployment

UML diagrams. Execution is represented as a rectangle

parallel to the x-axis

7 and 32

Class UML diagrams 20 and 30

Use Case UML diagrams 28 and 33

Type Graph Represents the needed resources and connection

topology for each node (orchestrator) where

cardinalities on edges represent the minimum and

maximum number of allowed connections

3

Instance Graph Represents the deployed service topology and

components for each node (orchestrator)

3

Dependency

Graph

Each node in the graph represents a microservice and an

arrow indicates a dependency

4

38

➢ Quality attributes related to microservices in the literature (RQ3)

To approach this question, a generalisation of attribute names was necessary at first,

since many alternative terms found in the papers indicated the same meaning for one

attribute. Table 2-6 shows each attribute and its alternative terms. It was noticed in the

literature that well-known quality attributes of microservice architecture, such as

modularity, scalability, independence and maintainability, were presented in almost

all of the papers reviewed. Some attributes scored fewer occurrences, which implies

lack of consideration. These attributes were security (IDs 15, 18, 23, 32, 33), load

balancing (IDs 1, 20) and organisational alignment (IDs 13, 15).

In addition to the results of research questions 2 and 3 above, a possible relationship

between quality attributes in the literature and the model views presented was

investigated. For each quality attribute, the modelling diagrams included in the papers

mentioning that attribute were checked. This intersection method attempted to answer

what type of modelling view is more suitable to demonstrate and/or test particular

quality attributes in the architecture. More elaboration on the findings and insights

derived from the results is provided in the next section.

39

Table 2-6: The quality attributes mentioned in the literature and their alternatives.

Attribute

Number

of

Papers

Alternative Terms and Expressions of Similar Meaning

Scalability 26 Expandable, evolutionary

Independence 19 Reducing complexity, isolation, loose coupling, decouple,

distributed, containerisation, autonomy

Maintainability 17 Expandable, adaptability, changeability, flexible

implementation, dynamically changing

Deployment 13 -

Health

Management

13 Resilience, reliability, disaster recovery, no single point of

failure

Modularity 13 Single responsibility, reduce complexity, separate business

concern, specialisation, customisable

Manageability 12 Self-managed, decentralised management, audibility

Performance 9 Response times, transaction duration, throughput, efficiency

Re-usability 7 Pluggable

Technology

Heterogeneity

7 Portability, freedom to choose a lot of technologies or

programming languages

Agility 6 Iterative, incremental, continuous delivery

Security 5 -

Load Balancing 2 Workload intensity distribution

Organisational

Alignment

2 Cross-functional team reduce the conflict between developers

and testers

Open Interface 1 Microservices should provide an open description of their

APIs, GUIs and communication message format

40

2.5. Discussion

It can be observed from the results of the review that microservices architecture

research is still in its infancy. Since the style is born out of industry, it has been noted

that there are wide gaps between the current industry level and that of academia. Most

of the papers in this study were found to be either at the ‘solution proposal’ or ‘solution

validation’ stage, with validations based on lab-controlled experiments only. There are

very few experience reports and opinion papers on the microservices architectural

style.

Moreover, microservice security is a very important challenge, which has not yet been

well researched. Even in industry, lots of service-based applications do not employ

stringent security controls. It is also noted that tracing is one of the most common

problems faced by all microservice-style systems. Tracing a request through all the

hoops of business functions is a very difficult problem that demands attention from

the academic community. Only a few solutions are currently available in industry5.

These solutions can help discover communication patterns, which can be used to

discover dependencies between services. A dependency graph helps architects in

refactoring and making decisions with confidence.

As regards RQ2, the literature presents different types of modelling diagrams and

languages that describe aspects of microservice architecture, as well as its lifecycle.

Context and container/component diagrams with UML notations, for example, are

extensively used to provide a high-level static view of microservice architecture. To

describe low-level design details, UML-class diagrams are used, accompanied by

ERD data models, pseudocode for algorithms and additional textual description. UML

use cases are used mainly for model validation and testing of microservices, whereas

UML sequence diagrams are used to sketch the communication between

microservices. A particular kind of graph is used for model deployment orchestration

and automation, called a type graph/instance graph. Each type graph represents the

connection topology and resources needed to deploy a microservice, while instance

graphs represent each orchestrator service with its components.

5 https://zipkin.io.

41

Interesting modelling languages presented in the literature were RAML, YAML and

CAMLE. RAML and YAML (Swagger) are open standard modelling languages used

to describe APIs of REST-like messages, needed for interacting and communicating

with microservices. CAMLE is a specifically designed conceptual graphical design

for service-oriented systems that integrates with a modelling language for agent-

oriented systems called CAOPLE. According to the source paper, the

CAMLE/CAOPLE modelling method proved its efficiency in modelling the

microservice architecture of CIDE, the proposed integrated development environment

for building microservice systems. Code snippets of standard specification languages

such as JavaScript, JSON, Node.js and Ruby were used to describe the data model of

messages communicated between microservices. A novel programming language

called Jolie (Safina et al., 2016) was used to program and describe the architecture of

its IDE, which is also built using microservices.

Based on the previous analysis, it can be noted that modelling microservices with

UML standard notations is comparable to creating another comprehensive modelling

notation, and also comparable to the use of informal drawings with free boxes and

lines accompanied by a narrative. However, since a typical microservice-based system

consists of a number of containers, and each container in turn contains one or more

components, i.e. microservices, which in turn are implemented by one or more classes,

then UML standard notation can provide a common set of abstractions and notations

to describe microservice architecture. Therefore, using several UML diagrams, e.g.

context, container, component, class, use case, sequence, each showing a different part

of the entire architecture, will allow one to communicate software designs in an

effective and an efficient way.

The results of RQ3, as in Table 2-6, show higher occurrences of, and hence more focus

on, scalability, re-usability, performance, fast and agile development, and

maintainability. On the other hand, fewer occurrences, implying the need for future

research, were found for security, load distribution (for multi-cloud deployment with

containers), continuous integration, organisational management and DevOps, as well

as the automation of container management and deployment.

42

Finally, having investigated the view model to quality attribute papers’ overlap, the

following findings have emerged:

(i) Papers concerning scalability, re-usability, maintainability, manageability

and deployment quality attributes also used component/container, class

and deployment UML diagrams to demonstrate the potential of

implementing those attributes;

(ii) Use case and sequence UML diagrams, in addition to execution timelines,

helped in comparing and validating the quality attributes of performance,

deployment, security, maintainability and self-manageability of

microservice architecture;

(iii) Instance graphs/type graphs enabled the author of paper [ID=3] to trace

and validate the quality attributes of health management, manageability

and deployment automation;

(iv) Dependency graphs co-occurred with independence and maintainability

quality attributes, and were also used to trace and test them.

The literature suggested many future trends, such as the following:

(i) Invent and automate approaches to empower the DevOps team, so that

development and operation functions are cooperative, hence enabling the

rapid and agile development and upgrade of applications, as well as deploying

them on multiple platforms to meet customer needs;

(ii) Investigate the impact of the interrelationship between a process (service) and

its context (situational factors) on microservice software process decisions;

(iii) Allocate a specific programming language, e.g. Jolie IDE, to develop

microservices, e.g. CIDE.

43

2.6. Summary

This systematic mapping study has looked into the available studies on microservice

architecture that conducted until 2016. The study used two qualitative and quantitative

synthesis methods and addressed three key research questions. The first question

addresses the architectural challenges that microservice systems face, and explored all

the published articles and studies that highlighted the gaps in microservices research,

and made suggestions for future solutions and initiatives. The second research

question investigates which architectural diagrams and views, in addition to any

methods or models, are used to represent microservice architectures. The last research

question states the possible quality attributes related to microservices that are

presented in the literature.

With the help of a systematic mapping study, the literature can be thoroughly

examined in order to depict the prevailing topics that are discussed in prior

microservice research. The outcomes from this analysis have assisted in finding the

gaps and the prevailing trends in previous research. After having carefully combed

through many research papers, it was concluded that existing literature and research

has not paid much attention to microservice architecture recovery. Therefore, I decided

to pursue this study to fill this gap in the research. I define the scope of the research as

first defining the fundamental concepts and pillars of microservice architecture, and

secondly proposing a novel process to recover this kind of architecture.

44

Chapter 3

 Background and Related Work

3.1. Introduction

This chapter provides the foundations, basic concepts and terms which are relevant to

the theme of the thesis. The background section is introduced first, followed by a

discussion of related work, and then concluding remarks are presented at the end of

the chapter. The background section introduces the field of microservice architecture,

followed by the basic concepts from the areas of model-driven engineering, reverse

engineering and software architecture recovery, and the terminology associated with

this field used in my approach, in order to provide the reader with the necessary

background information. The related work section analyses and compares the existing

gaps in the available approaches and techniques that are related to the topic.

3.2. Background

3.2.1. Microservice Architecture

Over the past few years, the term ‘Microservice Architecture’ has gained significant

momentum as a term describing a new tendency of designing, developing software

applications as a set of independent services (Newman, 2015). While no precise

definition pertaining to this architectural style has been propounded, there are common

characteristics of it revolving around the business capability, automated deployment,

and intelligence in the endpoints (Lewis and Fowler, 2014).

The most widely adopted definition of microservice architecture describes it as an

approach for designing a single application as consisting of small services, where these

services run in own single processes and also interact with lightweight mechanisms,

which usually are RESTful APIs, and there is a bare minimum of centralized

management of these services (Lewis and Fowler, 2014). According to Newman,

(2015), microservice architecture is a new architectural style that consists of

45

applications, which are an accumulation of independent individual services, and these

services are of a single business capability.

The microservice term was first introduced in 2011 in a workshop of software

architects held in May 2011, near Venice. The prime agenda of the workshop was to

describe and discuss the perspectives of participants regarding architectural style

which had been recently exploring (Lewis and Fowler, 2014). As the name indicates,

‘micro’ refers to a small object; in essence, a mini/smaller version of a service or task

(Nycander, 2015).

Before the evolution of the microservice architectural style, most of the well-known

Internet companies, like Amazon, Gilt, Sound Cloud, Netflix, etc., were using a

monolithic architecture. A monolithic architecture is large, and has all application

logics running in a single process and application server (Lewis and Fowler, 2014). A

monolithic approach is not suitable for high-volume websites, since for any change,

whether small or significant, the whole team need to coordinate and apply the required

changes in their application. In a monolithic architecture, it is thus very challenging

and costly to upgrade and change applications. In short, most of the big companies

have shifted to microservices, this paradigm shift also termed as microservitization

(Hassan et al., 2019).

The architecture of the microservice style has provided the solution that was needed

to simplify integration and to upgrade the tasks involved, which include: (a) providing

greater modularity and scalability (Lewis and Fowler, 2014), (b) providing faster

deployment of code changes and service delivery (Gruman and Morrison, 2014), (c)

componentization in microservice architecture following a more loosely-coupled

approach (Newman, 2015), (d) independence in development and deployment, as

promised by this architectural style (Eberhard, 2016), and (e) providing the ability to

grow and develop teams in a more efficient manner, eventually achieving agility

(Lewis and Fowler, 2014). However, these benefits come with challenges, such as

discovering services over the network, security management, communication

optimisation, having multiple components within a single architecture, and

cooperation and orchestration among microservices (Esposito et al., 2016).

46

There are a number of similarities between microservices and Service-Oriented

Architecture (SOA). The most common similarity is that they are service-based and

distributed architectures. This feature allows access to services through remote access

protocols, like Representational State Transfer (REST), Simple Object Access

Protocol (SOAP), etc. There are many benefits of using distributed architecture over

other architectures, such as layer-based and monolithic architecture. These benefits

include better decoupling, scalability, and control over the processes of developing,

testing and deployment (Richards, 2015). Distributed architecture is comprised of

components that are inclined towards being more self-contained, and this allows better

control over changes and ease of maintenance. Thus, applications’ robustness and

responsiveness are increased. In addition to this, a distributed architecture is easily

modified with loosely coupled and modular applications. Both SOA and microservice

architectural styles help in structuring a particular system by allowing a group of

primary architectural components that perform business and non-business functions

called services to work together (Richards, 2015).

There is a clear distinction between SOA and microservice architecture (Villamizar et

al., 2015). (1) In SOA, applications use heavyweight technologies like SOAP, and

other web service standards, including enterprise service bus (ESB), to unite the

architectural services. In microservice applications, ESBs are not used and instead

lightweight communication protocols such as REST. According to Martin Fowler

(Lewis and Fowler, 2014), endpoints are important in microservices and make them

different to SOA. Smart endpoint characteristic facilitates the microservices

communication between each other. (2) Databases are handled differently, in SOA a

global data model is used, with a shared database, while microservice architecture has

a database for every service (Villamizar et al., 2015; Savchenko et al., 2015). (3) The

size of the service. SOA usually integrates large, complex and monolithic applications.

In microservice architecture, services are not always tiny, but they are almost always

much smaller than in SOA. As a result, a SOA application usually consists of a few

large services, whereas a microservice-based application will consist of 10s or 100s of

smaller services (Nycander, 2015). In terms of service granularity, the capability of a

software system is differently aligned with each service in SOA, but one capability is

aligned with each service in MSA; this alignment is done in MSA to reduce service

interactions and overlapping of several services, and relevant concepts of domain and

47

operations from other services are isolated. By contrast, SOA has a variety of

distributed software system capabilities, so no service granularity is followed, and

service size varies from fine-grained applications to coarse-grained enterprise services

(Rademacher et al., 2017). It is worth mentioning that microservices architecture is

not a new idea, as it is built up from its precedents.

3.2.2. Model-Driven Engineering

Model-driven Engineering (MDE) is an approach that considers models as first-class

citizens (Brambilla et al., 2017). In the MDE paradigm, the approach emphasises

treating everything as a model (Gaševic et al., 2009), which means that models are the

artefacts used for describing and developing a system. MDE depends on three key

characteristics described in the following section: (a) a model that requires languages

for its description, (b) model transformations which define rules and their specification

for the purpose of describing the way in which a particular model can be transformed

into other models, and (c) metamodels which are models that are used to describe other

models using a modeling language. Conformance is defined as the relationship

between metamodels and models. A model is considered to conform to or is an

instance of a metamodel when a metamodel identifies each concept that is used in

defining a specific model, and the models use the concepts in accordance with the

patterns specified by the metamodel (Benoit et al., 2016).

MDE emerged from the concept of Model-Driven Architecture (MDA), and was

proposed in 2001 by the Object Management Group6. Kent (2002) defined MDE by

taking MDA as a base and adding the concept of organising models via the software

development process and modelling space. Increasing productivity and reducing the

time-to-market are the objectives of MDE, in developing complex systems with the

help of concepts defined via models. (Benoit et al., 2016; Selic, 2003).

6
 The Object Management Group (OMG) is an industry association for standardisation within software

engineering.

48

3.2.2.1. Models

In MDE, requirements, architecture and implementation are described in a software

project through models. These models are used to handle complexity as they can

manipulate the system and provide rationality at the conceptual level. Models are also

used for generating code, deriving artefacts and for documentation purposes. For

example, documentation of a system can include UML models. According to Bezivin

and Gerbe (2001), a model is a simplified version of a system constructed with a

predefined objective in mind. As per the MDA guide (Miller et al., 2003), a system’s

model is a method of describing a system and its environment for a specific purpose.

As per MDA, models can be divided into four categories, code, platform-specific

model (PSM), platform-independent model (PIM) and computation-independent

model (CIM) (Miller et al., 2003), as shown in Figure 3-1. Specifically, the MDA

guide describes a CIM as the computed independent view of a system; details of

system structure are not shown in a CIM. CIM uses vocabulary known by domain

practitioners and hence it is also called as domain model (e.g. description of user

requirements). A PSM is a set of technical concepts, representing the different kinds

of parts that make up a platform and the services provided by that platform. A Platform

refers to any technology-specific code, open or proprietary, including Web Services,

.NET, CORBA, J2EE, and others (Miller et al., 2003). A PIM abstracts away technical

details and does not depend on platforms.

Figure 3-1: The MDA framework (Miller et al., 2003).

49

3.2.2.2. Metamodel

The process of analysing a specific domain to find concepts, constraints, relationships

and rules is called ‘metamodelling’. A metamodel is an abstraction that reveals

properties of the models themselves. The models are represented as ‘instances’ of

more abstract models. Metamodels are used to define new languages, or to uncover

new features or properties of existing data (metadata) (Brambilla et al., 2017).

Metamodels and language are interchangeable due to the fact that the metamodel is

also inferred as a language that reveals aspects of the system and process affiliated to

a particular domain. Conformance is defined as the relationship between metamodel

and model. When a metamodel identifies each concept that is used in defining a

specific model, and the models use the concepts defined by a metamodel in accordance

with the patterns specified by the metamodel it is considered conformed to a

metamodel (Bézivin, 2005). It can also be said that a model can be considered as an

instance of a metamodel, which can be changed according to the elements of the

abstract syntax that are known as meta-classes.

The OMG (2014) defines four levels for meta-modelling, as depicted in Figure 3-2.

The M0 layer, at the bottom level, represents the real system, and the model represents

the system at the M1 layer. The conformation of the model to its metamodel is

displayed at level M2, and the conformation of the metamodels to their meta-

metamodel is shown on level M3. In addition to this, the meta-metamodel conforms

to itself at level M3. MOF was proposed by OMG as a standard to define metamodels;

for example, MOF has defined the UML metamodel (Di Ruscio et al., 2012).

50

Figure 3-2: The four-layer meta-modelling architecture (Di Ruscio et al., 2012).

3.2.2.3. Model Transformation

According to MDA, in the same system, if one model is converted into another model,

this is called model transformation (OMG, 2014). In the same context, Kleppe et al.

(2003) define transformation as automatic generation of the model that is targeted

from the source model. Transformation rules are used to transform source models into

target models. These rules can be written manually by a developer from the ground

up, or their definitions can be based on specifications of previously existing rules that

have been refined.

As depicted in Figure 3-3, the input is taken by a model transformation program to

conform with a given source of a metamodel and generates output as another model,

which conforms to the targeted metamodel. The set of rules composed in

transformation programs should also be treated as a model; as a result, transformation

language depends on the abstract metamodel’s definition (Di Ruscio et al., 2012).

51

3.2.3. Characteristics of Model Transformation Approaches

This section provides a brief account of the key differentiators for model

transformation provided in (Czarnecki and Helsen, 2003), which helps in defining the

different kinds of method used in model transformation approaches. The primary or

core points of variation which are used in model transformation are briefly described

in the paragraphs below.

• Transformation rules: Transformational rules define the manner through

which the elements of source models are translated into the target models. The

rule of transformation is classified into two sections, namely the left-hand side

(LHS) and right-hand side (RHS). The RHS consists of target model elements,

while the LHS consists of source model elements. These can be defined by

patterns, variables, queries and logic.

• Rule application scoping: Rule application scoping determines the extent of

the target model in the transformation, as there is also a restriction for those

model parts which are included in the process of transformation. Scoping is

vital for the purpose of performance and advance transformation structures.

 Figure 3-3: Basic concepts of model transformation (Di Ruscio et al., 2012).

52

• Rule application strategy: In this approach, it is necessary that the rule is

applied within its scope to a specific location. A need for an application

strategy has been identified owing to the presence of a large number of matches

for the rule in the prescribed source scope, and the application strategy can be

further defined as non-deterministic, interactive or deterministic.

• Rule scheduling: When the nature of model transformation is complex, the

number of rules also increases; therefore, a scheduling method is used to justify

the order that is used to apply the specific individual rules. However, in some

cases, people have no clear control over the scheduling algorithm. The

approaches can be different in terms of the execution of the rules and the

techniques used.

• Rule organisation: Rules can be shaped or structured in different ways, and

model transformation approaches have three types of variation, a re-use

mechanism (defining rules based on one or more rules), a modularity

mechanism (packaging rules into modules) and an organisational structure

(organising rules based on the source or target language or another independent

organisation).

• Traceability links: The role of transformations is to record links between

source and target elements. Such links are valuable for conducting impact

analysis (i.e. exploring how alterations to one model affect related models),

synchronizing models, debugging models, etc.

• Directionality: Directionality is the last item on the list of differentiators of

model transformation approaches, and explains that the transformation may be

bidirectional or unidirectional. The source model is unidirectional when the

transformations occur in a single direction to the target model. Bidirectional

transformations are executed in both directions and are beneficial for applying

round-trip engineering for the purpose of synchronising the models.

53

3.2.4. Major Categories of Model Transformation Approach

According to Jilani et al. (2010), transformation approaches are categorised into two

major types, as suggested by different authors, the first one is the Model-To-Model

transformation (M2M) approach, and the other one is Model-To-Text (M2T)

approach. The M2T transformation model is used for transforming the model into the

text format or code generation. In contrast to this, the M2M model is used in conditions

in which there is a need for transforming the source model into the target model; they

are instances of the same or a different metamodel. Detailed outlines of both these

models can be presented as follows:

Model-to-text approaches: In these approaches, the PSM transformation technique

is generally undertaken for generating codes. Some of the crucial approaches in this

category are presented below (Czarnecki and Helsen, 2006):

• Visitor-based approach: According to Czarnecki and Helsen (2006), the

visitor-based approach is a very basic code generation approach consists in

providing some visitor mechanism to traverse the internal representation of a

model and write code to a text stream. An example of this approach is Jamda

(SourceForge, 2003), which is an object-oriented framework providing a set

of classes to represent UML models, an API for manipulating models, and a

visitor mechanism (so-called CodeWriters) to generate code.

• Template-based approach: This approach is used to generate code by

templates which represent the source model, and the templates have rules that

are mapped onto the source model. For code generation, the template-based

approach is identified as the most precise approach, compared to the visitor-

based approach. The result of the code generation is correct and accurate due

to the fact that the structure of the template is similar to the code. The tools

which are used for the code generation are JET (Popma, 2004) or AndroMDA

(AndroMDA.org, 2003).

54

Model-to-model approaches: In the model-to-model category, Czarnecki and Helsen

(2006) distinguish between graph-transformation-based, direct-manipulation,

structure-driven, operational, relational and hybrid approaches.

• Graph-transformation-based approach: Graph transformation is the most

popular technique for the management of transformation. Graph

transformation rules involve an LHS graph pattern and an RHS graph pattern.

The former often include conditions ancillary to the LHS pattern, such as

negative conditions. Some additional logic (such as in string and numeric

domains) is needed for the purpose of target attribute values (such as element

names). Graph Rewriting and Transformation Language (GReAT) (Agrawal

and Aditya, 2003) involves an extended form of patterns with multiplicities

on edges and nodes, and is the most common language used by the graph

transformation technique.

• Direct manipulation approach: In this approach, specific APIs, as well as

internal model representation, are offered for the purpose of manipulating

models such as JML. This approach is used for the purpose of developing a

specific and object-oriented framework. This approach provides a minimal

infrastructure, used for organising transformations. For instance, in this

category, abstract classes used for facilitating transformation are provided.

However, in this category, there is a need for reflecting different crucial

perspectives in practice from the beginning, including transformation rules,

tracing and scheduling in different programming languages such as Java.

• Structure-driven approach: The process of transformation takes place in

two distinct phases in this approach. In the first phase, the target model is

structured in the form of a hierarchical structure. In the second phase, there

are applied several features and references to the target model’s hierarchical

structure. In this approach, the user is required to pass information related to

transformation rules only. Scheduling and application strategies are further

determined by the model itself. For instance, OptimalJ is the base example of

this approach. In this model approach, the implementation of the

55

transformation rule is undertaken in the form of a method with an input

parameter which defines the type of source and method for returning the Java

object, which defines the target model element.

• Operational approach: This approach has a similar type of orientation to

direct manipulation. Yet, this approach provides extra devoted assistance in

model transformation. In this scenario, the extension of meta-modelling

formalism is facilitated with expressed computations. For example,

the utilisation of a query-based language, such as OCL. QVT operational

mappings are considered as the key examples of this approach.

• Relational approach: This approach is followed by referring to mathematical

relations and source-target relationship, which is a declarative approach

(Akehurst and Kent, 2002). QVT relations are considered as the key examples

of the approaches of relationship. The core idea is to have constraints of the

relationship between the source and target element types. Predicates and

constraints are used to describe relationships in mathematics, and complex

mathematics is used to construct these relationships. This approach has a

feature of supporting backtracking and the rules that are based on the

mathematical relationships are bidirectional. The relational approach does not

work in the in-place transformation, in comparison with the graph

transformation technique.

• Hybrid approach: This approach is a combination of different approaches

mentioned in the previous headings. In this category, the Transformation Rule

Language (TRL) combines imperative and declarative approaches. QVT can

be considered an example of the hybrid approach, as it combines three

different elements, including operational mappings, core and relations. The

Atlas Transformation Language (ATL) is also a hybrid approach, and it has

certain similarities to TLR. A transformation rule in ATL may be solely

imperative, hybrid or solely declarative.

56

3.2.5. Model Transformation Languages, Tools and Standards

The presented section has presented an account of the different kinds of model

transformational tools and languages.

Query/View/Transformation (QVT): QVT is the standardised language established

by the OMG and can be used for model transformation (OMG, 2016). Three types of

language defined by QVT for the transformation of the model-to-model are: QVT

Relational, this high-level declarative language gives support to the specification of

bidirectional transformation, which requires information about the direction while

being executed. A transformation can be defined as a set of relations between the target

and source metamodel. This transformation is used to check for the consistency of

these two models. QVT relational, with the implicit help of trace models, supports

complex pattern matching by using OCL. QVT Core is a low-level and simple

transformation language that is classified under the declarative model and can become

a foundation stone for the QVT relational language. QVT Core supports pattern

matching in line with a pack of variables. The trace models should be explicitly

defined. QVT Operational is a transformation language that leads to an expansion of

the QVT relational language with the constructs of the imperative model. It has been

recognised that these transformations use the implicit trace models, and are

unidirectional. ModelMorf and SmartQVT are the model transformation engines,

which are based on the QVT standard (Biehl, 2010).

ATLAS Transformation Language (ATL): ATL is a hybrid language that

transforms on a model-to-model basis and supports both types of construct, which can

be either imperative or declarative. The declarative style gives a simple and clean

interpretation for simple mapping and hence is mostly preferred over the imperative

constructs, which are provided for handling challenging and complicated mappings.

The ATL transformation program is a collection of those rules, which are used to

develop and set the elements of the target models. ATL is incorporated into the Eclipse

development environment for the purpose of handling EMF-based models, along with

the UML profiles. ATL does not provide support to incremental model transformation;

therefore, it is essential to read a complete source model and create a complete target

model. Moreover, it has been determined that the target model is not capable of

57

preserving manual changes. ATL is supportive of the in-place transformation mode,

which is also known as the refining mode; however, it has a drawback in that it cannot

be used with various constructs, like lazy rules (Biehl, 2010).

Kermeta: Kermeta is an imperative programming and modelling language, which is

used for general purposes, and it can also be helpful in performing the process of

transformations. It offers meta-modelling based on EMF, along with constraints and

checks. In addition, it is necessary to load and store the models and metamodels

explicitly, and to instantiate the target element explicitly in the target model, and this

procedure requires more code. Rule scheduling and rule application control must be

specified explicitly by the user. Exceptional handling, reflection and aspect-

orientation are supported by Kermeta; however, it does not prove to be multi-

directional or traceable. It has been analysed that the complete target and source

models are being read, created and executed, since incremental model transformation

is not supported (Falleri et al., 2006).

XML Stylesheet Language Transformations (XSLT): XSLT a functional language

that performs transformation works to manipulate XML data, and the rules followed

during the functioning of this language are explicit in nature. Such standards are purely

unidirectional, and traceability is also not endorsed. It has been found that the

transformation of this language is stateful, and in this regard, no support will be

provided to incremental transformation. XSLT transformation descriptions are in the

form of XML documents. At the initial stage, XSLT was developed for the purpose of

converting XML documents into HTML; however, XSLT has been restricted to a

simple transformation process (Bex et al., 2002).

3.2.6. Re-engineering and Reverse Engineering

Re-engineering refers to the process of redesigning a system created with old

technologies to increase its maintainability. According to Arnold (1993), any activity

conducted for re-using, maintaining or evolving software that enhances the software

as a whole, is re-engineering. The need for re-engineering occurs when the quality of

a system is degraded through its having been regularly changed, yet the change is

58

required. Similarly, re-engineering a particular system whose quality is low, but

business value is high, is less risky and more economical than replacing the whole

system.

There are two phases involved in the process of re-engineering: reverse engineering,

which is an understanding phase, and forward engineering, which is a transformation

phase. Chikofsky and Cross (1990) provided a widely-accepted definition of reverse

engineering, which states that reverse engineering is a process that examines and

analyse a subject system to determine its components and their relationship with each

other, in order to achieve an abstract level of architecture. The following diagram

(Figure 3-4) helps to understand the terminology used in a software lifecycle.

The main aim of reverse engineering is the extraction of design artefacts and then the

construction of abstractions that are not as dependent on their implementation. It is

crucial to focus on gaining an understanding of the system, as system documentation

is often not available and source code files may be the only resource for extracting

information related to the system (Chikofsky and Cross, 1990).

Forward engineering is concerned with moving towards practical implementations

from the perception of high-level requirements and models. Re-engineering is thus a

Figure 3-4: Reverse and forward engineering (Chikofsky and Cross, 1990).

59

combination of reverse engineering and forward engineering. The driving force of re-

engineering in forward engineering is the necessity of implementing new

requirements, and in reverse engineering, re-engineering is conducted for an existing

system model, by implementing the changes needed for new requirements, and

transmitting the changes that are implemented with the techniques of forwarding

engineering.

3.2.7. Software Architecture Recovery

Software engineering has several disciplinary branches, among which is software

architecture recovery (SAR), which applies the concept of reverse engineering to

existing systems. SAR is the process of retrieving the major components of a piece of

software and/or its subsystems, and also dependencies between software and

subsystems (Gall et al., 1996). The architecture of a software system consists of

compositions of components, the interaction between these components. Retrieving

and recovering crucial architectural information from an existing system is the prime

objective of SAR.

Various terms are used in the literature to refer to the term SAR, such as ‘Reverse

Architecting, Architecture Extraction, Mining, Recovery, or Discovery’ (Ducasse and

Pollet, 2009). The term discovery is specifically used for the top-down process,

whereas recovery refers to a process that follows the bottom-up approach, which the

present research follows. Ducasse and Pollet (2009) conducted surveys on various

methods of SAR and categorised SAR methods on the basis of their goals, techniques

used, variety of inputs, types of processes and formats of desired outputs, as depicted

in Figure 3-5. In respect to SAR goals, software architecture has various purposes. In

the views of Garlan (2000), and the development of these by Ducasse and Pollet

(2009), there are six prominent goals of software development fulfilled by software

architecture, as follows:

1. Understanding and re-documentation: A software system is depicted at an

optimum level of abstraction by architectural views, which is necessary to

explain the design of the software. Architectural views help in taking decisions

60

considering the constraints of design, principal of designs, quality attributes.

For example, this goal is illustrated by the software bookshelf introduced by

Finnigan et al. (1997).

2.

3. Re-use: Architectural views highlight components, frameworks and patterns

which can be re-used. SAR is also used for architectural environments that are

service-oriented, to identify the components which can be converted from the

existing system into new services (O’Brien et al., 2005).

4.

5. Conformance: Using conceptual architecture is risky in evolving a software

application because it is often inaccurate compared with concrete architecture.

SAR is a means of checking conformance between concrete and conceptual

architecture. Murphy et al. (2001) pointed out that the reflexion model bridges

the gap between the system's source code and the system's architecture.

Reverse engineers can use SAR to check the conformance of architecture

reconstructed against a rule like Symphony (van Deursen et al., 2004).

6.

Co-evolution: Abstraction, architecture and implementation have two levels

in their evolution. They evolve at different speeds, so the problem of

synchronisation is faced by the software; in order to avoid architectural drift,

synchronisation is essential. A method of repairing evolution anomalies

between concrete and conceptual architectures was proposed by Tran and Holt

(1999), which involved altering either the source code or the conceptual

architecture.

7. Analysis: Quality attribute analysis and dependence analysis are performed on

the basis of high-level abstraction of architectural views. Architectural analysis

methods like ATAM (Kazman et al., 1998) are supported by SAR

environments.

8.

9. Maintenance and evolution: SAR is usually considered the first step towards

maintenance and evolution of software. For example, focus approach (Ding

and Medvidovic, 2001) helps to understand the architecture of a software

system as well as the evolution of the application.

61

10.

11.

The procedures for software architecture recovery have been classified by Ducasse

and Pollet (2009) into three classes, bottom-up, top-down and hybrid approaches.

Bottom-up processes: Often referred to as recovery processes (Figure 3-6), these

begin with low-level information such as source codes, documentation and other

structured information related to the software. While most include structural

information, some include non-structural information such as file paths and

ownership; some also include textual information such as the text content of the

documentation and comments. The abstraction level of the information is then

increasingly raised to achieve a high-level view of the software. A classic example of

bottom-up processes is demonstrated by the Dali tool (Guo et al., 1999), an automated

and interactive architecture extraction system.

Figure 3-5: A process for SAR (Ducasse and Pollet, 2009, p. 576).

62

Figure 3-6: A bottom-up process (Ducasse and Pollet, 2009).

Top-down processes: Also known as architecture discovery processes (Figure 3-7),

these aim to discover components of the source code that correspond to high-level

knowledge description of the architecture, for instance architectural style and its

requirements. A top-down scenario is shown in the reflection model (Murphy et al.,

2001). Firstly, the user plans a high-level conceptual view, and after that the user starts

the process of mapping the concrete view, and the conceptual view of the source code.

Hybrid processes: As the name entails, hybrid processes combine elements from both

bottom-up and top-down processes, as shown in Figure 3-8, and are often used to

prevent architectural erosion. The aim of hybrid systems is to use bottom-up

techniques for hypothesis recognition in order to aid exploration of architectural

hypotheses for top-down processes (Pashov and Riebisch, 2004). Several techniques

are used to abstract low-level knowledge, which is then confronted against refined

Figure 3-7: A top-down process (Ducasse and Pollet, 2009).

63

high-level views. The conceptual and the concrete architectures are then reconciled.

For example, the pattern-based recovery system in Sartipi (2003) has a two-phase

architecture reconstruction process. In the first phase, the source code is parsed into a

graph and divided into cohesive sub-graphs using data mining algorithms, which

results in a more abstract representation of the code. The graph can then be queried

using an architecture query language (AQL) to find a sub-graph that matches the query

using clustering and graph matching techniques in a top-down fashion.

Approaches undertaken for SAR in regard to inputs are mostly based on source code

information or the expertise of humans. Sometimes, however, other means and

information sources are utilised, like dynamic and historical information. Different

architecture reconstruction techniques have been looked at by the research

community; the techniques below were classified by Ducasse and Pollet (2009) based

on their level of automation.

• Quasi-manual: using this technique, the reverse engineer has to manually

find the architectural elements, and findings of reverse engineering are

supported by different studies. Examples of this technique are Focus (Ding

and Medvidovic, 2001) and Dali (Guo et al., 1999).

• Semi-automatic: using this technique, the reverse engineer has to

manually instruct the tool regarding how to automatically flag any

refinements or recover any abstractions. Examples of this technique are

Armin (Kazman et al., 2002) and SARTool (Feijs et al., 1998).

Figure 3-8: A hybrid process (Ducasse and Pollet, 2009).

64

• Quasi-automatic: using this technique, the reverse engineer has no control

over the tool and mainly steers the iterative recovery process. Examples

of this technique are Alborze (Sartipi, 2003) and Bunch (Mitchell and

Mancoridis, 2006).

Most of the approaches’ outputs aim to provide architectural views or visualisations.

However, tools such as Rigi (Müller et al., 1993) use graph representations of the

software to visualise the outputs/results.

In order to understand existing software systems, it is necessary to understand both

dynamic and static analysis, which are utilised to provide information about software

artefacts and their associations.

Static analysis describes static information; it shows the software structure as it is

written in the source code, e.g. classes and components. Mendonça & Kramer (2001)

provide an approach to static reverse engineering known as X-ray, which can be useful

in recovering the architectural runtime information from distributed software artefacts.

The driver behind the development of X-ray was the supposition that a lot of

information on the possible runtime architecture for a distributed system is accessible

from its implementation. In X-ray, this is achieved or accessed by the utilisation of

three corresponding patterns based on static analysis techniques: module

classification, syntactic pattern matching and structural reachability analysis. Abi-

Antoun and Aldrich (2008) developed an additional approach to static analysis in order

to extract the runtime architectures from object-oriented programs (OOPs) written in

existing languages. In their method of architectural recovery, a developer basically

utilises annotations to recover the design from code.

Dynamic analysis describes dynamic information and shows behaviour during

runtime, e.g. event trace information. SCED (Koskimies et al., 1998) is a prototype

tool that was built in order to support the dynamic modelling of object-oriented

applications. This tool was designed to be utilised in the design and analysis phases of

the development process of object-oriented software. In this research, this tool is used

to reverse engineer the behaviour of Java applications on runtime. The primary user

interaction in the SCED tool contains several independent editors, including a state

65

diagram editor and a scenario diagram editor. In SCED, a scenario diagram is a

variation of a sequence diagram in Unified Modelling Language (UML). A notation

of the SCED state diagram can be exemplified as a simplified UML statechart diagram

notation.

Combined static and dynamic analysis: various attempts have been made to merge

dynamic and static analysis. Systä (2000) presents a reverse engineering environment

which is known as Shimba, in order to reverse engineer Java software, which combines

dynamic and static analysis in an effort to understand the Java software system’s

behaviour. Static analysis is utilised to select components that need to be analysed

later during dynamic analysis. Systä’s approach is based on the fact that the software

engineer is not required to track the entire system if only a particular part needs to be

examined. The dynamic examining is done via the process of generating the event

trace information by running the software under the JDK debugger, also known as

JDebugger.

Sartipi et al. (2006) also provide helpful architectural information through both

dynamic and static analyses. Sartipi et al. (2006) developed an architecture recovery

project named Alborz, in order to recover components that are highly cohesive. In the

case of static analysis, multiple components are extracted by the tool along with their

interactions, where a component is a number of system functions or a number of

system files, and the interactions are defined according to or based on the terms of the

export and import of entities of the software at the functional level. In dynamic

analysis, frequent patterns in execution process traces are utilised to map the individual

software’s features onto the components of the software.

Generally speaking, the process of recovery is based on the extract-abstract-present

paradigm, as shown in Figure 3-9. I can observe from the literature that the recovery

phase in most approaches involves the process of an extraction phase, which involves

the architectural information that is extracted with the help of several artefacts that are

identified as the source code of the system, related documentation, history or

knowledge regarding the architecture, and storing the architectural information in a

repository. It also involves abstraction, which helps to describe the operation of

filtering and grouping the information in order to gather meaningful information. The

66

procedure of presentation also provides details related to organising information in

such a way that it becomes familiar to the readers who are targeted, such as via

graphical and textual representations.

Figure 3-9: Extract-abstract-present paradigm.

3.2.8 Architecture Recovery Frameworks

Several frameworks adopted by researchers have been covered in the literature in the

last decade for supporting software architecture recovery. Mendonça and Kramer

(1996a) divided them into sub-frameworks, highlighting the advantages and

disadvantages of each such as (filtering and clustering, compliance checking, analyser

generator, and program understanding frameworks). More recently, machine learning

and model-driven engineering frameworks have been used (El Beggar et al., 2013). A

categorisation of architecture recovery frameworks is as follows (Mendonça and

Kramer, 1996):

Filtering and clustering frameworks: A source model is extracted from the source

code, and it is processed through a parser in a database. The filtering and clustering

operations are performed based on low-coupling and high-cohesion properties to help

identify the system components, as shown in Figure 3-10. Techniques that fall under

this category are Rigi (Wong, 1998) and Arch (Schwanke, 1991).

67

Compliance checking frameworks: The process of extraction here follows the same

steps as the filtering and clustering frameworks. It differs from the previous framework

in the analysis phase, as the analyst defines the projected software’s high-level model

in a particular form (e.g. interconnection and modules, design pattern, inheritance

hierarchy, architectural style), and after that, the tool examines the conformance level

between source model and proposed model, as shown in Figure 3-11. An example of

this method is the software reflexion model (Murphy et al., 1995; Buckley et al., 2013;

Ali et al., 2012; Buckley et al., 2015).

Analyser generator frameworks: An abstract syntax tree is generated and stored by

a parser. A query language is utilised to help generate queries. The purpose of those

queries is to help analyse the specific properties of a software source model. Those

abstract syntax trees are fully dependent on the query language. Refine (Burson et al.,

1990) and Genoa (Devanbu, 1992) are examples of this environment.

Figure 3-11: The compliance checking framework (Mendonça and Kramer, 1996).

Figure 3-10: The filtering and clustering framework (Mendonça and

Kramer, 1996).

68

Program understanding frameworks: In this method, the knowledge of an expert

plays a key role in generating the abstract, high-level views of the system’s

functionality. The knowledge from the expert is taken and stored in a knowledge base,

where the source model is placed and represented in an abstract syntax tree. Both the

knowledge base (expert’s knowledge) and the syntax tree (source model) support the

recognition engine in searching for possible matches. The output of this process is a

hierarchy of recognised patterns, which are the user-guided views of the system.

DECODE is a tool in this category (Quilici and Chin, 1995).

Machine learning frameworks: Among the many techniques adopted by software

architecture recovery is ‘machine learning’. This technique mainly learns from

previous background knowledge and data to help predict and extract future

information. It is separated into two major categories: supervised and unsupervised. A

supervised machine learning technique divides and classifies data into pre-defined

classes, which are later used for training. In the unsupervised technique, data is not

classified and is put in classes based on similarity properties (Bibi and Maqbool,

2011).

In machine learning, clustering is considered an unsupervised learning method, i.e. the

aim is to learn an underlying pattern that describes the data. Clustering techniques can

be adopted to find items that are related to one another in a set. This technique can

organise data into groups or clusters, with the help of measuring or by using similarity

distance. There are various similarity measures that are adopted under the clustering

technique, such as Manhattan distance, Jaccard distance, Euclidean distance, etc. In

the majority of cases, clustering requires the construction of a matrix, based on the

data for input, and in the next step, algorithms are applied so as to identify the clusters.

Regarding clustering algorithms, two main categories are defined, namely partitional

algorithms and hierarchical algorithms. A survey followed by a detailed study are

presented by Maqbool and Babri (2007a), explaining the way in which the techniques

of hierarchical clustering are implemented for architecture recovery, comparing

different hierarchical clustering algorithms and measures, results of research, and

69

trends and issues. Unlike hierarchical clustering, partitional clustering requires a pre-

set number of clusters as an input.

Supervised learning, on the other hand, learns an underlying pattern, or a function, that

maps the data to a desired target output or labels, e.g. regression and classification. In

Maqbool and Babri (2007b), a Naive Bayes algorithm was applied in software

architecture recovery to deal with incomplete or missing documentation. The classifier

was trained to classify new software modules into the appropriate subsystems. Bibi

and Maqbool (2011) explored the use of supervised learning techniques in specific

areas, such as architectural documentation maintenance management, where the

researcher applied Bayesian and k-Nearest-Neighbour classifiers.

Model-driven Engineering frameworks: A developing approach in software

development is model-driven engineering (MDE) (Schmidt, 2006). The primary

concern of MDE is with the reduction of gaps between software implementation and

problem domains using systematic transformation between the problem-level concepts

and software implementation. MDE is a promising approach which centres around the

theory “Everything is a model”(Pires et al., 2018). Models are used to bridge the gaps,

and they define the complex systems at multiple abstraction levels through a variety

of viewpoints.

In this context, the proposed technique of software architecture recovery can be

initially formalised and categorised as a model-driven engineering framework.

Contributions are made by this approach to the development of specific applications

that are service-based, and they are also appropriate in this case. MDE has started to

be recognised in the research community for addressing reverse engineering problems

in the last few years (Raibulet et al., 2017). MDE approach supported the separation

of concerns as models can be reusable and independent of their graphical notation.

Also, an architectural model can be manipulated in other contexts and transformed

into other forms. MDE is also supported with languages and plugins that aid the semi-

automatic generation and manipulation of models, for example MDA transformation

language. This allows the reusability, checking and automation of mapping rules and

keeps the traceability between codes and models.

70

3.3. Related work

In this section, the primary limitations and drawbacks identified in relation to varied

aspects of reverse engineering disciplines are discussed. The selected aspects relate to

the present work, and the approach outlined in this section is from the architecture

recovery perspective. In the first section, I present state-of-the-art research on

generalised reverse engineering approaches based on the MDE paradigm, using

software static or dynamic analysis. In the second section, I present work related to

architecture recovery of microservice architecture. The last section presents a

comparison and discussion of related approaches.

3.3.1 Overview of Model-Driven Architecture Recovery Approaches

The aim of this section is to provide a brief glimpse of the current state of generic

bottom-up model-driven reverse engineering approaches, which are centred on the

core concepts of the model-driven paradigm. The main conceptions considered in the

studied approaches are presented in Figure 3-12.

First the extraction mechanisms implement to systems to generate the PSM as in

Figure 3-12. With the concept of model transformation, PSM models are abstracted

and altered, with the aim of generating the PIM, the targeted model. The

transformation of models includes the computation, querying, navigation and

Figure 3-12: The main conception considered in the approaches.

71

construction of further models (OMG, 2014). This study focuses on the following

research questions are presented in Table 3-1:

Table 3-1: Research questions guiding the study.

The following presents the objectives of each of the approaches, the metamodel

employed in each approach and the stages of reverse engineering associated with each

approach. Author names are used for approaches that have no name.

MoDisco

Brunelière et al. (2014) propose MoDisco, i.e. well recognised as the model-driven

reverse engineering approach. The core objective of MoDisco involves assistance in

tasks pertaining to legacy systems, including documentation, understanding, quality

assurance and modernisation. The architectural design of MoDisco comprises three

main layers, namely infrastructure layer, technology layer and use-case layer. In this

model, the first layers give general artefacts/components that are independent from

any particular legacy technology. Another layer comprises specific components for

single legacy technology. The final layer focuses on offering the integration and re-

utilisation. For example, elements of two layers can be integrated, and then get reused

by customisation for some distinct situations or scenarios.

The MoDisco approach involves two different steps; the first step is related to ‘model

discovery’, in which the identification of the PSM is carried out, and this represents

the system’s source code. This model is obtained through specific software

Q.1: What types of artefact analysis are applied to generate the PSM?

Q.2: What are the source artefact extraction mechanisms used to obtain the initial

model from the analysed systems?

Q.3: What kind of metamodels can be used by different types of model-driven

architecture recovery approaches?

Q.4: What kind of tools can be used for the implementation of different types of

model-driven architecture recovery approaches? Can the approaches provide new

tools every time for solving different problems or are they using the existing tools?

Q.5: To what extent can automation be applied to the transformation in the

specific context of model-driven architecture recovery approaches?

Q.6: What are the mechanisms through which the transformation can be applied

to the model in order to have different abstract models?

72

components known as discoverers, and conforms to a given metamodel. For instance,

metamodels associated with XML, Java and JSP are provided by MoDisco. The

second step is ‘model understanding’, in which an in-depth analysis of the identified

model (from the first step) is carried out. The objective of this step is to have clear and

effective model transformations, through which OMG ADM standard metamodels are

conformed. Some of these metamodels are the Generic Abstract Syntax Tree

Metamodel (GASTM), the Knowledge Discovery Metamodel (KDM) and the

Software Measurement Metamodel (SMM).

Figure 3-13 shows some of the specific steps performed within model transformations,

in which the model is checked and refined through different steps until the desired

model is derived. These steps are:

• Navigation through the initial models for the exploration of the system.

• Querying of the model to identify the required information.

• Model computation using the identified information.

• Representation retrieval in the derived models (model building).

Implementation of MoDisco is done in the form of the Eclipse open-source project.

MoDisco does not aim at managing particular software such as microservice

architecture; instead, it seeks to offer generic components to recover the legacy

artefact. Although MoDisco is generic and includes various PSM metamodels, such

as JSP, XML and Java, they do not support a ‘platform’ which supports higher-level

programming idioms such as load balancing and support for architectural patterns. At

artefact-level, MoDisco offers the potential to retrieve essential data from artefacts of

software as well as highlights these artefacts along with the interrelations of them.

However, the discover component that generates the PSM in MoDisco is not relying

on multiple source artefact types nor integrating multiple source artefacts in the same

transformation. At the architecture level, MoDisco defines a formal definition of

models or diagrams, the view of architectures and automated identification of such

architectural views; however, dependency recovery is limited to internal dependencies

within one system, and this framework does not cover external dependencies at the

system level (from system to system).

73

Cosentino et al.

Cosentino et al. (2012) present an approach that aims to recover business rules from

source code in Java by separating the segments of code that is related to the business

processes. In this study, the reverse engineering based model-driven framework is

exploited. Figure 3-14 shows various steps that are used in this approach, such as

model discovery, variable classification, business rule identification and business rule

representation as described in the following. These steps follow a chain of model-to-

model transformation, and ATL is used to implement these transformations.

 Model discovery is enforced with the use of MoDisco (Brunelière et al., 2014)

in the framework, and model discovery is added to the source code as an input

in Java applications and when generating Java models; this Java model is

referred to as platform-specific model.

 Variable classification recognises the variables provided by a domain together

with their containing classes. A PSM is provided as the input for this operation,

as well as obtained outcome reflects the modelling that directs every domain

class of domain along with the concerned internal variables. The key agenda of

Figure 3-13: General principles of a) model discovery and b) model understanding (Brunelière et

al. 2014).

74

this operation is to determine variables that reflect concepts of the business

domain as well as offers suggestions regarding the rules of business.

 Business rule identification is used in providing artefacts which represent

business rules based on the program slicing technique (Tip, 1995). A PSM and

domain variable model are taken as inputs. Two models are derived from this

particular operation: one model comprises an internal representation of the

business rules while the other model is based on a global domain model that

conforms to the business rule metamodel, which comprises classes, attributes

and methods.

 Business rule representation uses artefacts (text, graphs, etc.) that are

understandable to humans in representing the extracted business rules.

This approach currently considers only Java software, as well as developing the Java

PSM. The PSM is not applicable to the extraction of crucial information (such as

classes, libraries, annotations and methods) from the various artefacts. The discovered

models do not really describe a PIM since their works do not perform any distinction

between platform-independent and platform-dependent technology concepts.

Figure 3-14: Overall approach (Cosentino et al., 2012).

MARBLE

Perez-Castillo et al. introduced the semi-automated approach to recover the business

processes from Legacy Systems (Pérez-Castillo, De Guzmán, et al., 2011; Pérez-

Castillo, Fernández-Ropero, et al., 2011). Their recovery procedure is based on their

framework called MARBLE (Modernisation Approach for Recovering Business

75

processes from Legacy systems). This method is employed as an Eclipse plug-in.

MARBLE supports the standard metamodel, Knowledge Discovery Metamodel

(KDM), which is proposed by the Architecture-Driven Modernization (ADM) for

retrieving business processes from a legacy system. With the use of MARBLE,

communication with experts in between the extraction process is enhanced, and due

to this, this method is also called a semi-automated approach.

In MARBLE, there are four clear abstraction levels, which show three different

transformations as shown in Figure 3-15. MARBLE’s initial level reflects and

determines potential information system of legacy within the actual world. The first

model is constructed by the legacy system, in which the analysis of the source is

performed in a static and dynamic model. The second level includes various models,

such as one model for each different software artefact, i.e. user interface, source code

and database. At this level, different reverse engineering techniques, such as program

slicing, log file generation within the static or dynamic evaluation, are mainly utilised

for obtaining data from the software for forming a PSM, that conforms to metamodels

e.g. a Java metamodel, SQL metamodel, etc. At the third level, a PIM is found, which

is a cohesive representation of all the PSMs, and is generated in this approach by QVT

relation. PIM is defined based on the KDM metamodel. The fourth level of MARBLE

represents a CIM (Computational-Independent Model) which identifies the different

business process models, that conform to business process modelling and notation

(BPMN).

MARBLE has been applied to six case studies to recover business processes from

systems. The use of case studies helped in the improvement and refinement of the

MARBLE tool and technique. The efficiency and effectiveness of MARBLE are

measured in these case studies. These measures are computed in regard to retrieved

business process elements. Measurement of effectiveness is also conducted with the

help of recall and precision. In precision, the correctness of the recovered business

process is examined, while in recall, the completeness of the recovered business

process is examined. Efficiency is calculated on the basis of the time required for the

recovery of relevant information. The results of these case studies varied. Values for

precision and recall varied between systems, though recall tended to be higher than

76

precision. Thus MARBLE retrieves a high number of business activities, but some of

them may be erroneous.

MARBLE presents different abstraction levels and different models, such as PSM,

PIM and CIM. Therefore, the last transformation of the fourth layer which represents

the CIM should be maintained by the manual intervention of experts of business in

order to refine the business processes. The fourth layer is beyond the scope of this

thesis.

El Beggar et al.

An approach has been suggested by El Beggar et al. (El Beggar et al., 2013) for the

reverse engineering process for recovering objects from COBOL legacy systems.

There are three steps overall that are considered for the identification of objects.

Regarding model-driven architecture recovery solutions, El Beggar et al. suggest that

the initial step is directed towards analysing and examining the source code required

for the development of the PSMs that conform to the COBOL file description

metamodel, as depicted by Figure 3-16. After performing this task, the obtained PSMs

are integrated in a collective manner for the generation of the common model. This

unified model is named as the Merge Model of File Descriptors, abbreviate referred

to as (MMFD).

Figure 3-15: MARBLE framework (Pérez-Castillo, De Guzmán, et al., 2011).

77

In the last step, a common model is transferred from PSM: MMFD to the PIM: Domain

Class Diagram (DCD), which is, of course, a form of domain class diagram. The study

mentions that for the transformation of the model they define mapping rules written in

a natural language, as depicted in Table 3-2, and then they implement these via an

ATL-based language.

Furthermore, they critically compare and evaluate their model-driven architecture

recovery approach with a clustering approach in order to reveal which approach is

more accurate. For this purpose, three specific evaluation metrics, recall, precision and

F-measure, were taken into consideration. These metrics are used to obtain

information regarding the degree of closeness of approaches of the correct extracted

classes to the eventual classes produced by the human experts, which can be termed

the expected classes. As per the results of the comparison, it is revealed that model-

driven architecture recovery approaches are more appropriate in comparison to

clustering approaches, due to the existence of high values of precision, recall and F-

measure in comparison to those in the clustering approach. The main limitation of this

approach and from a reusability point of view, is that it can only be utilised for a

specific system such as COBOL legacy system.

Table 3-2: The main mapping rules for transformation (written in a natural language) (El

Beggar et al., 2013).

78

Fleurey et al.

A study by Fleurey et al. (2007) proposed a model-driven reverse engineering

approach that is based on the semi-automatic and round-trip model, which is assistive

towards in the process of migration of industrial software. The clear intention behind

this proposal raises from the need of complete re-development of the legacy

application. The process of model-driven migration that was developed is illustrated

in Figure 3-17.

There are four steps in this process. Within the depicted procedure, the first stage is

focussed on attaining parsing of the existing source codes of the legacy application in

an automatic form, which is helpful in creating abstract syntax tree for the information

regarding legacy based on the source code, along with parsing, to obtain a code model

that assists in the representation of the PSM that is in conform to the legacy

programming language metamodel. Secondly, this process involves reverse

engineering from the PSM (denoted as L-figure 3-17) to the PIM (pivot metamodel)

via model transformations. The pivot metamodel (ANT), shows algorithms, static data

Figure 3-16: a) The PSM metamodel. b) The DCD metamodel (El Beggar

et al., 2013).

79

structure, Graphical User Interface (GUI), application navigator and widgets. Thirdly,

the ANT model is specifically transformed into PSMs of the application (UML

model). Finally, the generation of code is the last step in the process for developing

new applications from the PSM.

A tool suite is provided by the authors for this process; it also named as Model-In-

Action (MIA). It helps in the execution of round-trip engineering to transform and

generate the code. These transformations are highlighted for the input and output

metamodels. There are three elements for each rule, namely context, query and action,

wherein the context is identified to signify a collection of the declared variables and

the parameters. A query is defined as programming expression that is helpful in

analysing the model elements that are processed with the help of rules, while an action

can be considered as creation, deletion or modification of the model elements, which

are performed in each model and returned as a query. This approach is valid on an

existing case study based on the COBOL language. The case study describes the

migration from the mainframe to the J2EE of a large banking system.

Akkiraju et al.

For Service-Oriented Architecture (SOA), Akkiraju et al. (2012) clearly indicate a

reverse engineering approach. This reverse engineering approach is directed to

obtaining a model from PSMs in the process of developing PIMs. This model

originates from an application developed on a specific platform. The authors’

Figure 3-17: Fleurey et al.’s (2007) reverse engineering process.

80

approach applies forward engineering to the smooth translation of PIM to PSMs onto

the target platform. Regarding metamodels, the creation of these platform metamodels

can be handled manually or automatically by exemplar. Different vendor tools,

including IBM’s Rational Software Architect (RSA), provide different exemplar

analysis tools. This metamodel is undertaken in a model generator module for the

purpose of developing the PSM.

Model-driven transformations are generally used in the derivation of PIMs from

PSMs. In this process, first of all, the authors developed the transformation rules

manually. After this, IBM’s RSA transformation authoring tool is used for codifying

mapping rules. Table 3-3 presents a pictorial presentation of transformation mapping

rules applied between a PSM, i.e. SAP NetWeaver composite application framework

(CAF), and a PIM metamodel. In an SOA environment, the elements which will be

valued at the platform-independent level are extracted by performing rationalisation

and filtering mechanisms, for instance data structure, applications service, service

operations and business objects. Then from the PSM, they extract different services

such as security services, process services, infrastructure services and information

services. This leads to the development of service dependency information and a

service model, which together form the PIM.

Even though this work focuses on service-oriented architecture rather than the

microservice architecture, there are many similarities in the MDE approach

undertaken. Their approach focuses on service-level components rather than the class

level of software design. However, their reverse engineering is difficult to achieve in

microservice architecture. Microservice architecture has specific conceptual

characteristics of architectural elements at different abstraction levels different than

SOA (Rademacher et al., 2018).

81

Table 3-3: Transformation mappings between the PIM and PSM metamodels

(Akkiraju et al., 2012).

Source: Platform Independent Model (PIM)

artefacts

Target: SAP NetWeaver artefacts

Operation Operation

Message

InputOperationMessage,

FaultOperationMessage,

OutputOperationMessage

ServiceComponent Service

Entity BusinessObject

FunctionalComponent BusinessObject

3.3.2 Microservice Architecture Recovery Approaches

The following literature review investigates the architecture recovery approaches

related to microservice architecture. The study of the topic of microservice

architecture recovery is limited.

MicroART

Granchelli, Cardarelli and Francesco et al. (2017) propose a microservice architecture

recovery approach called MicroART, based on MDE principles. MicroART has two

main phases: architecture recovery and architecture refinement. The phase of

architecture recovery focuses on the recovery of the system’s initial architecture

(physical model). The architecture refinement phase focuses mainly on refining the

obtained architecture. The activities considered in the phase of architecture recovery

are dynamic analysis to extract container information and communication logs, and

static analysis to extract information from source artefacts (such as service descriptors,

system name and developers).

Architecture recovery also includes activities that are performed in order to abstract

information while utilising mapping techniques, as shown in Table 3-4, which map

the information collected to the architectural concepts automatically according to

(MicroART-DSL) metamodel. In the phase of architecture refinement, the authors

82

practiced the process of refinement in a semi-automatic manner in order to get the

ultimate model of a microservice architecture, which is named the logical model.

Granchelli, Cardarelli, Francesco et al. (2017) propose a microservice architecture

metamodel that is made up of seven meta-classes, as depicted in Figure 3-18, in which

the root concept to be considered for the system to be designed is a product.

Microservices represent the system, the main attributes of which are types (either

functional or infrastructural) and the host (assigned IP address). The interface

represents the endpoint of communication and attaches it to a particular microservice.

The link represents the communication between them. The team consists of

developers. Developer’s meta-class depicts the developer of the software that takes

part in the system’s development. A cluster represents a logical abstraction, which is

used to group microservices of a specific type.

The main function of MicroART is to gather information from the repository, and after

taking all necessary information, it produces the system’s architecture. After preparing

the model, it is further polished by MicroART, and a refined model of architecture is

produced by the implementation of service discovery resolution as a refinement

process. The Eclipse Modeling Platform (EMF) was utilised in the development of the

MicroART tool (Granchelli, Cardarelli, Di Francesco, et al., 2017). The MicroART

Figure 3-18: MicroART metamodel for microservice-based systems

(Granchelli, Cardarelli, Francesco, et al., 2017).

83

tool primarily consists of four components, GitHub Analyzer, Docker Analyzer, Log

Analyzer and Model Log Analyzer.

GitHub Analyzer uses the web URL as an input of the source code of the system

repository. It copies the repository and gathers information that is related to the name

and description of the system and developer. The Docker Analyzer queries a runtime

environment of Dockers and takes services’ IP addresses and the interface of the

network. The function of the Log Analyzer is to investigate the log files that are

prepared by monitoring tools dynamically. It can also track the communication

between different services. The main function of the Model Log Analyzer is to

consider the architecture of the physical model as an input, and on this basis it

identifies and discovers services and utilises the information to filter the log file

properly. MicroART has been implemented to Acme Air, which is a microservice-

based system for an airline website.

The main limitation of the MicroART approach is their metamodel, which is very

simple and has few concepts and concerns to represent actual complex microservice

architecture. MicroART’s DSL metamodel does not define the asynchronous

communication of the microservice. The generated models do not really describe a

PSM though their works adopted MDE framework, the authors do not perform any

distinction between platform-independent and platform-dependent concepts.

84

Table 3-4: Mapping of the extracted information and the MicroART-DSL(Granchelli,

Cardarelli, Francesco, et al., 2017).

Microlyze

Another architecture recovery approach is Microlyze, by Kleehaus et al. (2018). This

approach integrates the static and runtime data in order to recover IT infrastructures

that are supported by microservice architecture. The layers like hardware, business,

applications and their interrelationships are comprised in the recovery process.

Microlyze correlates the reconstruct model, which is based on the infrastructures of

the microservice, with the Enterprise Architecture (EA) model, which is utilised by

several EA frameworks.

Thereafter, it is further divided into three abstraction layers. The first layer

is recognised as the technological layer because it contains and defines the aspects

related to technology, such as hardware, network and other physical components. The

second is the application layer, which encompasses the software elements that are

running on the first layer, such as the services and instances of service. The last layer

is the business layer, which functions on top of the layers mentioned above. This layer

characterises the facets that are associated with business, such as processes and

activities of the business that are operated by microservices. With the help of analysis

of monitoring data, the first two layers, the technology layer and application layer, are

reconstructed automatically. However, additional knowledge of the domain as well as

manual input is required to recover the business layer.

85

This approach was prototyped and evaluated in a microservice-based system called

TUM Living Lab Connected Mobility (TUM LLCM). Microlyze does not adopt a

model-driven recovery approach. Instead, it utilises a distributed tracing component

that dynamically monitors simulated user requests. Metamodels and mapping rules are

not dealt with in this approach.

Mayer and Weinreich

Mayer and Weinreich’s (2018) study is mainly focused on the architecture extraction

approach, so that it can continuously extract REST-based architecture from

microservice software systems, in which the service communication is synchronous

based on HTTP. This approach is a combination of static information (such as API

descriptions and services) and dynamic information (communication relationships

captured at runtime).

The architectural information that is mostly presented on the basis of that data model,

given in Figure 3-19, consists of three main sections, infrastructure, service and

interaction. The service part contains the service information, which is mostly

obtained from the static analysis. The service element consists of the version, title and

brief of the service; this represents a microservice. The contact element is connected

to the services element that represents a person who is responsible for various services

and domain nodes in the organisation. The method element explains the HTTP

method. The parameter element is also represented by the method parameters. The

possible outcomes to the invocations and methods are represented as the response

element, which also includes descriptions of various responses. Parameter and

response elements are also connected with the schema element, so that it can explain

multiple types of response data and invocation parameters.

The information that is related to the infrastructure is also given on the right side of

Figure 3-19. It is assumed that every service is operating in its own container. Region

and host elements represent the physical infrastructure. The interaction section is used

to demonstrate the microservices communication. Any runtime connection related to

the service is shown by the request element linked to the server-side responses. The

86

data model was evaluated by conducting a combined interview and survey so that

significant information use cases can be used for managing microservices.

The approach of Mayer and Weinreich to the extraction of architecture reflects three

stages, as shown in Figure 3-20. These stages are 1) data collection, 2) aggregation

services and 3) management services. In this process, first of all, static information

related to services and infrastructure is obtained and redirected towards central

management services. After this, the extraction of service runtime information is

frequently carried out and stored in service-specific log files. Eventually, the logged

files request is extracted by taking the assistance of aggregation services.

This work uses dynamic analysis, i.e. monitoring of simulated requests at runtime, to

recover synchronous REST-based communications in microservice architecture. The

approach extracts static information, which starts after a service instance is created

and deployed; such architectural information is related to API descriptions, developer

and service. The main limitation in Mayer and Weinreich’s approach is the restriction

to REST-based and synchronous communication between services. They do not

expressly represent any other communication types that exist in microservice

architecture.

Figure 3-19: Data model (Mayer and Weinreich, 2018).

87

3.3.3 Model-Driven Approaches for Microservices

This section presents model-driven approaches for microservices that have not been

used in architecture recovery. The studies discussed here (Düllmann and van Hoorn,

2017; Rademacher, Sorgalla, et al., 2019) present work related to metamodels and

languages for microservice architecture, however, they are not oriented towards

“architecture recovery”. Düllmann and van Hoorn (2017) present a structure of a

microservices environment from various viewpoints, such as microservice types,

dependencies and deployment, focusing on the area of application performance

monitoring as shown in Figure 3-21. However, their proposed metamodel does not

consider asynchronous operation or asynchronous dependencies. The structure of

business data offered by the services is also not covered. In addition, their metamodel

concepts are not comprehensive, do not cover all architectural concepts that exist in

the code and are missing some of the concepts that should be considered when

recovering models.

Rademacher, Sorgalla, et al., (2019) present a metamodel for model-driven

development of microservice architecture. Its basic concepts were deduced from ten

existing approaches to SOA modelling. Their metamodel is structured into three distinct

viewpoints. They comprise only those concepts relevant to domain-specific Data,

Figure 3-20: The architecture extraction process.

88

Service and microservice architecture Operation, as shown in Figure 3-22. However,

being oriented towards implementation of microservice applications, the proposed

metamodels need to be more concise and high-level if they are to be used for the

reverse purpose, i.e. recovery of microservice architecture from implementation. The

proposed service and operation metamodels do not define concepts for asynchronous

data exchange. In addition, their metamodel lacks concepts related to infrastructure

microservices.

Figure 3-21: Metamodel proposed by Düllmann and van Hoorn (2017).

89

Rademacher et al. (2019) present a metamodel of technology modelling language in

the context of microservice architecture, implemented with Xcore, as presented in

Figure 3-23. The motivation behind their work is to refactor monolithic architecture

into microservice architecture. The metamodel they propose captures technological

decisions related to microservice development and deployment with the aim of

enabling the usage of different technologies in microservice architecture. Figure 3-23

Figure 3-22: Metamodels a, b and c proposed by Rademacher, Sorgalla, et al.,

(2019).

90

expresses the metamodel concepts as ‘Deployment Technology, Data Format,

Infrastructure Technology, Programming Language and Protocol’. In terms of model

transformation, they use viewpoints and import mechanisms to reduce abstraction

among platforms. The main drawback of this approach is that it introduces a level of

complexity in reverse engineering activity, and from the point of view of the source

code extraction process, static analysis is challenging in heterogeneous systems, since

it essentially requires a suite of parsers to extract the architecture of the whole system.

Figure 3-23: Technology Modeling Language defined by Rademacher et al. (2019)

3.3.4 Comparison of the Related Approaches

In order to provide an introductory comparison of the approaches presented above,

nine features were considered to answer the questions formulated in Table 3-1: the

objective of the approach; the models utilised (PIM and PSM); the extraction method

for the generation of the initial PSM; types of system analysis performed on the source

artefacts (static, dynamic or both); types of metamodels, which can be either a standard

model or a new, innovative metamodel that the researcher may propose; mapping rules

mechanism; the automation level – if the architecture recovery process can be partially

(semi-automatic) or totally automated (automatic); transformation languages used;

and tool support for implementation of the approaches.

It can be observed from Table 3-5, in the metamodel column, that the group of

approaches can be divided into ad-hoc models and standardised models such as KDM,

and modelling languages such as UML. For example, some approaches define new

metamodels, such as those of Cosentino et al., El Beggar et al., Fleury et al.,

91

MicroART, and Mayer and Weinreich. The exceptions are the approaches of MoDisco

and MARBLE, as they extend and re-use the standardised KDM metamodels.

It can be observed on the basis of the system analysis source code analysis column

that there are nine approaches. Out of these nine, five approaches complement the

static system analysis with the help of dynamic analysis (MoDisco, MARBLE,

MicroART, Mayer and Weinrich, and Microlyze). For example, MoDisco’s approach

generates the legacy system dynamic view using the traces of execution, such as UML

sequence diagrams. MARBLE’s approach improves the PSM that is obtained

statistically with the help of information obtained in log files, which, in turn, is

achieved by executing the legacy system. The MicroART approach collects the IP

address and network interface of every service, and creates the log files with the help

of TCPdump by firing dynamic queries to the Docker runtime environment. The

Microlyze approach does this by fetching the data from discovery services. The

remaining four approaches make use of just the static system analysis (El Beggar et

al., Cosentino et al., Akkiraju et al. and Fleury et al.). None of the discussed

approaches use only dynamic analysis for their recovery systems.

It can be observed from the model transformation mechanism column that most of the

approaches have associated mapping rules, e.g. El Beggar et al., MicroART, Fleurey

et al., MARBLE and Fleurey et al. Two approaches are based on mechanisms such as

ModelNavigation, ModelQuerying and ModelComputation (MoDisco) or the variable

classification mechanism (Cosentino et al.). Nevertheless, it is important to note that

each model transformation mechanism should be dedicated to the project and its

specific technical space.

It can be determined from the automation level column that in the process of reverse

engineering, partial automation needs human intervention, such as from software

engineering experts, for the steps involved in executing the approach. On the other

hand, total automation does not require any human intervention in the approach

execution. Six approaches are partially automated, as they require human participation

for the refinement and enrichment of the model by further information collection.

MicroART is an example of one such approach. MicroART needs manual intervention

from a software architect in order to resolve service discovery and create the

92

architecture’s logical model. MARBLE’s approach needs human intervention during

the dynamic analysis of source artefacts. Akkiraju et al.’s approach needs human

intervention to derive the metamodel of the platform. Microlyze also requires human

intervention to obtain the domain knowledge, as well as the manual input, which is

only available to the members of staff.

It can be observed in the tools support column that every one of the approaches

incorporates tool support. Three approaches utilise existing tools for their approach

implementation (El Beggar et al., Cosentino et al., Akkiraju et al.). Five approaches

need to identify new tools for applying and implementing their approaches (MoDisco,

MARBLE, Fleury et al., MicroART, Microlyze), while Mayer and Weinreich’s

approach does not use tools.

3.4. Research Gap

The literature review above confirms that, currently, there is much less research

available for architecture recovery in microservices. Among the studies analysed,

there are only three recovery mechanisms in the microservice context, namely

MicroART, Microlyze, and Mayer and Weinreich, but none of these define a detailed

process of MDE which places the metamodel and mapping rules in the core of the

different phases of the recovery engineering, and they do not deal with modelling at

the PIM and PSM levels, or with the transformation of PSM- and PIM-level models

for microservice architecture. Thus, this thesis contributes to the field by providing

definite arguments that separate the specific implementation and architecture views

shown in the development of microservice applications, and in defining models related

to the PSM and PIM levels and mapping rule transformation between them.

The major shortcomings of the current approaches are as follows. (1) Reverse

engineering capabilities in regard to extracting a static structure for object-oriented

systems are already available. There is a limitation that can be identified in the

adoption of these tools. The analysis is conducted at the class level (e.g. interclass-

level interaction) instead of the service level (e.g. remote calls between components

93

for distributed systems). (2) There is a lack of model transformation at different

abstraction levels. (3) There is a lack of complete modelling of microservice

dependencies, e.g. that specifically incorporate at most two different types of

communication protocol, or synchronous and asynchronous communication models.

(4) The tools are unified with a particular programming language and cannot really be

used to handle microservice architectural concepts such as infrastructure components

or lightweight API gateways, which enable easy interaction with external customers.

Furthermore, the implementation of microservice logic also includes the technological

artefacts that perform an essential function in execution and deployment, e.g. software

frameworks and deployment descriptors. (5) Microservice modelling based on MDE

is analysed and examined in the literature. Discussions regarding microservice

solutions in MDE can be found in Rademacher et al. (2017), who state that few

publications about model-driven approaches to microservices in general yet exist. In

addition to this, none of them are in relation to the concept of architecture recovery

(Ameller et al., 2015). The industries of SOA have proposed various approaches for

modelling SOA, both informal and formal model-based standards. OASIS released a

reference model in 2006, which hierarchically defined the components of SOA in an

abstracted model form (Mackenzie et al., 2006; Kreger and Estefan, 2009), as defined

by Open Group and OASIS. In contrast to SOA, neither the Object Management

Group (OMG) nor OASIS have defined an approach for microservice architecture.

This means that there is a gap in knowledge around microservice architecture concepts

and their recovery.

Hence, by following the MDE approach, this research fills this gap in the area of

microservices with MDE. A well-designed metamodel and well-developed and tested

mapping rules for supporting the architecture recovery of microservice-based systems

is proposed, developed and evaluated.

94

3.5. Summary

In this chapter, the background context relevant to the theme of the thesis was

introduced, and studies that address generic model-driven architecture recovery were

discussed, with a focus on bottom-up transformation mechanisms. Then architecture

recovery methods for microservice architecture were extensively looked into, along

with the criteria that have been addressed and the techniques that have been utilised.

Model-driven approaches for microservices that have not been used in architecture

recovery were presented, with a focus on the metamodel language utilised in such

work. The chapter concluded with a discussion of the research gap that this thesis aims

to fill.

95

Table 3-5: Comparison of the related approaches.

Methods

studied

Objective of

the reverse

engineering

Model

type

Source

code

extraction

method

Source

code

analysis

Metamodel Model

transformation

mechanism

Transform

ation

languages

used

Automation

level

Tool

support
PSM

level

PIM

level

PSM

level

Intermediate

model

PIM

level

 MoDisco

(2014)

Modernization

of legacy

systems

 Discoverers

Component

Static,

Dynamic

Java, JSP,

XML

metamodel

- (KDM,

SMM,

GASTM)

metamodel

ModelNavigation,

ModelQuerying,

ModelComputation

and ModelBuilding

- Automatic MoDisco

Cosentino

et al.

(2012)

Recover

business rules

model from

Java source

code

 - MoDisco Static Java

metamodel

Variable

classificatio

n, Business

Object

model/

Vocabulary

model

metamodels

Business

Rule

metamodel

Variable

Classification,

Business Rule

Identification,

Business Rule

Representation

ATL Automatic

MoDisco

El Beggar

et al.

(2013)

Recover

objects from

COBOL

legacy systems

 - Static COBOL

metamodel

Merge

Model of

File

Descriptors

(MMFD)

Domain

Class

Diagram

(DCD)

metamodel

Rule-based

transformation

ATL Automatic -

Fleurey et

al. (2007)

Model-Driven

Migration

Process

 Parser Static Metamodel

of the

legacy

language

AST, UML ANT

metamodel
Rule-based

transformation

- Semi-

automatic

Model-

InAction

(MIA)

96

MARBLE

(2011)

Recover

Business

processe

s from Legacy

Systems

 Parser

(Java)

Static,

Dynamic

Java, SQL

metamodel

- KDM

metamodel

Rule-based

transformation

QVT

relation

Semi-

automatic

MARBLE

™

Akkiraju et

al.

(2012)

Recover

Service-

Oriented

Architecture

 - Model

Generator

Module

Static Create a

metamodel

by

exemplar

- Derive

metamodels
Rule-based

transformation

- Semi-

automatic

IBM RSA

tool

MicroART

(2017)

Microservice

architecture

recovery

- Github

analyser,

Docker-

analyser,

TcpDump.L

og analyser,

Static,

Dynamic

- - MicroART

-DSL

Rule-based

transformation

- Semi-

automatic

MicroART

Microlyze

(2018)

Microservice

architecture

recovery

- - - Static,

Dynamic

- - - - - Semi-

automatic
-

Mayer and

Weinreich

(2018)

Microservice

architecture

recovery

- Swagger

Data

Collection

Library

Static,

Dynamic

- - Data

model

- - Semi-

automatic
-

97

Chapter 4

 Research Methodology

4.1. Introduction

This chapter describes the research methodology used to accomplish the objectives of

this thesis. The systematic mapping study, as discussed in Chapter 2, identified the

area in which the new research was to be conducted. This involved collecting available

publications in the field to discover any specific areas of microservice architecture that

have not yet been explored, and outlined the background and principles of the study,

as discussed in Chapter 3. While the subsequent chapters have their own

methodologies, this chapter discusses the general methodology used to conduct the

research covered in this thesis as a whole. The chapter is structured as follows: first, I

provide an overview of the research methodology followed in general and how I

developed the Microservice Architecture Recovery (MiSAR) approach. Next, I briefly

discuss the selected systems for the different studies conducted in this thesis.

4.2. Research Methodology

The primary objective of this research is to provide architectural recovery support for

the emerging microservice architectural software style which addresses the problem

of understanding the complexity of microservice architecture. In order to accomplish

this objective, an appropriate research methodology design is required. The research

used empirical studies to build and evaluate the approach from empirical data. I follow

the ‘design science’ methodology. This addresses the concept of design from a

scientific perspective, and has been widely adopted by the information system research

community, to the point where it is now considered an equal alternative to natural and

behavioural research (Hevner, 2007). Essentially, it is a problem-solving approach

based on actions that create and evaluate artefacts for specific problems. The design

science paradigm is an ideal methodology for software engineering research due to the

synthetic nature of the field (Hevner et al., 2004).

98

The objectives of the proposed research in architecture recovery and Model-Driven

Engineering (MDE) in microservice systems are synthetic; therefore, the design

science paradigm is an ideal research methodology for the proposed topic. Figure 4-1

illustrates the overall research framework of information system artefacts, which is

centred around the ‘build and evaluate’ process, the cornerstone of the design science

paradigm. Note from Figure 4-1 that the relevant problems are identified by the

contextual environment, while the relevant works and knowledge gaps are determined

by the knowledge base. Appropriate metrics are devised after an artefact is built for a

particular problem, in order to evaluate the artefact’s performance and its effects in

solving the target task (Hevner et al., 2004). In the context of this research project, the

developed artefact will be architectural metamodels, a mapping rules between the

architectural metamodel and microservice systems, and a recovery process that

includes both the latter two artefacts.

Figure 4-1: Research framework (Hevner et al., 2004, p. 80).

99

The following are the steps that constitute the design science research methodology

(Hevner et al., 2004):

1. Identification and description of relevant problems

2. Validating that no solutions currently exist for the problems identified in the

first step

3. Proposing a novel artefact to address the relevant problems

4. Evaluating the utility of the proposal

5. Examining the added value provided by the artefact to the knowledge base

6. Explanation of the practical and developmental aspects of the solution.

The relevant problems addressed by this study in software architecture recovery in

microservice systems were determined by examining the literature and conducting a

systematic literature review (steps 1 and 2), as presented in Chapter 2. The study used

two qualitative and quantitative synthesis methods.

A first major objective of this thesis was to identify and build the artefacts of MiSAR.

Therefore, I designed and conducted a first empirical study, as presented in Chapter 5

(see Figure 4-2), which included a manual and iterative recovery process based on

eight open-source microservice projects from the GitHub repository (step 3). This

study included two main phases: Recovery Design (RD) and Recovery Execution

(RE), which are iterative and incremental. The first phase attempts to plan the recovery

by defining the architectural concepts along with the mapping rules. In the second

phase, I executed the plan for validation purposes, and applied the metamodel and

mapping rules defined in the first phase to create architectural models manually. The

aim of the first study was to identify the concepts and elements needed to build a

metamodel of a microservice-based system, and to develop mapping rules that derive

a target model from the source model.

To achieve this, three research questions which the study needed to address were

defined:

RQ5-1: What are the microservice architectural elements/concepts that are identified

from the source code?

RQ5-2: What are the mapping rules between the source code of microservice

implementations and the architectural model?

100

RQ5-3: What kind of software analysis is needed to capture the microservice

architecture?

The outcomes of this empirical study included initial artefacts, the metamodel and the

mapping rules of the MiSAR approach, which are artefacts that are used to recover

architectures of microservice systems manually.

After that, I conducted a second empirical study on nine open-source microservice

projects as presented in Chapter 6. This study focuses on validating and enhancing

MiSAR artefacts incrementally and achieve improved artefacts; each artefact of the

proposal is to be tested and validated by a medium-scale open-source system in an

iterative evaluation loop fashion (Step 4). This enhancement and refinement are

essential as part of the ‘build and evaluate’ loop (Hevner et al., 2004). I manually apply

the initial MiSAR artefacts to a set of microservice open projects, which are

implemented in Java, Docker and Spring Cloud frameworks. The design of the study

includes four activities, as depicted in Figure 4-2. Activities 1 (Application to

metamodels) and 2 (Application to mapping rules) to enhance and refine MiSAR in

increments. Activity 3 includes implementing the MiSAR artefacts and 4 includes

recover an architectural model represented in a diagram. To achieve this, three

research questions which the study needed to address were defined:

RQ6-1: What are the enhancements that have to be performed to the existing MiSAR

metamodel to represent more richly recovered architectural models of microservice

systems?

RQ6-2: What enhancements have to be applied to the current MiSAR mapping rules

that map microservice Java and Spring Cloud systems into architectural models?

RQ6-3: Can an enhanced MiSAR approach recover architectural models?

The outcome of this empirical study was a final version of the MiSAR artefacts,

including the PIM metamodel, PSM metamodel and mapping rules, which are

artefacts that are used to recover architectures of microservice systems in an automatic

manner.

Finally, in the last study as presented in Chapter 8, I applied the final version of the

MiSAR artefacts via a large-scale microservice system, involving a case study in an

industry setting, to show the usefulness of the MiSAR elements and evaluate the

recovery approach. This study focuses on the integration of all MiSAR artefacts and

101

applies them to obtain an architectural model. Along with this, the case study has been

adopted to answer the following research questions:

RQ8-1: What is the degree of completeness of the recovered microservice architecture

model?

RQ8-2: What is the degree of correctness of the recovered microservice architecture

model?

RQ8-3: Is the execution time of MiSAR transformations by QVT efficient or not?

Most case studies in the field of software engineering research use examples from

Figure 4-1 to evaluate the artefact design (Myers, 1997). Quantitative methods were

used to evaluate this approach e.g., identifying inconsistencies. Finally, the

conclusions on the quality and the effectiveness of the proposal were based on the

outcome of the evaluations of the empirical studies (steps 5 and 6).

Figure 4-2: MiSAR methodological approach.

102

4.3. System Studies

Empirical studies were conducted on systems, based on open-source projects from the

GitHub repository7 that employed microservice architecture. The most significant

reasons why my approach was based on the GitHub repository analysis are:

(i) GitHub is the most famous open-source code repository, and Spring Cloud

has published its framework in GitHub for everyone in the world to reuse.

(ii) The repository that I selected demonstrates best practices from Spring

Cloud/Boot framework based microservices, which is widely regarded as

the most famous microservices framework in the industry.

(iii) The repository that I selected contained the configurations, code,

documentation and best practice integration amongst various components

in a typical microservices architecture.

(iv) The code can be obtained by anyone from GitHub and automation can be

done to perform automated analysis, to validate the findings based on

historical, current or future releases of the code.

The selected case studies demonstrate microservice architecture patterns using Spring

Boot and Spring Cloud technologies. The popularity of the Spring Cloud framework

in microservice architecture was the reason for selecting this framework for this thesis.

Microservices with various tools from Netflix OSS, such as Eureka, Ribbon and

Hystrix, support the Spring Cloud framework efficiently. The framework is being

adopted by the industry for system development, which is evident in that as of

November 2016 it was downloaded 10.2 million times (LONG, 2016). In comparison

to the download figures for 2015, this signified growth of 425%. Developers are

provided with various tools by the Spring Cloud framework that help them in making

common patterns promptly for distributed systems. For the purpose of running and

constructing microservices, the Spring Cloud framework provides the most suitable

environment (Ibryam, 2016; Woods, 2015).

7 https://github.com/github.

103

4.4. Summary

This chapter has described the general methodology used to address the questions

which this thesis attempts to answer. The proposed methods that were used for

conducting the research studies have been briefly described. Detailed and designated

techniques that are based on the research methodology are presented in the following

chapter.

104

Chapter 5

 Microservice Architecture Recovery (MiSAR)

5.1. Introduction

This chapter presents the Microservice Architecture Recovery (MiSAR) method,

MiSAR is an approach which follows a Model-Driven Engineering (MDE)

framework. The approach aims to recover the architecture of microservice-based

systems from the implementation level to the architecture level. In order to formalise

the approach, MiSAR was developed from empirical data to define metamodels of the

underlying platform for different aspects of microservice environments and the

mapping rules that support the architectural recovery of a microservice system. The

basic goals and high-level description of the approach are discussed first, before a

detailed explanation of each step in the study. The MiSAR artefacts which are the

results of the empirical study are then presented; these are a metamodel and mapping

rules. Finally, the chapter outlines how these two components allow one to manually

recover the architecture model of a microservice-based system.

5.2. Overview of MiSAR

The complexity of the microservice architectural style makes the task of understanding

its many artefacts very difficult, as applications consist of many small components,

interfaces and dependencies. The ideal way to comprehend these complexities is to

model the artefacts themselves as accurately as possible. MiSAR follows MDE

(Brambilla et al., 2017; Kent, 2002) to recover architectural models of microservice-

based systems, by developing bottom-up, model-driven transformations for obtaining

architectural models from the implementation level. MDE is particularly suited to the

distributed, fine-grained nature of microservice architecture systems. In addition, one

of its competitive advantages is that modelling occurs at multiple abstraction levels,

which helps elucidate a model-driven transformation for a more holistic approach to

architecture.

105

MiSAR focuses on the Platform-Independent Model (PIM) alongside the Platform-

Specific Model (PSM) abstraction levels in relation to the modelling of microservice

architecture platforms. These models are critical in order to better understand the core

of reverse engineering, where the PIM supports the architectural model recovered and

the PSM supports the technology of the implemented microservice system. The

MiSAR process is based on the transformation from code to PSM to PIM, as shown

in Figure 5-1. This implementation pathway has a process that includes code, XML,

YAML files, schema, run-times, etc., that are converted into the PIM. This is achieved

by providing mapping rules from which these models can be derived. Two key

components of MiSAR are a metamodel, which abstracts the concepts of a

microservice architecture in a technology-independent manner, and mapping rules,

which map an implemented microservice-based system into an architectural model

which instantiates the metamodel. The MiSAR approach generates architectural

models of microservice-based systems. The following section presents a study based

on a systematic analysis which allowed the definition of MiSAR’s metamodel and

mapping rules based on empirical data.

Figure 5-1: Approach overview.

106

5.3. Microservice Application Platform-Specific Model

Platform-specific models in microservices can be conceptualised into two areas,

runtime platform and development technology. The runtime model provides

information that helps understand the connectivity and orchestration. Microservices

can be packaged into runnable images, which can be a Docker-based container or an

open VM format. It would then become important to recover information related to

ports that different microservices communicate with, and IP addresses that are

assigned to individual running instances of a microservice. It is also important to

understand the routing and load balancing that is employed. Even though it may not

give insights into how a microservice is internally structured.

The other area of focus in a PSM for microservices is the development technology or

the frameworks which are used to accelerate the development of the microservices.

There are opinionated configurable frameworks, such as Spring Boot, which provide

a range of design pattern implementations to make microservice development rapid

for a developer. These patterns include service discovery, client-side load balancing,

etc. Employing a framework like Spring Boot would require the PSM to provide

details such as a Spring Boot configuration YML file, boot version and some of the

auto-configuration features that Spring Boot provides.

The PSM would include traditional implementation aspects such as classes, interfaces

and packages that form a microservice business domain model. As for boot runtime,

it may include boot-based services that are used in the architecture, such as the Netflix

Eureka discovery service, Spring Cloud Config server, Netflix Hystrix for circuit

breaking, etc. Such a PSM would provide a comprehensive business and runtime

model of a microservice system. Figure 5.2 depicts a mapping of the microservice

concept at the PIM level with the different files at the PSM level.

107

5.4. Empirical study to define MiSAR

As described in section 5.2, MiSAR follows an MDE approach, and thus needs to

define a metamodel and mapping rules that allow the architectural recovery of a

microservice system. To be able to define these MDE elements, a study was designed

that feeds into these elements. As the objective of the study is architecture recovery, it

was designed as a manual architecture recovery process. I customised the process

presented in van Deursen et al. (2004), which includes two main phases: Recovery

Design (RD) and Recovery Execution (RE), as depicted in Figure 5-3. Typically, the

two phases are iterative and incremental; the metamodel and mapping rules evolve

and are refined throughout the process. The first phase attempts to plan the recovery

by defining the architectural concepts along with the mapping rules. The second phase

involves executing the plan for validation purposes and applying the metamodel and

mapping rules defined in the first phase to create the architectural models. The

outcome of the validation may lead to the steps being repeated, by refining the

metamodel and mapping rules, and re-validating.

Figure 5-2: Representation of microservice concept at PSM/PIM layer.

108

This study aimed to develop MiSAR from empirical data. To achieve this, three

research questions which the study needed to address were defined (see Table 5-1).

The answers to these can be successfully obtained by defining the metamodel and

mapping rules, which correspond to the artefacts of the MDE approach (RQ1, RQ2).

As the study is reverse engineering from a software system, the kind of software

analysis to be conducted for extracting the microservice architecture needs to be

classified as either static or dynamic (RQ3).

Table 5-1: The research questions and their motivation

Research Question Motivation

RQ1: What are the microservice architectural

elements/concepts that are identified from

the source code?

The aim is to identify the concepts and

elements needed to build a metamodel and a

specific-purpose abstraction of the

microservice-based system.

RQ2: What are the mapping rules between

the source code of the microservice

implementations and the architectural

model?

The aim is to develop mapping rules that derive

a target model from the source model.

RQ3: What kind of software analysis is

needed to capture the microservice

architecture?

The aim is to evaluate and assess the needs of

static and dynamic analysis in the process of

system recovery within the microservice

framework.

Figure 5-3: Study steps.

109

5.4.1. Selection of Systems to Study

I selected open-source projects from the GitHub repository that employed

microservice architecture. I began by performing a search on the repository facility

using the terms “microservice”, “micro service”, “micro-service” and “micro service

architecture”. Specific criteria were applied to support project relevance, as stated in

Table 5-2. The study was limited to eight systems, as listed in Table 5-3.

Table 5-2: The selection criteria

 Criteria

Inclusion • Projects that Implemented with Spring Boot/Spring Cloud framework in

java language including any technology that integrates with the

framework (e.g. Netflix OSS).

• Projects that each of its modules run in a single process (Docker

technology).

• Projects which demonstrate usage of the microservice architectural style

(determined by asking developers and reviewing documentation).

• Projects that consist of an accumulation of independent individual

services.

• Projects that implement business functionality.

Exclusion • Projects that use two or fewer Spring Cloud components (Projects that

use fewer Spring Cloud libraries decreases the probability of the project

being a microservice).

• Projects that not use Spring Boot/Spring Cloud framework.

• Projects that include only infrastructure microservice (e.g. development

tools, operation frameworks).

• Projects that use less than two functional microservices.

• Projects that do not revolve around an accumulation of independent

individual services.

110

Table 5-3: Studies selected for analysis

8 Line Of Code

I

D

Project Name Project Repository URL

Microservice Count LOC8

Size

No. of

Developers

Project Timeline Documentation Architecture

Diagram

1 piggymetrics https://github.com/sqshq/Piggy

Metrics

13 3309 5 Mar 29, 2015 –

Aug 17, 2017

Available Available

2 microservice-blog https://github.com/3PillarGlob

al/microservice-

blog/tree/part4/step3

7 474 1 Aug 30, 2015 –

Jan 4, 2018

Not available Not available

3 spmia-chapter10 https://github.com/carnellj/spm

ia-chapter10

7 2261 1 Jun 30, 2017 –

May 13, 2017

Not available Not available

4 microservice-consul https://github.com/ewolff/micr

oservice-consul

11 2434 3 Jun 19, 2016 –

Jan 4, 2018

Available Not available

5 spring-cloud-consul-example https://github.com/yidongnan/s

pring-cloud-consul-example

7 286 1 Jun 5, 2016 – Jan

4, 2018

Available Available

6 spring-cloud-netflix-example https://github.com/yidongnan/s

pring-cloud-netflix-example

9 328 1 Jun 5, 2016 – Jan

10, 2018

Available Available

7 microservices-sidecar-example https://github.com/xetys/micro

services-sidecar-example

5 2434 1 Dec 20, 2015 –

Jan 4, 2018

Not available

Not available

8 blog-microservices https://github.com/callistaenter

prise/blog-microservices

14 2093 1 Mar 1, 2015 – Jan

4, 2018

Not available Not available

https://github.com/sqshq/PiggyMetrics
https://github.com/sqshq/PiggyMetrics
https://github.com/3PillarGlobal/microservice-blog/tree/part4/step3
https://github.com/3PillarGlobal/microservice-blog/tree/part4/step3
https://github.com/3PillarGlobal/microservice-blog/tree/part4/step3
https://github.com/carnellj/spmia-chapter10
https://github.com/carnellj/spmia-chapter10
https://github.com/ewolff/microservice-consul
https://github.com/ewolff/microservice-consul
https://github.com/yidongnan/spring-cloud-consul-example
https://github.com/yidongnan/spring-cloud-consul-example
https://github.com/yidongnan/spring-cloud-netflix-example
https://github.com/yidongnan/spring-cloud-netflix-example
https://github.com/xetys/microservices-sidecar-example
https://github.com/xetys/microservices-sidecar-example
https://github.com/callistaenterprise/blog-microservices
https://github.com/callistaenterprise/blog-microservices

111

5.4.2. Research Design

The study has two main phases: recovery design and recovery execution. In the RD

phase, the study analysed case study (ID=1, Table 5-3); this case study was chosen

due to the availability of its architecture documentation and supporting diagrams with

illustrations, which can be used to compare the results of this phase with the

documentation. Case studies (ID=2-to-ID=8, Table 5-3) were used in the second phase

for refining and enhancing purposes. The steps, techniques and tools taken in each

phase are described in the subsequent sections.

5.4.2.1 Recovery Design Phase

During RD, the microservice architectural concepts that build the system were

determined, and the mapping rules for the code and the architectural concepts were

identified. Within the RD phase, PiggyMetrics (ID=1, Table 5-3) was analysed in steps

in order to define the metamodel and mapping rules. These steps are separated into the

following:

Step 1 – Data Extraction and Gathering: This step involves the collection of

artefacts (source code and other documents) and reviewing them to search for

information about the system. The artefacts are gathered in an effort to build the

knowledge base for the software system. Next, data extraction is employed in order to

understand and gather the required data from the software system for the recovery of

microservice architecture. Data extracted from artefacts should include the most

indicative elements and lines in the source code, configuration files, descriptive files,

etc., which are then collected and stored within a data repository as a PSM model.

Technique: Data was extracted from the following artefact files:

o Docker Compose files: These are YAML files used for defining and building

multi-container applications, hence they provide a complete view of the

microservice repository of the architecture system.

o Dockerfile files: These are script documents that contain all the commands a

user could call on the command line to assemble an image in order to run a

container and/or a service. One Dockerfile can identify one microservice in the

112

architecture, since every microservice application will be containerised into

one Docker container by running one Dockerfile.

o Maven POM files: These are XML files that include information regarding

the modules of each multi-module project as well as details regarding the

components and libraries utilised by Maven in order to build each module

project. Adopting the Spring Cloud style in developing microservice

architecture systems, the multi-module application corresponds to the entire

architecture system, while the module project corresponds to a microservice.

The Netflix OSS libraries attached to a module application’s POM represent

the static infrastructure components of a microservice.

o Gradle Build and Gradle Settings files: These are script files that are

equivalent to Maven POM files in functionality and representations for a

microservice architecture system.

o Spring Configuration files: Configuration files define various runtime

properties and settings that are used by the Spring Boot framework to initialise

various components in the execution environment. Local configuration files

exist in the project folder, while centralised configuration files are stored in a

remote shared location, as defined by the configuration infrastructure

microservice.

o Java source files: This is the actual source code of the program that contains

the business logic for the microservice. In particular, the microservice’s role,

service endpoints and inter-service communication implied by the source code

are essential to the recovery of microservice architecture behaviour. Important

PSM concepts in Spring Java source files include class annotations,

controller’s method declarations, RESTful request calls and POJO class

declarations.

o Documentation: This includes textual and graphical descriptions of the

architecture, in addition to instructions on how to compile, deploy, operate,

integrate and use the microservice-based application. Usually, this is the basis

for recovery validation.

Output: The outcome of this stage when executed on case study 1 (PiggyMetrics) is

a repository which contains data on the source files, as shown in Appendix A, 1.

113

Step 2 – Data classification and analysis: Different kinds of analysis, static and

dynamic, contribute different kinds of information to the data flow.

Technique: Two kinds of iterating analysis were conducted for the extracted data:

static analysis and dynamic analysis.

o Static analysis: Static analysis is performed by observing only the artefacts of

the system. In microservice architecture, services run in isolated environments,

similar to Docker containers. Static analysis can extract services’ descriptors

from these environments from the Dockerfile or the Docker-compose.yml

files. These descriptors, written in declarative languages like YAML, describe

the properties and configurations of each service during its build and run stages

(build path, middleware configurations, service name, ports, ports mapping,

etc.). Information extracted from these files behaves similarly in any

environment (development, testing and production environments, etc.).

Examples of service descriptors can be found in source code, software

infrastructure and files like Docker, RKT, Vagrant files. To extract a static

view of the system for the Java source code file, two reverse engineering tools

were used: Enterprise architect9 and visual paradigm.10 These tools were

applied to the Java source code to generate UML class diagrams, as shown in

Figure 5-4.

9 http://www.sparxsystems.com.au/products/ea.
10 https://www.visual-paradigm.com.

114

o Dynamic analysis: Dynamic analysis is performed by observing the system

during execution, and aims to extract information from the running code at a

production runtime. The Zipkin server was implemented and enabled with case

study 1,11 then the Zipkin tool12 was used to trace communication between

microservices, as in Figure 5-5, so that a call graph from one microservice to

another could be built. Zipkin captured all the calls and dependencies between

different microservices, as shown in Figure 5-6. TCPDump provided low-level

TCP protocol connectivity and communication, which provided information

about the latencies between different components of the system.

Output: The outcome of this stage is a fusion of extracted information from both

static and dynamic analysis, as shown in Appendix A, 2.

11 https://github.com/nuha77/piggymetric-with-Zipkin.
12 https://zipkin.io/.

Figure 5-4: Packages and classes extracted from source code.

115

Figure 5-6: Dynamic analysis using Zipkin.

Figure 5-5: Using Zipkin to trace transactions.

116

Step 3 – Determine Architectural Concepts: Architecture dimensions or abstracts,

known as ‘concepts’, are considered the first building blocks of the recovery process

(Riva, 2000). When determining architectural concepts, information about the relevant

architecture that was used to build the system is obtained. The architecture concepts

represent the terminology of the recovery process and the elements at the architecture

level. Therefore, the heart of this work lies in the following question:

“Is the identified concept considered an architectural element or not?”

In order to select the proper architectural concepts, the architectural concepts which

are relevant to microservice architecture and that overlap with those of any system

built using traditional (e.g. monolithic) architecture were evaluated. A microservices

style architecture is structurally very different from a traditional architecture system,

in that the system is usually composed of many microservices. Moreover, the concepts

must be independent of any technology and hide the details of any particular platform.

Technique: Both bottom-up (code-to-model) and top-down (model-to-code)

techniques were used to understand and determine the microservice architectural

concepts. The mechanism used for the bottom-up technique is to start from the level

of code (program layer) and analyse the source artefacts (e.g. source code,

configuration file, etc.). The concepts are discovered after abstracting and evaluating

their relevance to architectural elements (concept layer), as illustrated in Figure 5-7,

and via the more concrete example in Figure 5-8. On the other hand, the top-down

(model-to-code) technique focuses on literature, allowing the identification of several

concepts and supporting the definition of the underlying features and behaviour of

microservice-based systems. Microservice architectural concepts were determined

that focus on using microservice patterns (Richardson, 2018). According to the

service-type classification, Richardson (2018) discussed that the classification of

services is of two types, infrastructural and functional.

Output: The outcome of this stage is a conceptual map which contains the identified

concepts from both techniques that are relevant to the analysis, as shown in Figure 5-

9.

117

Figure 5-7: The bridge concept.

Figure 5-8: Concrete example for API gateway concept.

118

Step 4 – Define Microservice Architectural Concerns and Technologies: Concerns

are common characteristics of microservice architecture, which can be commonly

implemented across multiple microservices. These can be related to making

microservices fault-tolerant, ease their deployment and discovery. The focus of this

study is the most common technical concerns, inspired by Ibryam (2016), presented

in Figure 5.10; non-technical concerns such as organisation structure, culture and so

on are excluded.

Technique: Several concerns appeared in Step 3 as shown in the conceptual map

(Figure 5-9). Concerns are difficult to identify from the code, as in Ibryam (2016) the

literature was used to review the most common ones that have to be considered in

microservice systems. The technologies that are commonly used to implement these

concerns were then identified in a Spring Cloud OSS-based microservices

environment, as shown in Table 5-4. Recovering these technologies can help

determine whether a given microservice implements a specific concern. This will help

in identifying and building the relations between various platform-specific services,

and the functional or business services in the PIM.

Figure 5-9: Microservice conceptual map.

119

Output: The outcome of this stage is a list of concerns to be taken into account in the

microservice architecture.

Table 5-4: Technology mapping to microservice concerns

Microservice concern Technologies (Spring Cloud)

Service discovery Netflix Eureka, Hashicorp Consul, etc, zookeeper

Load balancing Netflix Ribbon

API gateway Netflix Zuul, APIARY, APIGEE

Configuration management Config server, consul, Netflix archaius

Service security Spring Cloud security

Distributed tracing Spring Cloud sleuth, Zipkin

Monitoring & resilience Netflix Hystrix, Turbine & Ribbon

Centralised logging ELK stack, elasticsearch, elasticserach logstash, Kibana Splunk

Centralised metrics Netflix spectator & Atlas, APM

Deployment & scheduling Spring Boot, container orchestration tool (Kubernetes, Docker

swarm, Cloud Foundry, Mesos)

Data store MongoDB, PostgreSQL, H2

Containerisation Docker

Figure 5-10: Microservice architecture concerns.

120

Step 5 – Clustering and Integration: After identifying the various common

architectural concepts in microservices, they were clustered together based on high-

level related concerns that had been identified in step 4.

Technique: The technique represents the concepts as meta-classes by grouping related

architectural concepts together in one cluster based on their microservice concerns, as

shown in Figure 5-11. An association in the metamodel is added for meta-classes that

are related. Finally, the concepts and their relationships were integrated and abstracted.

Output: The outcome of this stage is a metamodel for microservice architectures,

illustrated in section 5.4.3.

Step 6 – Define Mapping Rules: The purpose of this step is to identify how the

architectural concepts are represented in the source code and how they are mapped in

the implementation.

Figure 5-11: Sketch of the related architectural concepts under one cluster.

121

Technique: To define the mapping rules, the system was manually inspected and

examined by analysing the source files available in the project directory. Then, for

each concept in the metamodel, the extracted files of that concept were analysed to

define the mapping rules which map architecture concepts with implementation

artefacts. The mapping rule extraction process was performed at two analysis levels:

microservice system level and microservice level. The microservice system level

involves analysing the Docker compose files, and Multi-Module project build files,

generated either by the Maven build tool (e.g. pom.xml) or by Gradle (e.g.

settings.gradle). The microservice level involves analysing the Module project build,

Spring configuration, Java source and the Docker files. Information collected for each

mapping rule included the input PSM (artefact) being studied (e.g. container

orchestration file, project build file, source code file, etc.), and then mapping

architecture concepts (e.g. microservice, service dependency, service interface,

registry and discovery, API gateway, etc.) into implementation artefacts. Mapping

rules were then classified and grouped based on the output architectural element they

mapped to.

Output: The outcome of this stage when executed on case study 1 (PiggyMetrics) is

a set of mapping rules for each concept in the metamodel, illustrated in section 5.4.3.

5.4.2.2. Recovery Execution Phase

A validation for the results obtained from the RD phase was conducted, using case

studies 2 to 8, as listed in Table 5-3. The RE phase includes two steps, as follows:

Step 7 – Refinement of artefacts: The metamodel and mapping rules obtained in the

RD phase are applied and validated against the seven case studies for enhancement

and validation purposes.

Technique: The seven system implementations were analysed manually, and the

mapping rules and metamodel were then applied. Based on the success of this analysis,

the mapping rules and architectural elements were amended and enhanced. The case

studies analysis can be found in Appendix A, 3.

122

Output: The outcome of this stage is an updated MiSAR repository with refined

mapping rules and the metamodel as illustrated in section 5.4.3.

Step 8 – View Architecture Model Recovery: After refining the MiSAR repository

in the previous step, a manual architecture recovery process was formulated. Notations

to visualise the recovered model graphically are also defined in this step. The process

and notations are confirmed by the application to case study 1, previously analysed, in

order to easily ensure the consistency of the results with the documentation. Later,

new and more complex case studies are considered to evaluate the process (discussed

in Chapter 6).

Technique: The architecture model for case study 1 (PiggyMetrics) was recovered by

applying the manual steps: Setup, Recovery and Visualisation as illustrated in section

5.4.3.

Output: The output of this stage is the instance diagram equivalent to a UML object

diagram and architecture diagram conforms to the PIM metamodel for the recovered

model diagram of case study 1 as illustrated in section 5.4.3.

5.4.3. Results

This section presents the resulting metamodel and mapping rules after the analysis.

 RQ1: Microservice metamodel

Regarding RQ1, there are various architectural elements which are fundamental to any

system. Therefore, they appear across all the selected case studies. Figure 5-12 shows

the architectural concepts discovered, and the case studies (indicated in numbers) from

which they were identified. It can also be observed that various architectural elements

appear only in few cases due to various contextual demands of the projects. The

context of these cases was analysed, and the need for these elements to be used by the

designer of the system was determined.

123

It can be observed that Containerisation appears across all the projects. This is due

to the fact that the initial selection criteria for the case studies included the usage of

Docker. Docker is fundamentally a containerization technology, hence all the case

studies in Table 5-3 use containerization as an architectural element. Docker is the

most commonly used containerization technology hence most microservices use

Docker as the container image format of choice. Configuration is also a fundamental

architectural element which happened to have been used across all case studies except

studies 2, 5 and 7. This is probably due to the size of these projects. It contains few

microservices and the project’s objective is a proof-of-concept for microservice

development.

API gateway is present in most projects, suggesting that the use of API gateways is

very common in microservices. This is due to the fact that the API gateway allows

architects to configure cross-functional elements such as security, logging and

authorization. This relieves individual services to handle these architectural elements

within their code. Registry and Discovery were discovered in most projects.

However, each project uses different technologies to implement this concept. For

example, 5 case studies used Netflix Eureka, while Consul was used in two studies (4

and 5). Again, as with the configuration element, due to the small size of system 2,

registry and discovery are not used.

As shown in Figure 5-12, it was found that some concepts are essential in a

microservice architecture, and are found in all systems, while others are not. Based on

these counts, the metamodel shown in Figure 5-13 was defined. For instance,

Containerisation, Microservice (Functional and Infrastructural), Service

Interface, Load Balancer, Endpoint, Service Operation and Service Dependency

are found in all analysed systems, so when defining the metamodel this would be

represented with mandatory associations: one-to-one or one-to-many multiplicities.

For example, one microservice should run independently in one container and have at

least one communication endpoint. However, Security was implemented in only three

systems, even though it is an essential concern of a microservice system, and so its

association is not mandatory.

124

It can also be seen from Figure 5-12 that most metamodel elements were discovered

in Phase 1, as case study 1 was used in this phase. The metamodel was refined in Phase

2 with two new elements Message Bus and Cache Store, which were discovered in

case study 3. The following section describes the concepts of the metamodel.

Figure 5-12: Architectural concepts, counts and system references.

125

5.4.3.1. MiSAR Metamodel: Platform-Independent Metamodel

This section introduces the proposal for a microservice architecture metamodel that

can be used to define the basic architectural elements of any microservice system at

the PIM level, depicted in Figure 5-13. The following describes the concepts of the

metamodel.

Microservice Architecture is the logical repository of microservices. It contains one

or many microservice instances, along with the components implementing them. A

Microservice is the central and main building block of the metamodel, and is

generally a software application that offers a complete independent service. In a

microservice architecture, there might be multiple instances of the same microservice

type, as well as different types, depending on the domain of the microservice system.

Since the metamodel is based on static analysis, multiple instances of the same

Microservice is out of scope. Microservices are broadly classified as follows.

Functional microservice types realise a system’s business capabilities as well as a set

of Infrastructure microservice types, which implements an infrastructure

pattern/component addressing a particular concern of microservice architecture.

Infrastructure Microservice types include API Gateway, Configuration,

Discovery and Registry, Security, Log Analysis, Monitoring, and Tracing.

Although the implementation of microservices differs, every microservice instance is

defined by at least one service interface. The Service Interface element aggregates all

Service Operations as well as exposed Endpoints of a microservice. While an

Endpoint is the service URI that can be called by remote consumers; it is defined by

the path and HTTP method, e.g. GET/POST/PUT, etc. A Service Operation reflects

the main procedure/function that is directly executed by calling a corresponding

endpoint. Unless the microservice instance is stateless, one service operation could

interact with a Data Store to preserve microservice’s state. Alternatively, service

operation could communicate with a Cache Store to preserve repeatedly requested

data from remote microservices in order to decrease the number of future requests.

This element contributes to improving the response time of the microservice,

especially if the data at the remote microservice does not change often. An

asynchronous Message Bus could be used by a Service Operation in order to write

126

data to and/or read data from remote microservices in a non-blocking fashion as

opposed to the synchronous request-response blocking manner.

The deployment concern of microservice architecture model is represented by

Ambient and Container elements. They describe in which architectural context the

microservices are to be deployed. An Ambient element is the boundary of a

microservice (Hassan et al., 2017). A Container is a kind of ambient element. Each

microservice instance will be running in exactly one container. A container is an

execution environment used to isolate each microservice within one virtual machine,

leveraging the host’s hardware and operating system capabilities while enabling each

microservice to appear as a completely stand-alone software artefact that is running

externally (Vaughan-Nichols, 2017).

The Service Dependency element describes the communication between one

consumer microservice and one provider microservice. One microservice (whether it

is a consumer or a provider) can have several dependency instances. This

communication takes place as one consumer’s service operation invokes one

provider’s service operation per one dependency instance. It occurs either in a

synchronous request-based manner or in an asynchronous message-based manner. A

dependency can occur between two different instances of functional microservices,

two different instances of infrastructural microservices, or between an instance of an

infrastructural microservice and another instance of a functional microservice.

In such an environment, that is rich in communication taking place among multiple

instances of microservices, resilience and load balancing requirements are necessary

to maintain a healthy execution environment for the microservices. The Circuit

Breaker pattern/component supports client’s resiliency by monitoring requests of a

microservice and breaking them if they are experiencing faults or forever waiting.

Each service operation can be monitored by one circuit breaker. The role of a Load

Balancer pattern/component is to periodically fetch addresses of all active instances

of remote microservices from discovery server and then caches them locally in a

microservice. As a result, this microservice will not need to request discovery server

every time an address of a remote microservice is needed and it will also receive fast

responses when its requests to the same microservice are balanced over multiple

127

instances. Like a circuit breaker, a load balancer is optional for any microservice

instance, such that one microservice instance may use at most one load balancer.

 RQ2: Mapping Rules

Regarding RQ2, Figure 5-14 demonstrates the number of mapping rules identified in

each case study. It can be noticed that the lion’s share of mapping rules was captured

in Phase 1 (see Appendix A, 4). In phase 2, the count of mapping rules started to

decrease as the number of case studies analysed increased, except for case study 2

which was the smallest in size. The reason for the decreasing trend is that all of the

studies were developed using the Spring Boot/Cloud and Netflix OSS frameworks,

hence they share common architectural elements. The few rules added were related to

specific technologies implemented for specific contexts.

Figure 5-13:Microservice architecture metamodel at the PIM level.

128

Figure 5-15 shows the number of related mapping rules per architectural concept. A

great number of mapping rules reflect the variety in technologies, implementation

styles and the artefacts expressing the same architectural elements. To illustrate, the

Service Dependency concept can occur between functional-to-functional,

infrastructural-to-functional and infrastructural-to-infrastructural microservices. It can

also be synchronous or asynchronous, as it may require authentication. From the

artefacts point of view, Service Dependency can be expressed in Configuration and

Java Source artefacts using a wide range of properties and Java methods, respectively.

The Data Store concept, for another instance, was implemented differently, as

MongoDB in case studies 1 and 2, as PostgreSQL in case study 3, and as HSQLDB in

case study 4.

On the other hand, the Container concept was always implemented as a Docker and

the Microservice concept as a Spring Boot application, which explains their smaller

counts of mapping rules. The effect of this was noticeable in the recovery process,

where concepts with a standard implementation were faster to recover. In the RD stage

where case study 1 was used, 104 rules were identified. In the RE stage, 164 new rules

were identified, and 47 rules previously identified in the RD were refined (see

Appendix A, 5).

129

Figure 5-15: Number of mapping rules per concept.

Figure 5-14: Number of new mapping rules extracted from each case study.

130

5.4.3.2. MiSAR Mapping Rules: Initial Mapping Rule Artefacts

Mapping rules are the rules that map between architectural concepts and the

implementation of these concepts. Once the metamodel concepts that were considered

in section 5.4.3.1 have been defined, the remaining steps involve mapping them and

their implementation. The purpose of this section is to identify how the architectural

concepts are represented in the source code and how they are mapped in its

implementation.

Two hundred and sixty-eight mapping rules were identified from the source files, as

shown in Appendix A, 5. Each architecture concept was mapped with implementation

artefacts. The mapping rules were defined used natural language, which map the PSM

to the PIM. These mapping rules are preliminary, informal and may not be used

directly to derive an executable operation. For example, a total of nine rules are

defined for the API Gateway concept, as shown in Table 5-5. Table 5-6 shows all

seven mapping rules for Containerisation concept.

As can be seen from Table 5-5 and Table 5-6, the mapping rules map between artefact

types (or PSM concepts) and architectural elements (or PIM concepts). There are two

types of mapping rules; one type is the PIM Concept Identification Rule, which

identifies the implementation of corresponding architecture element type, i.e. at PIM

concept (source). The other type is the PIM Dependency Identification Rule, which

indicates the association between two PIM concepts, source and destination. For

example, in Table 5-5 all mapping rules are considered as PIM Concept Identification

Rules, since they map to a PIM concept (source). On the other hand, in Table 5-6 all

mapping rules identify a dependency from one Microservice PIM concept, i.e. source,

to another Container PIM concept, i.e. destination.

131

Table 5-5: Mapping rules to identify API Gateway.

Artefact Type PIM Concept (Source) Mapping rules

Build File API Gateway An API Gateway concept with the technology of ‘Netflix

Zuul’ is indicated by a

<project><dependencies><dependency><artifactId> key

with the value ‘spring-cloud-starter-netflix-zuul’ in the

Build File of the microservice project.

Build File API Gateway An API Gateway concept with the technology of ‘Netflix

Zuul’ is indicated by a

<project><dependencies><dependency><artifactId> key

with the value ‘spring-cloud-starter-zuul’ in the Build File

of the microservice project.

Build File API Gateway An API Gateway concept with the technology of ‘Netflix

Zuul’ is indicated by a ‘compile’ Gradle command with an

argument ‘org.springframework.cloud:spring-cloud-starter-

zuul’ in the Build File of the microservice project.

Build File API Gateway A ‘Netflix Sidecar’ API Gateway is indicated by a

‘compile’ Gradle command with an argument

‘org.springframework.cloud:spring-cloud-netflix-sidecar’

in the Build File of the microservice project.

Configurations File API Gateway An API Gateway concept with the technology of ‘Netflix

Zuul’ is indicated by the property name that starts with

‘zuul.routes.’ in the Configurations File of the

microservice project.

Configurations File API Gateway A ‘Netflix Sidecar’ API Gateway is indicated by the

property ‘sidecar.port:’ and/or ‘sidecar.healthUri:’ in the

Configurations File of the microservice project.

Source Code File API Gateway A ‘Netflix Zuul’ API Gateway is indicated by a Java Class

with the ‘@EnableZuulProxy’ annotation in the Source

Code File of the microservice project.

Source Code File API Gateway A ‘Netflix Sidecar’ API Gateway is indicated by a Java

Class with the ‘@EnableSidecar’ annotation in the Source

Code File of the microservice project.

Container Build File API Gateway A ‘Apache HTTP’ API Gateway concept is indicated by a

‘RUN’ command with an argument value that contains

‘apache2’, ‘proxy_http’ and ‘proxy_balancer’ in the

Container Build File of the microservice project.

132

Table 5-6: Mapping rules to identify containerisation.

Artefact Type
PIM Concept

(Source)

PIM Concept

(Destination)
Mapping rules

Build File Microservice Container The name of this Container concept is indicated by the

value of the <project><modules><module> key in the

Build File of the application project.

Build File Microservice Container The name of this Container concept is indicated by the

value of the <project><artifactId> key in the Build File of

the microservice project.

Configurations

File

Microservice Container The name of this Container concept is indicated by the

value of the property ‘spring.application.name:’ in the

Configurations File of the microservice project.

Source Code File Microservice Container The name of this Container concept is indicated by the last

section of the package name of a Java Class with the

‘@SpringBootApplication’ annotation in the Source Code

File of the microservice project.

Source Code File Microservice Container The name of this Container concept is indicated by the last

section of the package name of a Java Class with a Java

Method with the identifier ‘main’ that invokes another

Java Method with the identifier ‘SpringApplication.run’ in

the Source Code File of the microservice project.

Container Build

File

Microservice Container The name of this Container concept is indicated by the

JAR application name argument of the ‘ADD’ command

in the Container Build File of the microservice project.

Container

Orchestration

File

Microservice Container The name of this Container concept is indicated by the key

name of the service container definition in the Container

Orchestration File of the application project.

 RQ3: Methods of system analysis

Mapping rules related to all architecture concepts in the proposed metamodel were

extracted using static analysis, but that was mainly possible due to the presence of a

container orchestration file (Docker-compose.yml). Without it, the dynamic analysis

would have been required in order to inspect the execution context of the microservice

architecture including the integration of non-JVM applications and external backing

services needed at runtime. These aspects cannot be checked statically as they are

sometimes wrapped in Spring annotations and default configurations. Several

mapping rules could be identified by using both static and dynamic analysis. For

example, the port of a microservice can be identified using the Docker-compose.yml

and/or the Dockerfile, and at the same time, this can be confirmed by running software

like TCPDump or tracing the requests that the service sends/receives at runtime.

133

Appendix A, 2 shows extracted information using static analysis and dynamic

analysis.

 View Architecture Model Recovery

The architecture model for case study 1 (PiggyMetrics) was recovered by applying the

following manual steps utilising the functionalities of MS Excel spreadsheets. The

steps are divided into Setup, Recovery and Visualisation steps.

a) Setup: the aim of the two setup steps is to prepare the table of mapping rules for

the facilitation of executing the recovery steps.

1- A list of all microservices in the PiggyMetrics system is generated by

application of mapping rule 4 and rule 97 (a list of mapping rules is given in

Appendix A, 4). These generic rules are applicable to most microservice-based

systems.

2- For every microservice generated in 1, a new column with the name of the

microservice is added to the mapping rule table. To illustrate, a new column of

the microservice registry is added, as in Table 5-7.

Table 5-7: Mapping rules applied for registry microservice in case study 1 (PiggyMetrics).

SE

Q

PIM Concept

(Source)

PIM Concept

(Destination)

Mapping Rule registry

1 Microservice

Architecture

- The name of Microservice Architecture

concept is indicated by the name of the

root GitHub Repository which contains

all artefacts of the application's project.

1

2 Microservice

Architecture

- The name of Microservice Architecture

concept is indicated by the value of

<project><artifactId> key in the Build

File of the application's project.

1

3 Microservice

Architecture

- The name of Microservice Architecture

concept is indicated by the value of

<project><parent><artifactId> key in

the Build File of the microservice's

project.

1

4 Microservice

Architecture

Microservice The name of Microservice concept is

indicated by the value of

<project><modules><module> key in

the Build File of the application's

project.

1

5 Microservice

Architecture

Microservice The name of Microservice concept is

indicated by the value of

1

134

<project><artifactId> key in the Build

File of the microservice's project.

6 Microservice

Architecture

Microservice The name of Microservice concept is

indicated by the value of the property

'spring.application.name:' in the

Configurations File of the microservice's

project.

1

7 Microservice

Architecture

Microservice The name of Microservice concept is

indicated by last section of package

name of a Java Class with

'@SpringBootApplication' annotation in

the Source Code File of the

microservice's project.

1

8 Microservice

Architecture

Microservice The name of Microservice concept is

indicated by last section of package

name of a Java Class with Java Method

with identifier of 'main' that invockes

another Java Method with identifier of

'SpringApplication.run' in the Source

Code File of the microservice's project.

1

9 Microservice

Architecture

Microservice The name of Microservice concept is

indicated by the JAR application name

argument of 'ADD' command in the

Container Build File of the

microservice's project.

1

10 Microservice

Architecture

Microservice The name of Microservice concept is

indicated by the key name of service

container definition in the Container

Orchestration File of the application's

project.

1

11 Microservice Container The name of Container concept is

indicated by the value of

<project><modules><module> key in

the Build File of the application's

project.

1

12 Microservice Container The name of Container concept is

indicated by the value of

<project><artifactId> key in the Build

File of the microservice's project.

1

13 Microservice Container The name of Container concept is

indicated by the value of the property

'spring.application.name:' in the

Configurations File of the microservice's

project.

1

14 Microservice Container The name of Container concept is

indicated by last section of package

name of a Java Class with

'@SpringBootApplication' annotation in

the Source Code File of the

microservice's project.

1

15 Microservice Container The name of Container concept is

indicated by last section of package

name of a Java Class with Java Method

with identifier of 'main' that invockes

another Java Method with identifier of

'SpringApplication.run' in the Source

Code File of the microservice's project.

1

16 Microservice Container The name of Container concept is

indicated by the JAR application name

argument of 'ADD' command in the

1

135

Container Build File of the

microservice's project.

17 Microservice Container The name of Container concept is

indicated by the key name of service

container definition in the Container

Orchestration File of the application's

project.

1

18 Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a

Microservice is indicated by a

<project><dependencies><dependency>

<artifactId> key with value 'spring-

cloud-starter-netflix-eureka-server' in

the Build File of the microservice's

project.

1

19 Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a

Microservice is indicated by the

property

'eureka.client.serviceUrl.defaultZone:' in

the Configurations File of the

microservice's project.

1

20 Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a

Microservice is indicated by the two

properties

'eureka.client.registerWithEureka: false'

and 'eureka.client.fetchRegistry: false' in

the Configurations File of the

microservice's project.

1

21 Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a

Microservice is indicated by the

property

'eureka.server.waitTimeInMsWhenSync

Empty:' in the Configurations File of the

microservice's project.

1

22 Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a

Microservice is indicated by a Java

Class with '@EnableEurekaServer'

annotation in the Source Code File of

the microservice's project.

1

23 Microservice Service Interface The server path of Service Interface

concept is indicated by the value of the

property 'spring.application.name:' in the

Configurations File of the microservice's

project.

1

24 Microservice Service Interface The server path of Service Interface

concept is indicated by last section of

package name of a Java Class with

'@SpringBootApplication' annotation in

the Source Code File of the

microservice's project.

1

25 Microservice Service Interface The server path of Service Interface

concept is indicated by last section of

package name of a Java Class with Java

Method with identifier of 'main' that

invockes another Java Method with

identifier of 'SpringApplication.run' in

the Source Code File of the

microservice's project.

1

26 Microservice Service Interface The server path of Service Interface

concept is indicated by the JAR

application name argument of 'ADD'

1

136

command in the Container Build File of

the microservice's project.

27 Microservice Service Interface The server path of Service Interface

concept is indicated by the key name of

service container definition in the

Container Orchestration File of the

application's project.

1

28 Microservice Service Dependency A 'Spring Cloud Config' Configuration

provider to a Microservice is indicated

by a

<project><dependencies><dependency>

<artifactId> key with value 'spring-

cloud-starter-config' in the Build File of

the microservice's project.

1

29 Microservice Service Dependency A 'Netflix Eureka' Registry and

Discovery provider to a Microservice is

indicated by a

<project><dependencies><dependency>

<artifactId> key with value 'spring-

cloud-starter-netflix-eureka-client' in the

Build File of the microservice's project.

6

30 Microservice Service Dependency A 'Spring Cloud Config' Configuration

provider to a Microservice is indicated

by the hostname section of the url value

of the property 'spring.cloud.config.uri:'

or 'spring.cloud.config.failFast: true' in

the Configurations File of the

microservice's project.

1

31 Microservice Service Dependency A 'Netflix Eureka' Registry and

Discovery provider to a Microservice is

indicated by the hostname section of the

URL value of the property

'eureka.client.serviceUrl.defaultZone:'

in the Configurations File of the

microservice's project.

6

32 Microservice Service Dependency A 'Spring Cloud OAuth2' Security

provider to a Microservice is indicated

by the hostname section of the url value

of the property

'security.oauth2.resource.userInfoUri:'

or

'security.oauth2.client.accessTokenUri:'

in the Configurations File of the

microservice's project.

1

33 Microservice Service Dependency A 'RabbitMQ' Infrastructure

Microservice provider to a Microservice

is indicated by the value of the property

'spring.rabbitmq.host:' in the

Configurations File of the microservice's

project.

1

34 Microservice Service Dependency A Registry and Discovery provider to a

Microservice is indicated by a Java

Class with '@EnableDiscoveryClient'

annotation in the Source Code File of

the microservice's project.

6

35 Microservice Service Dependency A Microservice provider to a

Microservice is indicated by the service

container name of 'depends_on' or 'links'

key in the Container Orchestration File

of the application's project.

1

137

36 Registry and Discovery - A Registry and Discovery concept with

technology of 'Netflix Eureka' is

indicated by a

<project><dependencies><dependency>

<artifactId> key with value 'spring-

cloud-starter-netflix-eureka-server' in

the Build File of the microservice's

project.

1

37 Registry and Discovery - A Registry and Discovery concept with

technology of 'Netflix Eureka' is

indicated by the two properties

'eureka.client.registerWithEureka: false'

and 'eureka.client.fetchRegistry: false' in

the Configurations File of the

microservice's project.

1

38 Registry and Discovery - A Registry and Discovery concept with

technology of 'Netflix Eureka' is

indicated by the property

'eureka.server.waitTimeInMsWhenSync

Empty:' in the Configurations File of the

microservice's project.

1

39 Registry and Discovery - A Registry and Discovery concept with

the technology of 'Netflix Eureka' is

indicated by a Java Class with

'@EnableEurekaServer' annotation in

the Source Code File of the

microservice's project.

1

40 Registry and Discovery Service Dependency A Microservice provider to a 'Netflix

Eureka' Registry and Discovery is

indicated by a

<project><dependencies><dependency>

<artifactId> key with value 'spring-

cloud-starter-netflix-eureka-client' in the

Build File of the microservice's project.

6

41 Registry and Discovery Service Dependency A Microservice provider to a 'Netflix

Eureka' Registry and Discovery is

indicated by the property

'eureka.client.serviceUrl.defaultZone:'

in the Configurations File of the

microservice's project.

6

42 Registry and Discovery Service Dependency A Microservice provider to a Registry

and Discovery is indicated by a Java

Class with '@EnableDiscoveryClient'

annotation in the Source Code File of

the microservice's project.

6

43 Monitoring Service Dependency A Microservice provider to a 'Netflix

Hystrix Dashboard' or 'Netflix Turbine'

Monitoring is indicated by the non-zero

property

'hystrix.command.default.execution.isol

ation.thread.timeoutInMilliseconds:' or

the property 'feign.hystrix.enabled: true'

in the Configurations File of the

microservice's project.

1

44 Log Analysis Service Dependency A Microservice provider to a Log

Analysis is indicated by the property

name that starts with 'logging.level.' in

the Configurations File of the

microservice's project.

1

138

45 Log Analysis Service Dependency A Microservice provider to a Log

Analysis is indicated by the key name of

service container definition that has

'logging' or 'log_opt' key in the

Container Orchestration File of the

application's project.

1

46 Service Operation Circuit Breaker A 'Netflix Hystrix' Circuit Breaker to

Service Operation is indicated by the

non-zero property

'hystrix.command.default.execution.isol

ation.thread.timeoutInMilliseconds:' or

the property 'feign.hystrix.enabled: true'

in the Configurations File of the

microservice's project.

1

b) Recovery: The following steps were conducted in a microservice-wise manner. To

illustrate some steps, the registry microservice is considered here.

1- The entire mapping rule table is sorted by the Artefact Type column in the

following order of values (this list is inserted into Excel as the basis for the

sorting):

- GitHub Repository

- Container Orchestration File

- Container Build File

- Build File

- Configurations File

- Source Code File

This order facilitates the recovery since it is equivalent to the depth level of

each artefact in the project’s directory/file tree. To illustrate, the build file of a

project is located just under the root directory, while the source files are deep

inside.

2- The artefact corresponding to each type is checked and the group of mapping

rules related to this particular artefact type is manually examined in a rule-wise

manner.

3- If a rule applies n times, then the non-zero value of n is inserted in the cell

located at the rule-microservice intersection, otherwise the value 0 is inserted.

To illustrate, rules 29, 31, 34 and 40 to 42 were applied to the registry

139

microservice six times (see Table 5-7) because, as a service registry and

discovery server, the URL of the registry microservice is configured for six

client microservices in order to register themselves, and the registry

microservice itself needs to frequently request the /health of its six clients to

check their running state.

4- To facilitate the subsequent visualisation steps, the mapping rules table is re-

sorted by two columns: PIM Concept (Source) then PIM Concept

(Destination), in the following order of values (these lists are inserted into

Excel as the basis for the sorting):

PIM Concept (Source) Sorting PIM Concept (Destination) Sorting

- Microservice Architecture

- Container

- Microservice

- Functional Microservice

- Infrastructure Microservice

- API Gateway

- Configuration

- Registry and Discovery

- Security

- Monitoring

- Tracing

- Log Analysis

- Service Interface

- Service Operation

- (Blank)

- Microservice

- Container

- Load Balancer

- Service Interface

- Endpoint

- Service Operation

- Data Store

- Cash Store

- Circuit Breaker

- Message Bus

- Service Dependency

This order is equivalent to the depth level of each concept in the PIM

metamodel illustrated in Figure 5-13. To illustrate, the Microservice and its

infrastructure subtypes are listed after the Microservice Architecture and before

the Service Interface.

5- The last step is to filter the current mapping rules table by non-zero values (the

0 value is simply unchecked). Table 5-7 is the results table for the example

registry microservice after filtering.

c) Visualisation: The final recovered model is visualised in two diagrams: the instance

diagram and the architecture diagram. The instance diagram is equivalent to a UML

object diagram that conforms to the PIM metamodel in Figure 5-13.

140

In developing the architecture-level diagram, I was inspired by Sam Newman’s

(2019) graphical notations for representing high-level abstraction; for example, he

uses a hexagon to represent the service and a link to represent the association between

two services, as outlined in Appendix B-1.

The following steps are a continuation of the Recovery steps. They are conducted for

the particular microservice being recovered. To illustrate some steps, the registry

microservice is considered here.

6- Draw every concept appearing in the PIM Concept (Source) column and

connect it to the concept appearing next to it in the PIM Concept (Destination)

column, except for the Microservice Architecture and Service Dependency

concepts because they require references to already recovered microservices.

The instance diagram that includes the registry microservice only after this

step is provided in Figure 5-16. The objects with the dashed line are the objects

to be added later after completion of recovery for all concepts in all

microservices, while an object with a red outline indicates an issue in the

recovery. This issue is discussed in Chapter 6.

7- Repeat the recovery steps (steps 1 to 5) and visualisation process (step 6) for

all the remaining microservices in the list generated in setup step 1.

8- End the visualisation by drawing the Microservice Architecture and Service

Dependency concepts needed for the entire architecture.

Output: The output of this stage is the complete instance diagram and architecture

diagram (see Appendix B-2) for the recovered model diagram of case study 1. More

elaboration of the manual recovery and visualisation steps is provided in Appendix B-

3.

141

5.5. Summary

This chapter presents the metamodel and mapping rules of the MiSAR approach,

which are artefacts that are used to recover the architectures of microservice systems.

The metamodel abstracts the concepts of a microservice architecture in a technology-

independent manner, and the mapping rules map an implemented microservice-based

system into an architectural model which instantiates the metamodel. These two key

components of MiSAR offer a well-defined procedure for recovering the architecture

of a microservice-based system. To be able to define these MDE artefacts, a study was

designed and conducted which included a manual and iterative recovery process. By

conducting this study, the approach has considered the key architectural concepts

encountered in microservice systems and their mapping rules. In the next chapter,

MiSAR repository of metamodel and mapping rules is to be validated further and

extended by the analysis of new complex case studies.

Figure 5-14: The partial instance diagram of case study 1 after the recovery of the registry microservice.

142

Chapter 6

 Improving the Initial Artefacts of MiSAR:

An Empirical Study

6.1. Introduction

In Chapter 5, I conducted an empirical study to define an initial version of the MiSAR

artefacts: the metamodel, which supports the creation of microservice architectural

models, and mapping rules, which map microservice source systems into the

metamodel by analysing microservice software systems and extracting and clustering

architectural concepts. This chapter presents a new empirical study which uses the

initial MiSAR artefacts to evaluate and enhance themselves. For this chapter, the aim

was to define the final MiSAR artefacts in order to be able to generate architectural

models of implemented microservice systems. To achieve this, I designed an empirical

study which manually applies the initial MiSAR artefacts to a set of open microservice

projects, which are implemented in the Java, Docker and Spring Boot/ Cloud

frameworks. The focus is on validating and enhancing MiSAR artefacts incrementally

and achieving improved artefacts. I then used the improved artefacts to recover the

architectural model of a system.

6.2. MiSAR Abstraction Levels

MiSAR considers elements at three different abstraction levels. As described in Figure

6-1, the L0 level includes the microservice software system in the real world as a set

of physical artefacts. It currently considers source code, configuration, Docker,

Docker Compose, build and project build files. The L1 level, also known as the

Platform-Specific Model (PSM), represents the software artefacts of L0 in more

abstract models, which conform to their metamodel, and supports the technology of

the implemented microservice system. The L2 level represents the Platform-

Independent Model (PIM), which abstracts the concepts of microservice architecture

in a technology-independent way. Mapping rules are needed to map an implemented

microservice-based system into an architectural model by instantiating the PIM. The

143

PIM metamodel is presented in Chapter 5, Figure 5-13. In this chapter, I aimed to

enrich the existing artefacts of MiSAR with the objective of allowing the latter to

recover more expressive architectural models.

6.3. Identification of PSM metamodel

The PSM layer of microservice applications in this study is composed of six artefacts,

as illustrated in Figure 6-1: the XML files containing information about the project,

the configuration details used by Maven or Gradle to build the project, the YAML

files describing system runtime configuration values, and the Java files that specify

the different variable elements of a service. However, a natural question to ask is

“What are the PSM metamodels of information that needs to be extracted from source

artefacts?”.

 In order to represent the models at the PSM layer, the analysis started early in study

1 (Chapter 5), at the stage of creating the initial mapping rules. In study 1, I noticed

patterns in the textual representation of mapping rules, especially in the phrase that

describes keywords in the artefacts that begin the transformation, which enabled me

Figure 6-1: MiSAR abstraction levels.

144

to extract a common structure that contains a variable/attribute in the source artefact

(e.g. the <dependency> element in the POM file or a particular class-level annotation

in the Java source file), followed by a literal value (e.g. the dependency library’s

<artifactId> value or the annotation’s name). This common structure facilitated the

design of a PSM metamodel to reflect the key variables/attributes and values extracted

from the artefact elements. I performed the five steps represented in Figure 6-2 for the

identification of the PSM metamodel.

• Step 1- Searching for existing metamodel: For the purposes of this study, I

used my own simplified Java metamodel inspired by Paige (2006) and

(Dirckze, 2002) rather than the standard fine-grained Java syntax schema. As

for other artefacts, I did not find any existing metamodels, which raised the

need to identify them from scratch.

• Step 2- In-depth analysis of source artefacts: I analysed the artefacts

manually for all eight systems listed in Chapter 5 in a depth-first manner, left-

to-right order, starting at system project artefacts, followed by microservice

project artefacts, as appears in the PSM model tree (Figure 6-3).

• Step 3- Extracting and selecting a subset of extracted information: For the

artefacts analysed in Figure 6-3, I extracted information. Data selection and

filtering which describes the static aspects is necessary to select which data to

include in the PSM instance. This selection approach is considered partial

coverage as I selected a particular set of variables that is meaningful, identified

through the analysis phase, into a separate file to provide the most relevant

information for architecture recovery provided in Appendix A, 1 and 2.

Figure 6-2: The PSM metamodel identification steps.

145

• Step 4- Generating PSM metamodels for each artefact: The PSM

metamodels are obtained from source artefacts. Each artefact element is

modelled, building up the element at the PIM architecture level.

• Step 5- Merging PSM metamodels: All PSM metamodels are integrated into

one metamodel.

Figures 6-4 and 6-5 present the PSM metamodel for this study.

DistrubutedApplicationProject captures the architecture’s development artefacts

includes multi-module project (ApplicationProject) and module projects

(MicroserviceProject) as well as the runtime artefacts (Docker containers).

DistrubutedApplicationProject is described by application name and its root

repository URI. The runtime artefacts are simply the collection of

DockerContainerDefinition elements involved in the architecture and defined in the

Docker Compose as well as Dockerfile files. Each DockerContainerDefinition is

described by container name, build path, image name, and whether it generates log or

not. The build path denotes the path of the module project if the artefacts are locally

available; otherwise, the image name denotes the artefacts at the remote Docker Hub.

The DockerContainerPort and DockerContainerLink runtime information are also

captured for each Docker container.

The development artefacts are generally represented by the ApplicationProject

element, which is equivalent to a multi-module project along with its module projects,

each represented by a MicroserviceProject element. The MicroserviceProject

element generalises a wide range of project artefacts implemented in any frameworks

Figure 6-3: PSM model tree.

146

or languages, including Java Spring Boot/Cloud. Each MicroserviceProject defines

a collection of DependencyLibrary elements that can be found in project build

artefact such as Maven POM.XML or Gradle BUILD.GRADLE. The

DependencyLibrary elements in a Maven POM.XML file match the

‘<dependency></dependency>’ XML elements, while these match the argument’s

‘compile’ commands in a Gradle BUILD.GRADLE file. They simply list the project’s

software dependencies which are described by group, library name and scope.

The JavaSpringWebApplicationProject element is a subtype of the

MicroserviceProject element which reflects the specific characteristics of

applications built with the Spring Boot/Cloud framework. One such characteristic is

that each JavaSpringWebApplicationProject defines a collection of settings in

YAML or PROPERTIES artefacts. These settings are represented with the

ConfigurationProperty element, which defines important functionality and

execution information. Each ConfigurationProperty has a name, value and particular

scope (configuration profile).

The JavaSpringWebApplicationProject element is extended further to be either a

JavaSpringMVCApplicationProject or JavaSpringWebFluxApplicationProject.

The second subtype was recently adopted by the Spring Boot/Cloud team to facilitate

building reactive non-blocking Web applications. This recent paradigm led to slight

changes in the terms and libraries used for implementation, which have to be reflected

in MiSAR’s PSM metamodel.

Another characteristic of JavaSpringWebApplicationProject is that it aggregates

multiple Java classes and/or Java interfaces with a means of annotation into

JavaSpringWebApplicationLayers. Each layer represents a specific role in the

application. To illustrate, a Java class annotated with ‘@SpringBootApplication’

represent the application’s start-up class, while Java classes annotated with

‘@Controller’ represent the declaration and definition of Web services exposed by the

application.

147

Figure 6-4: PSM metamodel (Java PSM metamodel is reduced).

148

Figure 6-5: Java PSM metamodel.

149

Each JavaUserDefinedType maps to a Java source file created for a microservice

Spring Boot application. As noted earlier, and for the purposes of this study, I used

my own simplified Java metamodel, illustrated in Figure 6-5. For example, Java

control flow statements (if-then and for-loop statements), as well as expressions

(arithmetic and logical), are not considered. In addition, class definitions, declarations

of local Java fields and method invocations are elaborated no further than needed for

this study.

Basically, a Java file is defined as containing many JavaElements; each could either

be a JavaDataType or JavaMethod, as shown in Figure 6-5. A JavaElement is

defined by its name, i.e. identifier, and execution profile. Spring framework defines

the role of each JavaElement by using its set of tailored JavaAnnotations, which, in

turn, may have one or many JavaAnnotationParameters. JavaDataType is either

primitive (e.g. int, float, char or boolean) or a JavaUserDefinedType, which, in turn,

can be a JavaInterfaceType or a JavaClassType. A JavaDataType is also the type

of any JavaDataField element and is defined by JsonSchema, i.e. a JSON

representation of type definition, and PackageName. A JavaUserDefinedType may

extend other JavaUserDefinedType elements and contain one or many

JavaMethods. A JavaClassType can implement a JavaInterfaceType and may

contain local JavaDataField elements in addition to JavaMethods. A JavaMethod

may take instances of JavaMethodParameter as input parameters in its signature

and/or as local fields in its body. It may return at most one instance of JavaDataType

and can invoke other JavaMethods.

6.4. Study Design

6.4.1. Study Aim and Research Questions

This study aims to validate that the existing artefacts of MiSAR can recover an

architectural model and to enhance these artefacts if required. To achieve this, I

defined three research questions:

150

RQ1: What are the enhancements that have to be performed to the existing MiSAR

metamodel to represent more richly recovered architectural models of microservice

systems?

RQ2: What enhancements have to be applied to the current MiSAR mapping rules that

map microservice Java and Spring Cloud systems into architectural models?

RQ3: Can an enhanced MiSAR approach recover architectural models?

RQs 1 and 2 focus on enhancement and refinement of the MiSAR elements that were

proposed in Chapter 5, based on analysis of microservice systems. RQ3 focuses on the

integration of all MiSAR artefacts and applies them to the obtaining of architectural

models at the PIM level. To evaluate the recovered architectural model, it is compared

with the documentation provided with a particular system.

6.4.2. Selecting the Case Studies

After comprehensive surfing on the GitHub repository, to answer RQ1 and RQ2 I

chose nine open-source systems, listed in Table 6-1, as the aim in this study is to

address more complex systems which have more services than the ones selected in the

previous study (Chapter 5). Specific criteria were applied to support project relevance,

as stated in Chapter 5, Table 5-2. Systems were selected that (a) employed

microservice architecture (b) are built using the Java Spring framework; (c) use Netflix

OSS technologies;13 and in this study, in addition to the previous points, I considered

systems that (d) implement synchronous/asynchronous inter-microservice interaction

style; and (e) integrate variation implementations style. To answer RQ3, I selected a

new system called Microservices Sample (Vijayendra, 2019) for validation purposes,

which is an open-source microservice project. The criteria for the selection of this case

study concentrated mainly on (a) the implementation of both synchronous and

asynchronous inter-microservice communication styles (i.e. service dependencies),

(b) the integration of polyglot technologies (e.g. multiple datastores, reactive

programming, etc.), (c) multiple configuration profiles, (d) the availability of its

architecture documentation and supporting diagrams with illustrations, in order to

13 Netflix OSS is a set of frameworks and libraries that Netflix wrote to resolve some issues concerning distributed

systems at scale.

151

ensure that the validity and effectiveness of all enhancements made to MiSAR in this

study are evaluated. The selected case study meeting these criteria was the

Microservices Sample application, which consists of 14 microservices.

6.4.3. Research Design

The following describes the design of the study, which is divided into four activities,

as depicted in Figure 6-6. Activities 1 and 2 both include manual recovery and are

always performed in parallel to enhance and refine MiSAR in increments. Activity 3

includes implementing the MiSAR artefacts and activity 4 includes applying the

implemented artefacts to recover an architectural model represented in a diagram of a

system.

Figure 6-6: Empirical process for enhancing and refining MiSAR.

Activity 1 – Application to metamodels: This activity begins by applying the

metamodel presented in Chapter 5 (see Figure 5-13, version 1) to every system in

Table 6-1. As a result of this, I incrementally updated and refined the metamodel after

analysing the selected case studies. An ‘increment’ is a change in the metamodel

design. The objective of this task is to verify the validity of these metamodel concepts

with the new systems that are being analysed.

Activity 2 – Application to mapping rules: The nine systems’ implementation was

analysed manually in order to refine and enhance the MiSAR repository’s mapping

rules. In the previous study (Chapter 5), mapping rules were defined using natural

152

language, informal descriptions and non-executables. In this activity, I wanted to

permit existing mapping rules to include more detailed descriptions and to add new

ones. For each system analysed, a new mapping rule was added to the MiSAR

repository, and for each new metamodel concept added, a mapping rule was added to

map this concept as well.

Activity 3 – MiSAR artefacts implementation: After analysing all nine systems,

refining and enhancing the MiSAR repository in activities 1 and 2, the mapping rules

were implemented using the QVTo Operational QVT transformation language

(Barendrecht, 2010), using Eclipse M2M. Metamodels were implemented as Ecore

models using the Eclipse Modeling Framework (EMF) (Dave et al., 2008); the details

of this activity are presented in Chapter 7.

Activity 4 – Recover architectural model: The ultimate goal of this activity is to

check the validity of the mapping rules to create an architectural model that conforms

to the PIM. In this activity, the implemented MiSAR artefacts (mapping rules and

metamodels) are applied in order to ultimately develop the architecture diagram for

validation purposes. The recovery was applied with a different system to those systems

listed in Table 6-1. The recovery process approach and its validation can be

summarized in the six-step process (presented in section 6-5), which can be attempted

at different levels of abstraction in order to extract the architectural model.

153

Table 6-1: Selected systems

14 Line of code.

ID Project Name Project Repository URL

Microservice Count LOC14

Size

No. of

Developers

Project Timeline Documentation Architecture

Diagram

1 spring-netflix-oss-

microservices

https://github.com/fernandoabc

ampos/spring-netflix-oss-

microservices

9 714 1 Mar 13, 2016 –

Mar 20, 2020

Not Available Not Available

2 spring-rabbitmq-messaging-

microservices

https://github.com/jonashackt/s

pring-rabbitmq-messaging-

microservices

7 932 2 Nov 4, 2018 –

Mar 2 , 2020

Available Available

3 cloud-enabled-microservice https://github.com/sergeikh/clo

ud-enabled-microservice

7 1609 1 Mar 5, 2017 –

Mar 2, 2020

Available Not available

4 event-sourcing-

microservices-example

https://github.com/kbastani/eve

nt-sourcing-microservices-

example

10 3483 5 Oct 22, 2017 –

Mar 2, 2020

Available Available

5 spring-cloud-sidecar-polygot https://github.com/BarathAriva

zhagan/spring-cloud-sidecar-

polygot

7 305 3 Aug 20, 2017 –

Mar 2, 2020

Available Available

6 microservices-basics-spring-

boot

https://github.com/anilallewar/

microservices-basics-spring-

boot

10 2581 3 Apr 23, 2017 –

Mar 2, 2020

Available Available

7 spring-cloud-event-sourcing-

example

https://github.com/kbastani/spri

ng-cloud-event-sourcing-

example

15 6777 4 Mar 20, 2016 –

Mar 2, 2020

Available Available

8 spring-boot-graph-

processing-example

https://github.com/kbastani/spri

ng-boot-graph-processing-

example

9 1279 3 Dec 13, 2015 –

Mar 2, 2020

Available Available

9 BookStoreApp-Distributed-

Application

https://github.com/devdcores/B

ookStoreApp-Distributed-

Application

14 5291 1 May 12, 2019 –

Mar 2, 2020

Available Available

https://github.com/fernandoabcampos/spring-netflix-oss-microservices
https://github.com/fernandoabcampos/spring-netflix-oss-microservices
https://github.com/fernandoabcampos/spring-netflix-oss-microservices
https://github.com/jonashackt/spring-rabbitmq-messaging-microservices
https://github.com/jonashackt/spring-rabbitmq-messaging-microservices
https://github.com/jonashackt/spring-rabbitmq-messaging-microservices
https://github.com/sergeikh/cloud-enabled-microservice
https://github.com/sergeikh/cloud-enabled-microservice
https://github.com/kbastani/event-sourcing-microservices-example
https://github.com/kbastani/event-sourcing-microservices-example
https://github.com/kbastani/event-sourcing-microservices-example
https://github.com/BarathArivazhagan/spring-cloud-sidecar-polygot
https://github.com/BarathArivazhagan/spring-cloud-sidecar-polygot
https://github.com/BarathArivazhagan/spring-cloud-sidecar-polygot
https://github.com/anilallewar/microservices-basics-spring-boot
https://github.com/anilallewar/microservices-basics-spring-boot
https://github.com/anilallewar/microservices-basics-spring-boot
https://github.com/kbastani/spring-cloud-event-sourcing-example
https://github.com/kbastani/spring-cloud-event-sourcing-example
https://github.com/kbastani/spring-cloud-event-sourcing-example
https://github.com/kbastani/spring-boot-graph-processing-example
https://github.com/kbastani/spring-boot-graph-processing-example
https://github.com/kbastani/spring-boot-graph-processing-example
https://github.com/devdcores/BookStoreApp-Distributed-Application
https://github.com/devdcores/BookStoreApp-Distributed-Application
https://github.com/devdcores/BookStoreApp-Distributed-Application

154

6.5. Results

This section presents the analysis and results of the empirical study, according to our

research questions. As stated in section 6.4.3, activities 1 and 2 were performed in

parallel, but they are separated here for presentation purposes.

 RQ1: What enhancements are required to the MiSAR metamodel to represent

more richly recovered architectural models of microservice systems?

This section presents the analysis of the architectural concepts empirically derived

from the nine systems in a number of enhancement increments that were applied to

the initial version of the MiSAR PIM metamodel presented in Chapter 5 (see Figure

5-13). The following outlines how version 1 was incrementally enhanced to create an

updated metamodel which can help to represent recovered architectural models of

microservice systems more accurately. The results of these increments present new

requirements that need to be fulfilled as enhancements to the MiSAR PIM metamodel

(version 1, as in Figure 5-13). These enhancements led to the final version of the

MiSAR metamodel.

Increment 1: Supporting Components of Microservice Patterns

Context-1: During the process of manual recovery, the association from the Service

Operation concept towards the Data Store, Cash Store, Circuit Breaker and

Asynchronous Message Bus concepts in the PIM metamodel (version 1) could not be

recovered for many Infrastructure Microservices and these destination concepts were

recovered disconnected (such as the Circuit Breaker instance in Figure 5-14 and Figure

6-7). This is because the Service Operations of Infrastructure Microservices are not

explicitly implemented in the source artefacts.

For illustration purposes, I will show how I manually recovered the instance diagram

of the edge-service microservice in case study 7 (mentioned in Table 6-1). By applying

the mapping rules (see Table 6-2), I could manually recover that edge-service (m5) is

an instance of an API Gateway concept (applying rules 7-9 in Table 6-2) as shown in

155

Figure 6-7, which is a subtype of Infrastructure Microservice according to metamodel

(version 1). Also, a Circuit Breaker element is recovered (applying rule 11 in Table 6-

2). However, it is noticeable that the Service Operation concept was not recovered at

all from the edge-service Java source artefacts, and that Circuit Breaker object (cb1)

in Figure 6-7 is recovered disconnected with no associations at all. The reason is that

infrastructure providers, such as edge-service microservice, when implemented with

Spring Boot/Cloud framework, do not need to explicitly implement any Service

Operations in their source artefacts. This discussion leads to the following

requirement:

Requirement-1.1➔ Infrastructure components such as Circuit Breaker, Data Store, Cash

Store and asynchronous Message Bus concepts need to be directly associated with

Microservices in order not to result in disconnected instances.

Enhancement-1.1➔ Reposition the association of the Data Store, Cash Store, Circuit

Breaker and asynchronous Message Bus concepts from Service Operation to Microservice

instead.

156

Figure 6-7: PIM instance recovered for edge-service from case study 7 using PIM metamodel (Version 1).

157

Table 6-2: Mapping rules applied in edge-service in case study 7

SE

Q
PIM Concept

(Source)

PIM Concept

(Destination)

Mapping Rule edge-service

1 Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a

Microservice is indicated by a

<project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-config' in the

Build File of the microservice's project.

1

2 Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to

a Microservice is indicated by a

<project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-eureka' in the

Build File of the microservice's project.

1

3 Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a

Microservice is indicated by the hostname section of

the url value of the property 'spring.cloud.config.uri:'

or 'spring.cloud.config.failFast: true' in the

Configurations File of the microservice's project.

1

4 Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to

a Microservice is indicated by the hostname section of

the url value of the property

'eureka.client.serviceUrl.defaultZone:' in the

Configurations File of the microservice's project.

1

5 Microservice Service Dependency A Registry and Discovery provider to a Microservice

is indicated by a Java Class with

'@EnableEurekaClient' annotation in the Source Code

File of the microservice's project.

1

6 Microservice Service Dependency A Microservice provider to a Microservice is

indicated by the service container name of

'depends_on' or 'links' key in the Container

Orchestration File of the application's project.

3

7 API Gateway - An API Gateway concept with technology of 'Netflix

Zuul' is indicated by a

<project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-zuul' in the Build

File of the microservice's project.

1

8 API Gateway - An API Gateway concept with technology of 'Netflix

Zuul' is indicated by the property name that starts with

'zuul.routes.' in the Configurations File of the

microservice's project.

1

9 API Gateway - A 'Netflix Zuul' API Gateway is indicated by a Java

Class with '@EnableZuulProxy' annotation in the

Source Code File of the microservice's project.

1

10 Service Interface Endpoint An Endpoint to Service Interface is indicated by the

value of the property that starts with 'zuul.routes.' and

ends with the microservice name in the Configurations

File of the microservice's project.

7 * N
15

11 Service Operation Circuit Breaker A 'Netflix Hystrix' Circuit Breaker to Service

Operation is indicated by the non-zero property

'hystrix.command.default.execution.isolation.thread.ti

meoutInMilliseconds:' or the property

'feign.hystrix.enabled: true' in the Configurations File

of the microservice's project.

1

15 Number of endpoints in each provider microservice.

158

Context-2: In the initial design of the PIM metamodel (version 1), each infrastructure

provider, e.g. API Gateway, Configuration, Discovery and Registry, Security, Log

Analysis, Monitoring, and Tracing, is represented as an independent Infrastructure

Microservice. For example, it was assumed that an instance of the Discovery and

Registry microservice provides only the service registry and discovery functionality.

However, this representation encountered certain limitations. The current PIM

metamodel (version 1) allows for only one subtype of Infrastructure Microservice at a

time. With regard to this issue, the bookstore-consul-discovery microservice from case

study 9 is manually recovered as either an instance of Discovery and Registry concept

or Configuration concept, subtypes of the Infrastructure Microservice (applying rules

6 and 7 in Table 6-3). However, being an image of Consul Agent provided by

HashiCorp16 the bookstore-consul-discovery microservice provides multiple

infrastructure patterns all at once and out-of-the-box, including Configuration and

Registry and Discovery.

Requirement-1.2➔ One Infrastructure Microservice can support multiple-

infrastructure patterns.

Enhancement-1.2➔ A new Infrastructure Pattern Component concept is

introduced. A microservice can aggregate zero to many Infrastructure Pattern

Components. A pattern component refers to an architectural element that supports

the functionality of a pattern. Infrastructure pattern components have more specific

categories. All subtypes of Infrastructure Microservice types in metamodel version

1 become instances of a new enumeration type named Infrastructure Pattern

Category, defining the category of one Infrastructure Pattern Component instance.

Table 6-3: Mapping rules applied in bookstore-consul-discovery in case study 9

16 https://cloud.spring.io/spring-cloud-static/spring-cloud-consul/2.2.0.M1/.

SE

Q

PIM Concept

 (Source)

PIM Concept

(Destination)

Mapping Rule bookstore-

consul-

discovery

1 Microservice

Architecture

- The name of Microservice Architecture concept is

indicated by the name of the root GitHub

Repository which contains all artifacts of the

application's project.

1

2 Microservice

Architecture

Microservice The name of Microservice concept is indicated by

the key name of service container definition in the

1

https://cloud.spring.io/spring-cloud-static/spring-cloud-consul/2.2.0.M1/

159

Context-3: In the PIM metamodel version 1, it is not straightforward to determine the

type of infrastructure pattern requested by a consumer microservice involved in a

Service Dependency with an infrastructure provider. Hence, this design requires some

improvements. To illustrate, let us look at the edge-service microservice from case

study 7, as depicted in Figure 6-7. By applying the mapping rules 2, 4, 5 and 6 in Table

6-2, edge-service (m5) is an instance of the APIGateway microservice, which has a

Service Dependency (d1) associating it to a Registry and Discovery instance named

discovery-service (m6). The (m6) acts as a Registry and Discovery provider to edge-

service (m5), since the edge-service uses this pattern to register its address. The edge-

service, by applying rules 1, 3 and 6 in Table 6-2, has another Service Dependency

instance (d2) associated with config-server (see Figure 6-7). The (m7) is considered a

Configuration provider since edge-service (m5) needs this pattern to pull its

centralized configuration properties. The PIM (version 1) does not express literally

that edge-service microservice is using both infrastructure patterns: Registry and

Discovery and Configuration. Enhanced PIM instances are provided in Figure 6-8.

Requirement-1.3➔ The metamodel design needs to clarify information about

infrastructure pattern components that microservices use. Infrastructure pattern

components should be divided into two types: ones that provide services to

microservices and others that call/request services from microservices.

Container Orchestration File of the application's

project.

3 Microservice Container The name of Container concept is indicated by the

key name of service container definition in the

Container Orchestration File of the application's

project.

1

4 Microservice Service Interface The server path of Service Interface concept is

indicated by the key name of service container

definition in the Container Orchestration File of the

application's project.

1

5 Infrastructure

Microservice

- An Infrastructure Microservice concept is indicated

by a service container definition that does not have

'build' key in the Container Orchestration File of

the application's project.

1

6 Configuration - A 'Consul' Configuration concept is indicated by

an 'image:' key with value that starts wth 'consul:'

in the Container Orchestration File of the

application's project.

1

7 Registry and Discovery - A 'Consul' Registry and Discovery concept is

indicated by an 'image:' key with value that starts

wth 'consul:' in the Container Orchestration File of

the application's project.

1

160

Enhancement-1.3➔ Infrastructure pattern component is extended by two subtypes:

Infrastructure Pattern Server Component and Infrastructure Pattern Client Component.

The first represents infrastructure patterns provided by a microservice, i.e. subtypes of

infrastructure microservice, while the second represents infrastructure patterns that are

used/requested by a microservice, i.e. consumers of remote infrastructure

microservices.

Context-4: In PIM (version 1), I previously considered representing the Data Store,

Data Cache, Asynchronous Message Bus and Load Balancer as backend infrastructure

patterns within the consumer microservice itself that can only be used/requested by

client microservices, as explained in context-1. Therefore, the providers of these

backend patterns were represented as mere infrastructure microservices, because the

subtypes of Infrastructure Microservice did not yet include the Data Store, Data Cache,

Asynchronous Message Bus or Load Balancer. To illustrate, the kafka microservice

from case study 4 is a provider of asynchronous Message Bus as illustrated in Figure

6-9, however, according to the initial mapping rule 6 in Table 6-4, it is represented as

mere Infrastructure Microservice. Similarly, the redis microservice from case study 7

is a Cache Store provider, and the mysql, neo4j and mongo microservices from case

study 7 are Data Stores, however, according to the initial mapping rules, they are

represented as mere Infrastructure Microservices.

Requirement-1.4➔ Data Store, Cash Store, Load Balancer and Asynchronous

Message Bus need to be represented as Infrastructure Pattern Components provided

and requested by microservices.

Enhancement-1.4➔ Data Store, Cash Store, Load Balancer and Asynchronous

Message Bus are appended to an enumeration type Infrastructure Pattern Category so

that they can be represented as Infrastructure Pattern Components.

161

Figure 6-8: Enhanced PIM instance recovered for edge-service, discovery-service and config-service microservice from case study 7.

162

Table 6-4: Mapping rules applied in Kafka in case study 4

SEQ PIM Concept

 (Source)

PIM Concept

(Destination)

Mapping Rule kafka

1 Microservice Architecture - The name of Microservice Architecture concept is

indicated by the name of the root GitHub Repository

which contains all artifacts of the application's project.

1

2 Microservice Architecture Microservice The name of Microservice concept is indicated by the

key name of service container definition in the

Container Orchestration File of the application's project.

1

3 Microservice Container The name of Container concept is indicated by the key

name of service container definition in the Container

Orchestration File of the application's project.

1

4 Microservice Service Interface The server path of Service Interface concept is indicated

by the key name of service container definition in the

Container Orchestration File of the application's project.

1

5 Infrastructure Microservice - An Infrastructure Microservice concept is indicated by a

service container definition that does not have 'build'

key in the Container Orchestration File of the

application's project.

1

6 Infrastructure Microservice - A 'Kafka' Infrastructure Microservice concept is

indicated by an 'image:' key with value that contains

'spotify/kafka' in the Container Orchestration File of the

application's project.

1

The application of the first enhancement increment to the PIM metamodel (version 2),

in response to all four requirements aforementioned, is shown in Figure 6-10.

Categories of infrastructure patterns that are covered in the case study, in addition to

the subtypes of Infrastructure Microservice, include Load Balancer, Circuit Breaker,

Data Store, Cash Store and asynchronous Message Bus. These categories are all

defined in an enumeration type called Infrastructure Pattern Category. The new

Infrastructure Pattern Component concept enables future pattern categories to be

added to the model smoothly by appending the enumeration type. Infrastructure

Pattern Component is extended by two subtypes: Infrastructure Server Component

and Infrastructure Client Component. If the used/requested patterns execute locally

in the same microservice’s container, such as in-memory Data Store, embedded Cash

Store, embedded asynchronous Message Bus, Load Balancer, Circuit Breaker, Log

Generation, Log Correlation, etc., they can be represented using the supertype

Infrastructure Pattern Component. Examples include the in-memory H2 database in

user-service and friend-service microservices (from case study 4), the user-service,

shopping-cart-service, payment-service, catalogue-service and account-service

microservices (from case study 8), and the embedded Kafka message broker in user-

service, recommendation-service and friend-service microservices (from case study

4). The main aim of those embedded components is to perform pre-production testing.

163

Figure 6-9: (a) PIM instances recovered for Kafka microservice from case study 4 based on PIM metamodel (Version 1). (b) Enhanced PIM instances recovered for kafka microservice

based on enhanced PIM metamodel (Version 2).

164

Figure 6-10: PIM metamodel (version 2).

165

Increment 2: Supporting Synchronous Communication through

Endpoints

Context-1: Request-response synchronous inter-service communication is

represented in the PIM metamodel (version 2, see Figure 6-10) using the Service

Dependency concept, which specifies the Service Operation of the consumer that

invokes a remote Service Operation of the provider. However, the request-response

inter-service communication in the PIM metamodel (version 2) is based on Service

Operation, which is low-level and probably unrecoverable in some cases, and Service

Operations are not linked to their exposed Endpoints.

To illustrate, it can be observed from case study 1 that the card-statement-composite

consumer microservice sends two consecutive requests: the first is a request to card

provider microservice through an endpoint GET api/card/{cardId}, and the second is

a request to statement provider microservice through an endpoint GET

api/statement?cardId={cardId}, as illustrated in the sequence diagram in Figure 6-11.

A PIM instance of the card-statement-composite microservice based on version 2 is

shown in Figure 6-12. It states that Service Dependency instance (d3) defines the

consumer’s Service Operation, named getStatementByCardId, which invokes a

remote provider’s Service Operation named getCard. Similarly, Dependency instance

(d4) indicates that the same Service Operation of the consumer invokes a remote

Service Operation named getStatements of another provider statement. However, the

invocation to the provider is made first to the Endpoint, which, in turn, maps the

request to the Service Operation. One observation on the PIM instance is that it does

not demonstrate the mapping of Service Operations by equivalent Endpoints.

Requirement-2.1➔ Service Operations should be linked to their exposed

Endpoints.

Enhancement-2.1➔The association of Service Operation is repositioned from

Service Interface to Endpoint. This association is an optional association that goes

from Endpoint to Service Operation. It is optional support for modelling

Infrastructure Microservices that tend to hide, i.e. abstract, implementation of their

Service Operations.

166

Figure 6-11: Synchronous request-response between card-statement- composite, card and statement microservices from case study 1.

167

Figure 6-12: PIM instance recovered for card-statement-composite microservice from case study 1 based on PIM metamodel (version 2).

168

The second observation is that the representation of the request-response inter-service

communication as an invocation to the remote provider’s Service Operation is

considered low-level, and Service Operations can be unrecoverable, especially in the

case of modelling Infrastructure Microservices, as explained earlier in Increment-1.

Requirement-2.2 ➔ Service Dependency between two microservices should

mainly involve the consumer microservice and provider microservice. Additional

information to consider is the consumer’s operation and the provider’s endpoint if

they are available.

Enhancement-2.2 ➔ The two associations between Dependency and Service

Operations are replaced with two optional attributes: ConsumerOperation and

ProviderEndpoint.

Having shifted the association of the Service Dependency concept to the provider’s

Endpoint instead of the provider’s Service Operation (in Enhancement-2.2),

information about the format of the request and response data messages at the

provider’s endpoint is missing. Service Operation already specifies the format of its

request/input message via the data type of the parameter(s), if any, while the

response/output message is specified by the data type of the object returned, if any. To

illustrate via the Provider Operation value in Service Dependency instance (d3) as in

Figure 6-12, we can see that the data type of the return object is Card, which

corresponds to the payload of the response message. The data type is eventually

converted to some standard data representation format, e.g. XML or JSON. Thus, it is

necessary to provide the schema of the message in a standard format in order for it to

be followed by the consumer.

Requirement-2.3➔ An Endpoint of a microservice should define the format and

type of its data messages, if any.

Enhancement-2.3 ➔ A Service Message concept is introduced. Service Message

is associated with Endpoint and it is defined by Type, i.e. request/response/error,

Schema and Schema Format, i.e. XML/JSON.

Figure 6-13 shows the enhanced PIM (version 3). Figure 6-14 shows a PIM instance

of card-statement-composite microservice based on the enhanced PIM (version 3).

169

Figure 6-13: PIM metamodel (version 3).

170

Figure 6-14: Enhanced PIM instance recovered for card-statement-composite microservice from case study 1 based on enhanced PIM

metamodel (version 3).

171

Increment 3: Supporting asynchronous communication

Context-1: Unlike synchronous request-response, in asynchronous message-driven

communication, the consumer does not directly invoke a remote Service Operation

nor an Endpoint of the provider; instead, they send an event/message to an

intermediary Infrastructure Microservice Asynchronous Messaging, which will

eventually forward the event/message to the provider. However, the PIM metamodel

(version 3) does not consider message-driven inter-service communication. To

illustrate, consider the message-driven inter-service communication implemented in

case study 2 using the sequence diagram depicted in Figure 6-15. This inter-service

communication is initiated by an external synchronous request received on the

endpoint of the weatherservice microservice: ‘POST/weather/forecast’. Then, the

forecast operation of the weatherservice microservice will publish an

EventGetOutlook message accompanied with a routing key, weatherbackend:queue,

to the RabbitMQ infrastructure microservice, i.e. a RabbitMQ message broker.

Inside RabbitMQ, as described in Figure 6-16, according to the AMQP protocol

implemented by RabbitMQ, some kind of exchange will receive the message and then

forward it to a particular queue, depending on the routing key provided. In this case,

the EventGetOutlook message is received by the default exchange, forwarded to a

particular queue named weatherbackend:queue and eventually received by the

weatherbackend microservice, the provider, because it is subscribed to that particular

queue. After that, the provider’s operation handleMessage will process the message

received and the response back to the weatherservice microservice by dropping an

EventGeneralOutlook message onto RabbitMQ accompanied with a routing key:

weatherservice:queue. The message will be forwarded by the exchange to

weatherservice:queue and eventually received by the weatherservice microservice.

The RabbitMQ infrastructure message bus/broker in case study 2 is configured to

create two and three message queues (see Figure 6-16). The three queues are named

weathersimple:queue, weatherbackend:queue and weatherservice:queue, and are

bound to the message exchanges.

172

Figure 6-15:Asynchronous message-driven inter-service communication between weatherservice and weatherbackend microservices (case study

2).

173

Figure 6-16: Internal setup of rabbitmq message broker from case study 2.

174

To illustrate, an outbound queue is where the weatherbackend microservice eventually

forwards its events/messages to, however, an inbound queue is where the

weatherbackend microservice is subscribed to and receives incoming event/messages.

It can be concluded that if the outbound queue name of a consumer microservice

matches the inbound queue name of the provider microservice, then the first

microservice has a Service Dependency with the second, because it sends an

event/message to the second’s inbound queue.

This is comparable to request-response inter-service communication, where the

microservice that sends a request to the Endpoint of another remote microservice is

said to have a Service Dependency with that remote microservice. Therefore, an

inbound queue of a microservice can be considered an asynchronous alternative to an

Endpoint, and hence it needs to be exposed in a microservice’s Service Interface in

order to be reachable.

According to the previous statement, as seen in Figure 6-15, the weatherservice

microservice is said to have a Service Dependency with the weatherbackend

microservice, because it sends an asynchronous EventGetOutlook message to

weatherbackend:queue, i.e. an inbound queue to the weatherbackend microservice.

Similarly, the weatherbackend microservice is said to have a Service Dependency with

the weatherservice microservice because it sends an asynchronous

EventGeneralOutlook message to weatherservice:queue, i.e. an inbound queue to the

weatherservice microservice. The Enhanced PIM (version 4) is provided in Figure 6-

17. A PIM instance of weatherbackend microservices based on the enhanced PIM

(version 4) is provided in Figure 6-18.

Requirement-3.1 ➔ A message-based asynchronous mechanism of inter-service

communication using asynchronous inbound queues and messages should be

represented.

Enhancement-3.1 ➔ The concept Queue Listener is introduced, defined by its Name

and, as Endpoint, is associated with Service Interface.

175

Enhancement-3.2 ➔ As Endpoint, Queue Listener is associated with Service

Message and maps to Service Operation.

Enhancement-3.3 ➔ Queue Listener and Endpoint are all generalized in a supertype

concept called Message Destination, because they all represent the destination at

which a remote message is received.

Enhancement-3.4 ➔ An attribute provider’s Endpoint is replaced with the provider’s

destination, which represents both the provider’s Endpoint and the provider’s Queue.

176

Figure 6-17: PIM metamodel (version 4).

177

Figure 6-18: Enhanced PIM instance recovered for weatherbackend microservice from case study 2 based on PIM metamodel (version 4).

178

Increment 4: Support for Configuration

Context-1: PIM metamodel (version 4) doesn’t support multiple configuration

profiles implemented for a microservice application, which include default,

development, Docker, Kubernetes and test. To illustrate, let us look at the analysis

result of the microservice from case study 4, as illustrated in Figure 6-19. It is

noticeable that the model has both embedded and client infrastructure components that

are of the same pattern category. For example, components comp2 and comp5 both

refer to the Kafka message broker; however, the first is a client component for a remote

Kafka, while the second is an embedded component. Similarly, comp3 and comp4 both

refer to the Neo4j graph database; however, the first is a client component for remote

Neo4j, while the second is an embedded component. Both comp6 and comp7 are client

components for service registry and discovery infrastructure patterns, however the

first is implemented with Netflix Eureka and the second with Kubernetes. The reason

for using this collection of similar components is that the application has multiple

configuration profiles; each one is targeted at different running environments. The

application uses embedded components in a testing environment only, while the use

of service registry and discovery with Kubernetes is intended for an optional situation,

where Kubernetes is running and available instead of Netflix Eureka. Apparently, PIM

metamodel (version 4) needs enhancement to reflect such multiple configurations for

multiple environments. The enhanced and final PIM (version 5) is provided in Figure

6-20. The PIM instance of recommendation-service microservice, based on the

enhanced PIM (version 5), is provided in Figure 6-21.

Requirement-4.1 ➔ Multiple configuration profiles are needed to represent

multiple environments.

Enhancement-4.1 ➔ An attribute named Environment is added for the

Infrastructure Pattern Component, Message Destination and Dependency concepts.

As a result of this new empirical study, Misar PIM has become able to represent and

abstract the technologies and patterns encountered in the systems analyzed as

demonstrated in Table 6-5.

179

Figure 6-19: PIM instance recovered for recommendation-service microservice from case study 4 based on PIM

metamodel (version 4).

180

Figure 6-20: Final PIM metamodel (version 5).

181

Figure 6-21: Enhanced PIM instance recovered for recommendation-service microservice

from case study 4 based on enhanced PIM metamodel (version 5).

182

Table 6-5: Technologies encountered in the systems analyzed

ID Main Pattern/Technology MiSAR PIM Representation/Abstraction

1

Synchronous Communication

implemented with Spring Feign

REST Client.

The consumer Microservice will have a Dependency concept

with a reference to the Endpoint of the provider which, in

turn, has one or more ServiceMessage concepts to describe

the schema of business data requested by the consumer and

returned by the provider.

Centralized Circuit Breaker

Monitoring implemented with

Netflix Hystrix Dashboard and

Netflix Turbine.

The monitoring server is an InfrastructureMicroservice

which has two InfrastructureServerComponent concepts;

one with category value of

Observability_Pattern_Circuit_Breaker_Metrics_Aggregation

and another one with

Observability_Pattern_Circuit_Breaker_Metrics_Monitoring.

2

Asynchronous Communication via

RabbitMQ as a middle message

broker.

The consumer Microservice will have a Dependency concept

with a reference to the QueueListener of the provider which,

in turn, has one or more ServiceMessage concepts to describe

the schema of business data received at the provider’s queue

from the consumer. The communicating Microservices will

have an InfrastructureClientComponent with category

attribute of value:

Development_Pattern_Asynchronous_Message_Brokering.

The middle RabbitMQ message broker itself is an

InfrastructureMicroservice which has an

InfrastructureServerComponent with category attribute of

value:

Development_Pattern_Asynchronous_Message_Brokering

Centralized Log Analysis and

Monitoring implemented with ELK

Stack (Elasticsearch, Logstash and

Kibana).

The three servers in the stack are

InfrastructureMicroservices each has one

InfrastructureServerComponent with category attribute of

value: Observability_Pattern_Application_Metrics_Analysis,

Observability_Pattern_Application_Metrics_Aggregation and

Observability_Pattern_Application_Metrics_Monitoring

respectively.

3

OAuth2 Token-Based Security

implemented with Spring OAuth2

and Spring Security.

The OAuth2 server is an InfrastructureMicroservice which

has InfrastructureServerComponent with category attribute

of value: Security_Pattern_Authorization_and_Authentication

4

Event Sourcing and Command

Query Responsibility Segregation

(CQRS) where changes to the

application’s state are stored as a

sequence of events in Kafka topics.

The Microservice that initiates the event will have a

Dependency concept with references to the QueueListener

concept of all Microservices that will receive the event. The

QueueListener concept has one or more ServiceMessage

concepts to describe the schema of event to be received. The

communicating Microservices will have an

InfrastructureClientComponent with category attribute of

value:

Development_Pattern_Asynchronous_Message_Brokering.

The middle Kafka message broker itself is an

InfrastructureMicroservice which has an

InfrastructureServerComponent with category attribute of

value:

Development_Pattern_Asynchronous_Message_Brokering

183

Reactive Streams implemented with

Spring WebFlux and Spring Data

R2DBC.

REST endpoints and database connections that execute

internally using reactive streams are abstracted respectively by

the Endpoint concept as well as the

InfrastructureClientComponent with category attribute of

value: Development_Pattern_Data_Persistence

5

Sidecar Proxy to non-JVM

Applications implemented with

Spring Sidecar.

Sidecar proxy is an InfrastructureMicroservice which has

one InfrastructureServerComponent concept with category

attribute of value:

Service_Routing_Pattern_API_Gateway_and_Proxy

6
Distributed Tracing implemented

with Spring Sleuth and Zipkin.

The Microservice that implements sleuth to tag requests and

logs with tracing id will have two

InfrastructurePatternComponent concepts with category

attribute of value: Observability_Pattern_Log_Correlation

and Observability_Pattern_Distributed_Tracing while Zipkin

server is an InfrastructureMicroservice which has an

InfrastructureServerComponent concept with category

attribute of value:

Observability_Pattern_Distributed_Tracing_Monitoring

7

Polyglot Data Management

implemented with Relational

Database (MySQL), NoSQL

Database (Mongo), Graph Data

Models (Neo4j) and Data Cache

(Redis).

Each data store server is an InfrastructureMicroservice

which has one InfrastructureServerComponent concept

with category attribute of value:

Development_Pattern_Data_Persistence. The Redis data

cache is an InfrastructureMicroservice which has one

InfrastructureServerComponent concept with category

attribute of value: Development_Pattern_Data_Cache.

8
Big Data Storage and Analysis

implemented with Hadoop.

Hadoop server is an InfrastructureMicroservice which has

one InfrastructureServerComponent concept with category

attribute of value: Development_Pattern_Data_Persistence.

9 Netflix Consul Infrastructure.

Consul server is an InfrastructureMicroservice which has

three InfrastructureServerComponent concepts with

category attribute of value:

Service_Routing_Pattern_Registry_and_Discovery,

Development_Pattern_Centralized_Configuration and

Development_Pattern_Asynchronous_Message_Brokering

respectively.

184

 RQ2: Do the current MiSAR mapping rules map microservice Java and Spring

Cloud systems into architectural models?

To answer RQ2, in the first section I explained the mapping rules structure and

demonstrated the enhancements made to the mapping rules structure that enabled them

to map the microservice implementation into the architectural elements. Then in the

second section, I present some of the mapping rules analysis applied to the selected

systems in Table 6-7.

Mapping Rules Structure. The structure of MiSAR’s mapping rules evolved from

textual sentences written in natural language, as presented in Chapter 5, into a

structured tree that maps PSM element(s) into target PIM element(s). Each mapping

rule conforms to the metamodel depicted in Figure 6-22. Mapping rules are

represented as a group of source PSM elements at the left-hand side (LHS), specified

by their attributes’ values and the references between them, which transforms to a

group of target PIM elements at the right-hand side (RHS), with specific attribute

values and references between them. LHS-elements are identified before the word

’indicates’ and RHS-elements are identified after ’indicates’. Chapter 7 explain how

an instance of the mapping rule metamodel is created.

Figure 6-22: MiSAR mapping rule metamodel

185

The root of each rule includes textual description and information about the source

project, artefact type and a key snippet from which this rule was first encountered

(from the studies presented in chapters 5 and 6). This history of each rule was required

to track the added value of each new case study. Rule Identifier (RID) is a unique

value recorded for each mapping rule. Source Project Name and Source Microservice

Name belong to a particular microservice in a particular case study where the mapping

rule was first observed. Source Artefact Type indicates that this rule was extracted

from a certain artefact type, e.g. a DockerComposeFile. Source Artefact Filename

refers to the name and path of a particular file from which a given rule was first

extracted. Source Generating Snippet is the first text/code snippet that contained

keywords indicating the rule. The textual mapping rule, written in natural language,

as presented in Chapter 5, is provided in the Description. Using a structured format,

as in the dataset sample given in Table 6-6, we can obtain all target PIM elements

transformed by a particular source PSM element, say DockerContainerDefinition

(DCD). In addition, we can get alternative rules by selecting all rules which transform

a specific target PIM element, say InfrastructurePatternComponent (IPC) with

category value Development Pattern – Data Persistence, then group them by distinct

source PSM elements, say DependencyLibrary (DL) and ConfigurationProperty (CP).

Table 6-6: Sample of MISAR mapping rules structured dataset.

186

The aim of this change is to formalize the transformation terms, facilitate their

implementation and eventually make the recovery process automatic. Using the

structured format, one can facilitate storage, filtering and grouping of rules, query all

the mapping rules that transform a particular target (PIM element), then group them

by each source (PSM element). This grouping is important for implementing mapping

rules using QVT mappings, since every QVT mapping transforms one PSM element

into one PIM element. All mapping rules that belong to each group will be written as

if they were statements inside one QVT mapping. Eventually, the mapping rules

become easy to implement and the recovery process becomes automated.

Mapping rules analysis. I analysed the nine systems and a sample of the mapping

rules obtained are shown in Table 6-7. The results are as follows:

(a) Validated Existing Mapping Rules: Most of the mapping rules that were defined

in chapter 5 still apply in the new systems. Examples of these are rule R1, which

recovers Microservice Architecture, rule R2 and rule R3, which recovers Container

and Microservice respectively. R4, which recovers Infrastructure Microservice, rule

R7, which recovers Service Operation, and rule R10, which recovers Service

Dependency, as illustrated in Table 6-7.

(b) Mapping Rules (Modification/New): This involves updates to existing mapping

rules to reflect the enhanced PIM metamodel (version 5) presented in response to RQ1.

Some resultant rules were newly created, while others are modified versions of

existing rules. For instance, the introduction of the new PIM concept Infrastructure

Pattern Component (and its sub-types) presented in Increment-1 resulted in rule R5,

which is a replacement of a previous rule in study 1 (Chapter 5). Rules R6, R9 and

R11 are newly added. Rule R6 is newly added to recover a production Endpoint that

is automatically created by the Spring Actuator library at runtime without any

implementation code existing in the source files. Rules R9 and R11 were newly added

as a result of Increment-3 to recover the Queue Listener concept which is a Message

Destination based on message-driven inter-service communication. This concept was

introduced after analysis of case study 2 and case study 8.

187

(c) Mapping Rules Variation: This involves the addition of new mapping rules that

recover an existing PIM concept, which are implemented in technologies that were not

encountered in previous studies (Chapter 5). As an example, rule R8 recovers the

Service Operation concept, which is the exact output of R7 except that the input in R8

represents a reactive, non-blocking microservice. This reactive architecture was

introduced after the analysis of case study 4.

d) Hard-coded mapping rules: The addition of mapping rules with hard-coded

values to recover production endpoints along with their message types and the formats

of outsourced famous infrastructure technologies. An example is rule R6. The

information of such implicit endpoints is hard-coded in the new version of mapping

rules.

188

Table 6-7: Sample of mapping rules analysis

17 Systems listed in Table 5-3, Chapter 5.

Mapping Rule

Case study where the rule applies

Ch5

17

1 2 3 4 5 6 7 8 9

R1: One Distributed Application Project with Application Name value:

{architecture-name} always maps to one Microservice Architecture with

Architecture Name value: {architecture-name}. (Rule text at the time of writing

(chapter 5) was: “The name of microservice architecture concept is indicated by

the name of the root GitHub repository which contains all artefacts of the

application's project.”)

x x x x x x x x x x

R2: One Docker Container Definition with Container Name value: {container-

name} always maps to one Container with Container Name value: {container-

name}. (Rule text at the time of writing (chapter 5) was: “The name of container

concept is indicated by the key name of service container definition in the

container orchestration file of the application's project.”)

x x x x x x x x x x

R3: One Docker Container Definition with Container Name value: {microservice-

name} always maps to one Microservice with Microservice Name value:

{microservice-name}. (Rule text at the time of writing (chapter 5) was: “The name

of microservice concept is indicated by the key name of service container

definition in the container orchestration file of the application's project.”)

x x x x x x x x x x

R4: One Docker Hub Image Container with Container Name value:

{microservice-name} always maps to one Infrastructure Microservice with

Microservice Name value: {microservice-name}. (Rule text at the time of writing

(chapter 5) was: “An infrastructure microservice concept is indicated by a service

container definition that does not have ‘build:’ key in the container orchestration

file of the application's project.”)

x x x x x x x x x x

R5: One Docker Hub Image Container with Image Field value which contains:

“consul” indicates one Infrastructure Server Component with Category value:

Service Routing Pattern - Registry and Discovery, another Infrastructure Server

Component with Category value: Development Pattern - Centralized

Configuration and a third Infrastructure Server Component with Category value:

Development Pattern - Asynchronous Messaging. (Rule text at the time of writing

(chapter 5) was: “A registry and discovery concept with technology of 'Netflix

Eureka' is indicated by an 'image:' key with value that starts with ‘consul' in the

container orchestration file of the application's project.”)

x X

R6: A Dependency Library with Library Name value: “spring-boot-starter-

actuator” and Library Scope value: {destination-environment} indicates one

x x x x x x x x

189

Endpoint with Request URI value: “GET /actuator/health” and Environment

value: {destination-environment} which has a Service Message with Message

Type value: “RESPONSE”, Schema Format value: “JSON” and Body Schema

value:

“{"type":"object","properties":{"status":{"type":"string"},"details":{"ty

pe":"object"}}}”.

R7: A Java Annotation with Annotation Name value that ends with: “Mapping”

which belongs to a Java Method in a Java Class with Java Annotation value that

ends with: “Controller” and returns a Java Data Type with Element Identifier

value: {datatype-name} indicates a Service Operation with Operation Name

value: {operation-name} and Operation Description value: “Returns a response

message: {datatype-name}”. (Rule text at the time of writing (chapter 5) was: “A

service operation concept is indicated by a java method with a java annotation that

ends with ‘Mapping’ and belongs to a java class with annotation that ends with

'Controller' in the source code file of the microservice's project.”)

x x x x x x x x x x

R8: A Java Annotation with Annotation Name value that ends with: “Mapping”

which belongs to a Java Method in a Java Class with Java Annotation value that

ends with: “Controller” and returns a Java Data Type with Element Identifier

value: “[Mono|Flux<]{datatype-name}[>]” indicates a Service Operation with

Operation Name value: {operation-name} and Operation Description value:

“Returns a response message: {datatype-name}”.

 x

R9: A Java Annotation with Annotation Name value: “RabbitListener” which

has a Java Annotation Parameter with Parameter Name value: “[value|queues]”

and Parameter Value value: {queue-name} and belongs to a Java Method with

Element Profile value: {destination-environment} indicates a Queue Listener with

Queue Name value: {queue-name} and Environment value: {destination-

environment}.

 x x

R10: A Java Method with Element Identifier value:

“[get|post]For[Entity|Object]|[put|delete]” whose parent is a Java User Defined

Type with Element Identifier value: “[Rest|OAuth2Rest]Template” and Package

Name value: “org.springframework[.web|.security.oauth2].client” and

Element Profile value: {dependency-environment} which has one Java Method

Parameter with Parameter Order value: “1” and Field Value value:

“%://{provider-name}[:{port-number}]/{endpoint-path}” indicates a Service

Dependency with Provider Name value: {provider-name}, Provider Destination

value: “Endpoint[RequestURI:[GET|POST|PUT|DELETE] {endpoint-

path}]” and Environment value: {dependency-environment}. (Rule text at the time

of writing (chapter 5) was: “A microservice provider to a microservice is indicated

by the first parameter of a java method ‘getForEntity’, ‘postForEntity’,

‘getForObject’, ‘postForObject’, ‘put’ or ‘delete’ which belongs to a java class

x x x x x x x

190

 RQ3: Can an enhanced MiSAR approach recover architectural models?

The final MiSAR artefacts (mapping rules and metamodel) were applied to check the

validity of MiSAR in regards to its ability to create an architectural model (diagram).

To validate this, a new system called Microservices Sample was selected (Vijayendra,

2019), which is an open-source microservice project. The following steps were taken

to recover the architecture model of this system (steps 1 to 3) and the following shows

the simplified architectural models for this case study (step 4). The methodology of

the recovery process also supports internal feedback. This can take the form of built-

in validation mechanisms to detect inconsistency and incompleteness (step 5) and then

update the MiSAR repository (step 6).

Step 1- Artefact collection (manual): The artefacts collected from the project are

shown in Table 6-8 that shows artefacts URL collected for each artefact type.

‘RestTemplate’ or ‘OAuth2RestTemplate’ in the source code file of the

microservice's project.”)

R11: A Java Method with Element Identifier value: “convertAndSend” whose

parent is a Java User Defined Type with Element Identifier value:

“[Amqp|Rabbit]Template”, Package Name value:

“[org.springframework.amqp[.core|.rabbit.core]” and Element Profile value:

{dependency-environment} which has one Java Method Parameter with

Parameter Order value: “2” and Field Value value: {routing-key} whose type is

a Java Class Type with Element Identifier value: “String” such that there is a

Queue Listener with Queue Name value that contains: {routing-key} and belongs

to a Microservice with Microservice Name value: {provider-name} indicates a

Service Dependency with Provider Name value: {provider-name}, Provider

Destination value: “QueueListener[QueueName:{queue-name}]” and

Environment value: {dependency-environment}.

 x x

191

Step 2- Instantiate PSM instance (manually): As MiSAR adopts the PSM-to-PIM

transformation, the next step is to create a PSM instance that reflects the system’s

artefacts prior to architecture recovery. The PSM metamodel is implemented as an

Eclipse Ecore model18, explained in Chapter 7. Each collected artefact is manually

parsed to instantiate a set of corresponding PSM elements, which eventually build up

the entire PSM instance model shown in Figure 6-23 that conforms to the PSM

metamodel presented in Figure 6-4 and Figure 6-5. Instantiating PSM starts by parsing

the Application Project Build File and the Docker Compose File. Then, for each

Microservice Project, parsing takes place in the following order: Build file, Docker

file and Configurations file. As for parsing the Java Source files, the class with

@SpringBootApplication annotation is first processed, followed by the classes with

methods annotated with @Scheduled and annotations that end with Mappings, such

as @GetMapping, and Listener such as @RabbitListener. This order resembles the

starting points of the application’s execution. After that, the order of parsing the

remaining files does not matter. A PSM instance of Microservices Sample that is

created using the Eclipse Ecore model and represented in XMI format is presented in

GitHub repository 19.

18 https://github.com/nuha77/MiSAR/blob/master/PSM.ecore.
19 https://github.com/nuha77/MiSAR/blob/master/MicroserviceSamplePSM.xmi.

Table 6-8: Artefacts collected for Microservices Sample from its GitHub repository

https://github.com/nuha77/MiSAR/blob/master/PSM.ecore
https://github.com/nuha77/MiSAR/blob/master/MicroserviceSamplePSM.xmi

192

Step 3- Recover PIM instance (automatic): To automate the MiSAR recovery tasks,

the PIM metamodel is first implemented as an Ecore model in Eclipse20. Mapping

rules are then implemented in the QVT language using Eclipse QVTo21. In Eclipse

QVTo implementation, mapping rules are organised in top-bottom order. In other

words, a rule that maps a top PSM element, such as ApplicationProject, to a top PIM

element, such as Microservice Architecture, should invoke all mapping rules to

recover subsequent PIM elements from PSM elements. The PIM instance recovered

is shown in Figure 6-24, and available in the Github repository22. The fully recovered

PIM instance of Microservices Sample is included in the Eclipse QVTo project,

available in the project’s Github repository.23

20 https://github.com/nuha77/MiSAR/blob/master/PIM.ecore.
21 https://github.com/nuha77/MiSAR/blob/master/MisarTransformation.qvto.
22 https://github.com/nuha77/MiSAR/blob/master/MicroserviceSample.PIM.
23 https://github.com/MiSAR-A/MiSAR-Eclipse-QVT-

Operational/blob/master/MisarQVTv1%20(1).zip.

Figure 6-23: Recovered PSM instance of Microservices Sample.

https://github.com/nuha77/MiSAR/blob/master/PIM.ecore
https://github.com/nuha77/MiSAR/blob/master/MisarTransformation.qvto
https://github.com/nuha77/MiSAR/blob/master/MicroserviceSample.PIM
https://github.com/MiSAR-A/MiSAR-Eclipse-QVT-Operational/blob/master/MisarQVTv1%20(1).zip
https://github.com/MiSAR-A/MiSAR-Eclipse-QVT-Operational/blob/master/MisarQVTv1%20(1).zip

193

Figure 6-24: Recovered PIM instance of Microservices Sample.

Step 4- Visual architectural model (manual): In addition to the PIM instance

represented in XML format, MiSAR’s output includes an architecture diagram. The

recovered architecture in MiSAR is graphically represented at two levels: an

architectural level and a microservice level, where each microservice has a more

detailed view.

In developing the architecture-level diagram, I was inspired by Sam Newman’s

(2019) graphical notations for representing high-level abstraction; for example, he

uses a hexagon to represent the service and a link to represent the association between

two services. For developing the microservice-level diagram I was inspired by the C4

model provided by Simon Brown (2018). The C4 diagrams provide different levels of

abstraction, for example containers level, components level, etc. The rationale for

using these notations is that they are the most appropriate and the clearest for the

presented work, and useful for representing all elements of the PIM metamodel. I

customized some diagram notations according to the needs of my project, as outlined

in Appendix B-1 and B-4.

Figure 6-25 is an architectural-level diagram of Microservices Sample, which reflects

the recovered PIM instance, they include the high-level view of all microservices, their

types and dependencies. In the architecture diagram at the architectural level, both the

Infrastructure Microservice and Functional Microservice concepts are represented

194

with a hexagon; the representation of the Infrastructure Microservice is distinguished

by adding all of its Infrastructure Server Components as circles inside the hexagon in

order to specify the composite category of that Infrastructure Microservice (see Figure

6-25 and Appendix B,1). A microservice-to-microservice Service Dependency is

represented by a link connecting the two microservices, while a microservice-group-

to-microservice Service Dependency is represented by a box surrounding all the

microservices that share the same Service Dependency with one microservice.

Obviously, these solid lines represent the synchronous interactions between

microservices. As for the representation of asynchronous interactions, the set of Queue

Listener concepts of all microservices are first mapped to the Queue cylinder. Next, to

represent that service-one (see Figure 6-25) is publishing messages to a particular

queue named com.mudigal.microservices-sample.service-two, a dotted line labelled

writes_to_queue will connect service-one to the Queue cylinder labelled with that

name. If, alternatively, service-one is receiving messages from a queue named

com.mudigal.microservices-sample.service-one, then a dotted line labelled

reads_from_queue will connect service-one to the Queue cylinder labelled with that

particular name. If service-one is both publishing to and receiving messages from the

same queue, then one dotted line is drawn with two labels, << writes_to >> and<<

reads_from >>. From this representation, one can directly tell that as service-one is

writing to a queue from which service-two is receiving messages, then service-one has

an asynchronous, indirect Service Dependency on service-two.

Figure 6-26 is a microservice-level diagram of microservice service-one in

Microservices Sample, which reflects the recovered PIM instance in Figure 6-27,

including its Service Interface, Messages Destinations (e.g. Endpoint and/or Queue

Listener), Service Messages, Service Operations and the Infrastructure Pattern

Components of this individual microservice, the graphical notations related to

microservice level outlined in Appendix B-4.

195

Figure 6-25: Architecture diagram at architectural level of the recovered PIM instance.

196

Figure 6-27: Recovered PIM Instance of service-one microservice.

Figure 6-26: Microservice diagram of recovered PIM instance of service-one microservice.

197

Step 5- Consistency check between generated architectural models and

documentation: The architecture diagrams of the Microservices Sample provided by

the documentation of the developers in figure 6-28 and 6-29 were compared with the

generated MiSAR’s architecture diagrams, as in figures 6-25 and 6-26. The results are

as follows:

Consistent with documentation: MiSAR successfully recovered two Functional

Microservices, service-one and service-two, in addition to the remaining 12

Infrastructural Microservices (service-one-db, service-two-db, rabbit, kibana,

logstash, elasticsearch, consul, consul2, consul3, APIGateway, scope and web

application). By looking at the documented architecture diagram of the service-one

microservice provided by the developer, as shown in Figure 6-29, it can be seen that

the generated architecture diagram (Figure 6-26) successfully recovered the static

components of service-one along with their configuration profiles for multiple

environments (as explained in Increment-4). To illustrate, the Embedded MongoDB

Database in the default environment in the documented model (Figure 6-26) is

recovered as the Infrastructure Pattern Component of the Data_Persistence category

with environment value DEFAULT, while the client component of the remote

MongoDB Database in the docker environment is recovered as the Infrastructure

Client Component of the Data_Persistence category with environment value

DOCKER.

198

Figure 6-28: Documented architecture diagram of Microservices Sample provided by the

developer.

Additional elements: MiSAR also recovered extra Infrastructural Microservice,

named scope, which is included in the architecture’s Docker Compose artefact but not

represented in the documented diagram.

Missed elements: The dependencies among microservices were successfully

recovered, except for the dependencies of the scope microservice, as well as the

dependencies between the web-application and api-gateway microservices. The scope

microservice is an outsourced service available as a remote Docker Hub image, hence

it has no local source artefacts to parse and transform, so there were no corresponding

hard-coded mapping rules to recover its specifications and dependencies. The web-

application microservice has local artefacts but they are implemented in Angular, i.e.

non-Java/Spring, so it doesn’t conform to the requirements of the selected studies.

Moreover, my PIM model concentrates on the recovery of backend architecture only,

therefore the front-end/user interface microservice type, such as web-application, is

199

not covered. It is noticeable that the representation of microservice destinations is

totally missed in the documented model compared to the generated model.

Additional expressivity: Compared to the generated model, the documented model

demonstrates the direct dependencies of service-one and service-two on Rabbit, but it

lacks the representation of the asynchronous functional dependencies between service-

one and service-two. On the other hand, the internal interactions between microservice

components are not covered in my model compared to the documented model.

Figure 6-29: Documented architecture diagram of service-one microservice in Microservice

sample.

200

Step 6- Update MiSAR’s repository (manually): After the recovery process was

completed and the generated model was analysed, some limitations can be seen. This

gives rise to executing necessary updates to MiSAR’s repository (metamodels and

mapping rules). To illustrate, the following mapping rules were added in order to

overcome limitations noticed in the recovery of the scope microservice identified in

the previous step:

1) One Docker Hub Image Container with Image Field value

which contains ‘scope’ indicates one Infrastructure Server

Component with Category value: Observability Pattern –

Application Metrics Monitoring.

2) One Docker Hub Image Container with Image Field value

which contains ‘scope’ indicates one Service Dependency

with every microservice in a microservice architecture.

This particular microservice is a Weave Scope24 application which is a visualization

and monitoring infrastructure for all Docker and Kubernetes containers in a distributed

containerised application. It provides a top-down view of microservice-based

applications as well as their entire infrastructure, and allows diagnosis of any

problems, in real-time.

6.6. Summary

This chapter has presented an in-depth empirical investigation into microservice-based

systems with the aim of defining requirements for a metamodel that defines

microservice architecture. Through this study, the MiSAR metamodels were enhanced

by including the requirements. MiSAR mapping rules were assessed, refined and

formalized, with the aim of more efficiently recovering microservice architectures.

The metamodels and mapping rules were validated by generating a software

24 https://www.weave.works/docs/scope/latest/introducing/.

https://www.weave.works/docs/scope/latest/introducing/

201

architecture model of an unanalysed software system and checking its conformance to

the documentation to ensure the expressivity of the approach. In the next chapter, I

present the implementation of MiSAR repository of metamodels and mapping rules

and chapter 8 present the evaluation of MiSAR in the context of a large case study.

202

Chapter 7

 MiSAR Metamodels and Mapping Rules:

Features and Implementation

7.1. Introduction

This chapter provides an overview of the MiSAR artefacts developed with the help of

the Eclipse framework25 to offer assistance in the recovery of microservice

architecture. Section 7.2 provides an introduction to the modelling language and

model transformation that were used. Ecore, the metamodel implementation, is

discussed in section 7.3. QVT, the transformation mapping rules implementation, is

discussed in section 7-4. Finally, section 7-5 discusses the mapping rule features.

7.2. MiSAR Implementation Environment

The Eclipse Modelling Framework (EMF) forms the environment within which the

metamodels and mapping rule transformations are developed. Metamodels were

implemented as Ecore models using the EMF. The tools utilised for the development

and execution of transformations rules is the Eclipse Model-to-Model

Transformation (M2M) the sub-project of EMF, by incorporating the operational QVT

transformation language (QVTo). Figure 7.1 presents the relationship between

transformation rules, models, metamodels.

25 http://www.eclipse.org.

203

7.3. Ecore Metamodel Implementation

Ecore is one of the important components of the EMF (Steinberg et al., 2008(Dave et

al., 2008); Barendrecht, 2010), which is a graphical domain-specific language used for

representing models, such as Unified Modelling Language (UML). MiSAR

metamodel implementation utilises only a few parts of Ecore, the subset of which is

illustrated in Figure 7-2. The figure illustrates four classes: EClass, EReference,

EAttribute and EDatatype. EClass is a model class and has a specific name, 0 or more

attributes. EReference establishes a one-way linkage between two distinct EClasses,

which are termed source EClass and target EClass. The EReference subset in the figure

embraces name, lower bound, upper bound and isContainment. Both bounds (upper

and lower) in this figure are referred to the cardinality constraints. Two dots are used

for classifying bounds; the right part indicates the upper bound, while the left indicates

the lower bound. An asterisk (*) is used in the situation of an unlimited upper bound.

A single number is used to visualise equal lower and upper bounds. The representation

of EAttribute in the figure is a modelled attribute that also includes its name and the

two bounds (upper and lower). EAttribute conforms to a specific type, an EData Type,

which is an integer or string or object type.

Figure 7-1: The relationship between transformation rules, models,

metamodels.

204

Figure 7-2: The four classes of Ecore used in the Ecore implementation (Barendrecht, 2010).

Metamodels have been implemented as Ecore models using the Eclipse Modeling

Framework (EMF) (Steinberg et al., 2008) as shown in Figures 7-3 and 7-4, which

present the MiSAR PSM26/PIM27 metamodels and their properties respectively in

XMI tree view. Figures 7-5 and 7-6 present the Ecore implementation of MiSAR

PSM/PIM metamodels respectively in Ecore diagram.

 Figure 7-3: Ecore implementation (XMI tree view) of MiSAR PSM.

26 https://github.com/nuha77/MiSAR/blob/master/PSM.ecore.
27 https://github.com/nuha77/MiSAR/blob/master/PIM.ecore.

https://github.com/nuha77/MiSAR/blob/master/PSM.ecore
https://github.com/nuha77/MiSAR/blob/master/PIM.ecore

205

7.4. QVT, the Transformation Rules Implementation

To develop and automate the mapping rules I utilised the Eclipse Model-to-Model

Transformation (M2M) project, by incorporating the operational QVT transformation

language (QVTo) (Barendrecht, 2010). The following subsection outlines the main

components of this language.

Figure 7-4: Ecore implementation (XMI tree view) of MiSAR PIM.

206

 Figure 7-5: Ecore implementation (Ecore diagram) of MiSAR metamodel at PSM level.

207

Figure 7-6: Ecore implementation (Ecore diagram) of MiSAR metamodel at PIM level.

208

7.4.1. Model Type Definitions

Model type is a reference to a metamodel; entire metamodels can be included in the

transformation (in-line definition) or have the feature of referring the defined models

externally. The following (listing 7-1) is an example of model type definitions for

MiSAR transformation.

Listing 7-1: Model type definitions for MiSAR transformation.

modeltype PSM uses PSM('http://localhost/mdd/PSM.ecore');
modeltype PIM uses PIM('http://localhost/mdd/PIM.ecore');

7.4.2. Transformation Declaration

The declaration of transformation rules includes a name, input and output metamodel.

The metamodels of input and output are referred to as defined model types. The

following (listing 7-2) is transformation declaration for MiSAR transformation.

Listing 7-2: Transformation declaration for MiSAR transformation.

transformation MisarTransformation(in source: PSM, out target: PIM);

7.4.3. Main Function

The beginning of the transformation is considered with the starting of the main ()

function. The main function is subjected to establish environment variables and also

by calling for the first mapping rule. The following (listing 7-3) present the main

function of MiSAR transformation.

Listing 7-3: Main function of MiSAR transformation

main() {
 source.rootObjects()[RootPSM] -> map RootPSM2RootPIM();
}

209

7.4.4. Mapping

The core value of the QVT transformation is mapping. It is ensured by each mapping

that an object from an instance of the source metamodel has to be transformed into an

object that is basically a created instance of the target metamodel, it is bound to be

invoked with the keyword map.

1. Declaration: The mapping declaration involves indulging the input class

name of the object along with the name of the mapping, and it also includes

the generated class name of the object, which is an outcome of the mapping.

The complete mapping rules for transformation are available in the GitHub

repository.28Example of the first mapping rule in MiSAR implementation is

given in Listing 7-4. This rule maps a RootPSM into RootPIM as well as invoking

two mapping rules.

Listing 7-4: RootPSM2RootPIM() mapping rule

// declaration section
mapping RootPSM:: RootPSM2RootPIM(): RootPIM
// pre-condition section
when {self.application <> null} {

// body section
 // population section
 architecture := self.application.map DistributedApplicationProject2MicroserviceArchitecture();
 architecture := self.application.application_project.map
ApplicationProject2MicroserviceArchitecture();
 // populate references
 // population section
 // end section
}

2. Conditions: Certain conditions can be used for the extension of the mapping

declaration. It is also required for the source object to adapt these conditions

with the use of defined Object Constraint Language (OCL) in order to

successfully execute the mapping. There are two types of conditions, the pre-

and post-condition, indicated with the keywords “where” and “when”. An

example of pre-condition with “when” is illustrated in Listing 7-4. It asserts

28 https://github.com/nuha77/MiSAR/blob/master/MisarTransformation.qvto.

https://github.com/nuha77/MiSAR/blob/master/MisarTransformation.qvto

210

that a DistributedApplicationProject must exist in the source model before

executing the mapping.

3. Body: Population, end and init are identified to be the three sections of the

mapping body. The init-section is primarily used for initialising parameters

and variables as well as for printing messages to the terminal. The population

section is found to be the section that specifies actual mapping. The idea of the

end section is incorporating additional code executed prior to leaving the

mapping. Listing 7-5 demonstrates the ApplicationProject2

MicroserviceArchitecture mapping invoked in Listing 7-4. This mapping maps

an ApplicationProject into MicroserviceArchitecture. Every init section in

MiSAR mapping rules will check whether the target element (e.g.

MicroserviceArchitecture) has been mapped before or not. This check is

necessary as there are many mappings that generate the same target element

(e.g. as the invoked mappings in Listing 7-4). The population section will

populate target attributes by assigning values to read from source attributes,

then populate target references, if any, by invoking other mappings.

Listing 7-5: ApplicationProject2MicroserviceArchitecture() mapping rule

// declaration section
mapping ApplicationProject:: ApplicationProject2MicroserviceArchitecture(): MicroserviceArchitecture {

// body section
 // init section
 init {
 var architecture:= MicroserviceArchitecture.allInstances()->any(_architecture|_architecture<>
null);
 // if any Microservice Architecture was mapped before, update result, otherwise, create a new one.
 if architecture <> null then {
 result:= architecture;
 } endif;
 }
 // population section
 ArchitectureName := self.ProjectArtifactId;
 GeneratingPSM += 'ApplicationProject[ProjectArtifactId:'+self.ProjectArtifactId+']';
 // populate attributes
 microservices += self.modules.map MicroserviceProject2Microservice();
 // populate references
 // end section
}

211

4. Parameters: The mapping can be parameterised. Two examples of

parameterised mapping rules and how they use the values of their parameters

are illustrated in listings 7-7 and 7-8. Listings 7-6 and 7-7 present two

examples of how mappings invoke the parameterised mappings.

Listing 7-6: MicroserviceProject2ServiceInterface() mapping rule

// declaration section
mapping MicroserviceProject:: MicroserviceProject2ServiceInterface(): ServiceInterface {

// body section
 // init section has been removed
 // population section
 ServerURL := '[http|https]://'+self.ProjectArtifactId+':<port-number>';
 GeneratingPSM += 'MicroserviceProject[ProjectArtifactId:'+self.ProjectArtifactId+']';
 // populate attributes
 self.libraries->forEach(_library){

if _library.LibraryName = 'spring-boot-starter-actuator' then {
 destinations += _library.map DependencyLibrary2Endpoint('GET /actuator/health');
 // some code has been removed
}endif;

 };
 // some code has been removed
 self.properties->forEach(_property){

if _property.FullyQualifiedPropertyName = 'endpoints.health.sensitive' then {
 destinations += _property.map ConfigurationProperty2Endpoint('GET /actuator/health');
 // some code has been removed
}endif;

 };
 // some code has been removed
 // populate references
 // end section
}

Listing 7-7: DependencyLibrary2Endpoint() mapping rule

// declaration section
mapping DependencyLibrary:: DependencyLibrary2Endpoint(uri: String): Endpoint {

// body section
 // init section has been removed
 // population section
 RequestURI := uri;
 Environment := self.LibraryScope;
 GeneratingPSM += 'DependencyLibrary[LibraryName:'+self.LibraryName+']';
 // populate attributes
 if uri = 'GET /actuator/health' then {
 messages += self.map DependencyLibrary2EndpointServiceMessage(uri, 'RESPONSE',
 '

{
 "type": "object",

212

 "properties": {
 "status": {
 "type": "string"
 },
 "details": {
 "type": "object"
 } }

 ', }
 'JSON');
 }endif;
 // some code has been removed
 // end section
}

Listing 7-8: DependencyLibrary2EndpointServiceMessage() mapping rule

// declaration section
mapping DependencyLibrary::
 DependencyLibrary2EndpointServiceMessage(endpoint: String, type: String, schema: String, format:
String):
 ServiceMessage {

// body section
 // init section has been removed where the value of endpoint parameter is used
 // population section
 MessageType := type;
 BodySchema := schema;
 SchemaFormat := format;
 GeneratingPSM += 'DependencyLibrary[LibraryName:'+self.LibraryName+']';
 // populate attributes
 // end section
}

5. Inheritance: Mappings can be reused in other mappings, one way to achieve

this is inheritance. Inheritance is the transformation of subclasses in the source

model, transforming into subclasses in the target model or both. A subclass is

acquired by inheritance from one superclass, which is naturally represented

graphically by an arrow with a white head in the Ecore. An inherited mapping

is declared with keyword inherits and the name of the super mapping. An

example of an inherited mapping is given in Listing 7-9, and the super mapping

is given in Listing 7-10. The super mapping is executed first. Then, the target

element will be updated and generated by the inherited mapping.

213

Listing 7-9: DockerContainerDefinition2InfrastructureMicroservice() mapping rule

// declaration section
mapping DockerContainerDefinition::
 DockerContainerDefinition2InfrastructureMicroservice():
 InfrastructureMicroservice
// inherits declaration
inherits DockerContainerDefinition:: DockerContainerDefinition2Microservice {
}

Listing 7-10: DockerContainerDefinition2Microservice() mapping rule

// declaration section
mapping DockerContainerDefinition:: DockerContainerDefinition2Microservice(): Microservice {

// body section
 // init section has been removed
 // population section
 MicroserviceName := self.ContainerName;
 GeneratingPSM += 'DockerContainerDefinition[ContainerName:'+
 self.ContainerName+',ImageField:'+
 self.ImageField+', GeneratesLogs:'+
 self.GeneratesLogs.toString()+']';
 // populate attributes
 container := self.map DockerContainerDefinition2Container();
 // some code has been removed
 if self.ImageField.indexOf('consul') <> 0 then{
 components += self.map DockerContainerDefinition2InfrastructureServerComponent(
 InfrastructurePatternCategory::Development_Pattern_Asynchronous_Message_Brokering,
 'Consul');
 components += self.map DockerContainerDefinition2InfrastructureServerComponent(
 InfrastructurePatternCategory::Service_Routing_Pattern_Registry_and_Discovery,
 'Consul');
 components += self.map DockerContainerDefinition2InfrastructureServerComponent(
 InfrastructurePatternCategory::Development_Pattern_Centralized_Configuration
 'Consul');
 }endif;
 // some code has been removed
 interface := self.map DockerContainerDefinition2ServiceInterface();
 self.links->forEach(_link){
 dependencies += _link.map DockerContainerLink2ServiceDependency()
 };
 // some code has been removed
 // populate references
 // end section
}

6. Resolving: The situation in which an object of the source model is transformed

to an object belonging to the target model, it results into the appearing of source

object just as a reference, which is not bound to be transformed again. In

Eclipse QVTo, this is accomplished using the resolve function. There are four

variants of the resolve function and these are concisely explained in Table 7-

1. The resolve function is essentially used to resolve a source to a target and

214

returns the target object which appeared from mapping the source object. An

example of a mapping that uses the resolve function is given in Listing 7-11.

Listing 7-11: ConfigurationProperty2ServiceInterface() mapping rule

// declaration section
mapping ConfigurationProperty:: ConfigurationProperty2ServiceInterface(): ServiceInterface {

// body section
 // init section has been removed
 // population section
 ServiceURL := := '[http|https]://'+self.PropertyValue+':<port-number>';
 GeneratingPSM += 'ConfigurationProperty[FullyQualifiedPropertyName:'+
 self.FullyQualifiedPropertyName+
 ']';
 self.container().oclAsType(JavaSpringWebApplicationProject).properties->forEach(_property){
 if _property.FullyQualifiedPropertyName = 'server.contextPath'
 and _property.PropertyValue <> '/' then {
 // resolving mapped target
 var mapped_interface := self.resolveone(ServiceInterface);
 // update attributes of mapped target rather than creating a new one
 mapped_interface.ServerURL := ServerURL + _property.PropertyValue;
 mapped_interface.GeneratingPSM += 'ConfigurationProperty[FullyQualifiedPropertyName:'+
 _property.FullyQualifiedPropertyName+']';
 } endif;
 };
 // populate attributes
 // end section

7.5. Mapping Rule Features

MiSAR mapping rules have been designed to follow the taxonomy of model

transformations presented in (Mens and Van Gorp, 2006) and the explanation of

mapping rules features are based on model transformation features presented in

(Czarnecki and Helsen, 2003) as follows:

Table 7-1: Resolve functions (Barendrecht, 2010).

215

• MiSAR Mapping Rule Structure:

Mapping rules are represented as a group of source PSM elements at the left-hand side

(LHS), specified by their attributes’ values and references among them, which

transforms to a group of target PIM elements at the right-hand side (RHS), with

specific attributes values and references among them. Each mapping rule conforms to

the metamodel depicted in Chapter 6, Figure 6-22.

To explain how an instance of the mapping rule metamodel is created, I will use the

mapping rules implemented in listings 7-6, 7-7 and 7-8, which state that:

- A Dependency Library with Library Name value: “spring-boot-starter-

actuator” and Library Scope value: {destination-environment} indicates one

Endpoint with Request URI value: “GET /actuator/health” and Environment

value: {destination-environment} which has a Service Message with Message

Type value: “RESPONSE”, Schema Format value: “JSON” and Body Schema

value:

“{

"type": "object",

"properties": {

"status": {

"type": "string"

},

"details": {

"type": "object"

}

}

}”

The instance of this mapping rule is provided in Figure 7-8. Rule Identifier (RID) is a

unique value recorded for each mapping rule. Source Microservice Name and Source

Project Name belong to a particular microservice (e.g. account-service) in a

particular case study (e.g. piggymetrics), respectively, where the mapping rule was

first observed. Source Artefact Type indicates that this rule was extracted from a

certain artefact type (e.g. BuildFile). Source Artefact Filename refers to the fully

qualified filename of a particular artefact where the given mapping rule was first

216

observed. Source Generating Snippet is the first text/code snippet in the artefact

indicating the given mapping rule. The textual mapping rule written in natural

language is provided in the Description.

To return to the mapping rule represented in Figure 7-7; this rule is originally extracted

from the source snippet taken from the POM build artefact of microservice

“account-service”, as presented in Figure 7-8. Lines 52 and 53 have been parsed

into a PSM Element: DependencyLibrary with attributes: [LibraryGroup =

‘org.springframework.boot’] (line 52), [LibraryName = ‘spring-boot-starter-

actuator’] (line 53) and [LibraryScope = ‘COMPILE’] (the default value of

‘<scope>’ element in ‘<dependency>’ element if it is missing). This source PSM

element will be transformed into two target PIM elements associated with each other:

an Endpoint element with hard coded attributes [RequestURI = ‘GET

/actuator/health’] and [Environment = ‘COMPILE’] associated by the reference

‘messages’ to a ServiceMessage element with hard coded attributes [Type =

‘REQUEST’], [Schema = ‘{...}’] and [SchemaFormat = ‘JSON’]. This

transformation performed if and only if the DependencyLibrary has the attributes

LibraryName with particular value ‘spring-boot-starter-actuator’.

217

Figure 7-7: A mapping rule instance.

218

The same target PIM element is transformed by alternative mapping rules also

implemented in listings 7-6, 7-7 and 7-8, and states:

- A Configuration Property with Fully Qualified Property Name value:

“endpoints.health.sensitive” and Configuration Profile value: {destination-

environment} indicates one Endpoint with Request URI value: “GET

/actuator/health” and Environment value: {destination-environment} which

has a Service Message with Message Type value: “RESPONSE”, Schema

Format value: “JSON” and Body Schema value:

“{

 "type": "object",

 "properties": {

 "status": {

 "type": "string"

 },

 "details": {

 "type": "object"

 }

 }

}”

The instance for this alternative mapping rule is provided in Figure 7-9. This rule is

originally extracted from the source snippet taken from the YAML configuration

artefact of microservice “service-one”, as presented in Figure 7-10. Lines 13, 18

and 19 have been parsed into a PSM element: ConfigurationProperty with

attributes: [FullyQualifiedPropertyName = ‘endpoints.health.sensitive’] (lines

Figure 7-8: Lines in POM file of the “account-service” project that originated the mapping rule.

219

13, 18 and 19), [PropertyValue = ‘false’] (line 19) and

[ConfigurationProfile = ‘COMPILE’] (the default value of ‘spring.profiles’

configuration if it is missing). This source PSM element will be transformed into the

same target element discussed previously.

Figure 7-10: Lines in configuration file of the “service-one” project that originated the

alternative mapping rule.

Figure 7-9: An alternative mapping rule instance.

220

• Rules Application Scoping: MiSAR PSM selection approach is considered

partial coverage. Not all elements of the PSM model were involved in the

transformation. Instead, I selected a set of them based on particular attribute

values and/or references to other model elements. This is done in order to

provide the most relevant information for architecture recovery. For example,

among all JavaMethod elements in a Java source artefact that are parsed into

PSM elements, I only selected those methods that are decorated with particular

annotations, such as @RequestMapping, @RabbitListener etc., to be later

transformed into ServiceDestination PIM, i.e. Endpoints and QueueListener,

respectively.

• Rules Application Strategy: The determination aspects have been bifurcated

into location and scheduling where location determination ascertains the model

locations in which the transformation rules are exploited potentially. While,

scheduling determination deals with the orders which are subjected to execute

the transformation rules. The mapping rules follows both location

determination and scheduling determination as they are written in depth-first

style with respective to PIM metamodel as well as to PSM metamodel. For

example, the rule that maps the MicroserviceArchitecture element, which is

the first element in the PIM metamodel, from the

DistributedApplicationProject element, which is the first element in the PSM

metamodel, is planned to execute first. Next will be the rule retrieving the

Microservice element, which is the first ancestor of the

MicroserviceArchitecture element in the PIM metamodel, from the

DockerContainerDefinition element, which is the first ancestor of the

DistributedApplicationProject element in the PSM metamodel, and so on.

• Traceability: With the use of Eclipse QVT Operational, traceability is

achieved. During the process of QVT transformation, a trace is encountered

and simultaneously recorded for every source element which is transferred by

a mapping rule. These traces can assist the developers in analysing the orders

in which mappings were invoked. Traces in QVT are invoked by “resolving”,

as illustrated in Listing 7-11

221

• Directionally: Currently, MiSAR transformations are implemented using

Eclipse Operational QVTo, which are uni-directional from source to target.

• Rule application scoping: MiSAR PSM selection approach is considered

partial coverage. Not all elements from source artefacts were involved in the

transformation. Instead, I selected a set of them based on particular attribute

values and/or references to other model elements. This is done in order to

provide the most relevant information for architecture recovery. For example,

among all JavaMethod elements in a Java source artefact that are parsed into

PSM elements, I only selected those methods that are decorated with particular

annotations, such as @RequestMapping, @RabbitListener etc., to be later

transformed into ServiceDestination PIM, i.e. Endpoints and QueueListener,

respectively.

• Mapping Rules Classification: MiSAR mapping rules can be classified into

the following types depicted in Figure 7-11:

 Figure 7-11: MiSAR mapping rules classification.

222

a) Core rules: are those rules that must exist to retrieve a concept at the PIM

level, i.e. they always apply and do not have alternative rules. An example of

such rule is the one implemented with QVTo in Listing 7-4, because there is

no other rules that can retrieve the root RootPIM concept. All other mappings

have alternatives.

b) Alternative rules: are those rules that give additional possibilities to represent

the same concept at the PIM level. Examples include the two mapping rules:

DependencyLibrary2Endpoint() and ConfigurationProperty2Endpoint(), they both

retrieve the exact PIM concept Endpoint using different PSM concepts, i.e.

DependencyLibrary and ConfigurationProperty as in Listings 7-6, 7-7.

c) Predecessor rules: are those rules that trigger the need to the current rule.

Basically, rules that retrieve PIM concepts that are ancestors to other PIM

concepts are considered predecessor rules. In other words, predecessor rules

invoke other rules and/or construct different PIM concepts inside them. For

example, the mapping rules that recover ServiceInterface in Listing 7-6,

invokes mapping rules to recover Endpoint e.g. DependencyLibrary2Endpoint(),

and this mapping rule invoke another mapping rules to recover

ServiceMessage.

d) Generalization rules: a rule that is general used to represent the corresponding

PIM concept. Rule DockerContainerDefinition2Microservice () is one

example of abstract general mapping rule implemented in Listing 7-10.

e) Specialization rules: those rules that are a specialized form of a particular rule.

One example is the rule implemented in Listing 7-9, as it inherits from the rule

implemented in Listing 7-10.

223

7.6. Summary

In this chapter, I have explained the language used to define MiSAR metamodels and

the language used to implement the mapping rule transformations. PIM/PSM

metamodels were implemented as Ecore models using the Eclipse Modelling

Framework (EMF), while mapping rules were implemented as QVTo mappings using

Eclipse M2M/QVT Operational. I ended this chapter with an elaboration on the

features of MiSAR mapping rules.

224

Chapter 8

 An Evaluation of MiSAR Artefacts through

Microservice Architecture Recovery: A Case

Study

8.1. Introduction

The objective of this chapter is to evaluate and demonstrate the usefulness of the

MiSAR artefacts (metamodels and mapping rules), introduced in chapters 5 and 6, by

applying MiSAR artefacts to the recovery of a case study system architecture. Section

8.2 presents the evaluation methodology, which includes architecture recovery that

takes platform-specific models (PSM) concerning the system and obtains platform-

independent models (PIM) to represent the target model. Section 8.3 presents the case

study, which involves a realistic simulation of a real system that contains 69

microservices (out of which 41 are business-oriented microservices). The case study

measures the efficiency and effectiveness of the MiSAR technique.

8.2. Evaluation Methodology

In order to evaluate MiSAR artefacts, first I followed the steps depicted in Figure 8-1,

to recover the architecture model of the case study system’s architecture. I then

evaluated the results obtained through manually checking the consistency between the

recovered architecture model by MiSAR artefacts and the system's architecture

documentation. Finally, the MiSAR repository (metamodels and mapping rules) is

updated with any new elements. Figure 8-1 illustrates the different parts of the

architecture recovery process; the thick arrows signify the process in the recovery

process; the boxes represent the different forms of information in the recovery process;

the thin arrows indicate the inputs and output of the transformation engine. The

recovery process consists of three steps that can be summarised as follows:

225

Step 1 – Artefact collection (semi-automatic): This step involves collecting artefacts

and reviewing them to search for any that may give information about the system.

There are several artefacts in a microservice-based application, such as Java source

files, Docker Compose files, Docker files, Build files and Configuration files. These

are gathered together in an effort to build the knowledge base for the software system.

Step 2 – Instantiate PSM instance (automatic): This phase produces the information

required to describe the software architecture. It extracts the static elements from the

system’s source code and other artefacts, and eventually generates a PSM that

conforms to the PSM metamodel (presented in Chapter 6). This step is executed using

the MiSAR parser (Fakeeh and Alshuqayran, 2019), which generates a PSM instance

in XMI format that is readable by the Eclipse QVTo project. The path and/or directory

of each required artefact is entered by the user as input to the parser.

Step 3 – Recover PIM instance (automatic): This phase populates the target model

with a high-level abstraction of the system by applying the automated mapping rules

implemented using the Eclipse QVTo project. The output of this stage is the

architecture PIM that conforms to the PIM metamodel (presented in Chapter 6). The

resulting PIM is in XMI format and is viewed in Eclipse QVTo as a tree of elements.

Figure 8-1: Steps of the MiSAR architecture recovery process.

226

8.3. Case Study

This case study follows the protocols formulated by Brereton et al. (Brereton et al.,

2008) to increase validity and reliability. The details of the case study according to

these protocols, such as design, selection of the case, procedure, data collection and

data analysis, are presented in the next section.

8.3.1. Design

The objective of the case study is to evaluate the MiSAR approach in terms of

recovering an architectural model of a large system. In this regard, I applied the

recovery process and made use of the implemented MiSAR artefacts: Ecore

metamodels, QVTo Model Transformations and Parser. The case study was adopted

to answer the following research questions:

RQ1: What degree of completeness does the recovered microservice architectural

model have?

RQ2: What degree of correctness does the recovered microservice architectural model

have?

RQ3: Is the execution time of the MiSAR transformations via QVT efficient or not?

Questions 1 and 2 were formulated to evaluate the effectiveness of the MiSAR

transformations and question 3 was formulated to evaluate the efficiency of the

MiSAR transformations. To answer RQ1 and RQ2, the total number of architectural

elements in the architecture model recovered by MiSAR were compared to the total

number of architectural elements in the documented model. The measurement of

effectiveness was conducted with the help of recall, precision and F-measure. In

precision, the correctness of the recovered architecture model was examined, while

recall examined the completeness of the recovered architecture model. To answer

RQ3, the efficiency was calculated on the basis of the time required for the recovery

of relevant information by QVT/Eclipse.

227

8.3.2. Case Selection

The software system for the case study was selected by adopting the following criteria:

(i) Large-size benchmark system: The case study has 69 microservices (out of

which 41 are business-oriented microservices), which is much more than any

existing benchmark.

(ii) The case study was designed using microservice design principles: For

example, the microservices are modularised and organised around business

capabilities; a single microservice is small enough to be developed and

deployed.

(iii) Variety of techniques and implementations: The programming languages

and frameworks the case study implements are: Java (Spring Boot, Spring

Cloud), Node.js (Express), Python (Django), Go (Webgo) and DB (Mongo,

MySQL). Since MiSAR currently was designed to analyse applications

developed with Java –Spring Boot, Spring Cloud, this criterion is important to

assess how MiSAR behaves when it encounters implementations and

technologies not part of MiSAR’s design.

(i) Sufficient testing: The case study provides sufficient unit test cases and

integration test cases, which are publicly available in the open-source project

repository. These test cases ensure the quality of the system selected for the

case study.

Description: TrainTicket system (Zhou et al., 2018) is a train ticket booking system

based on a microservice architecture which contains 41 business-oriented

microservices, 49 MB in size on disk. Figure 8-2 shows the TrainTicket system

architecture, which also shows the dependencies among microservices. As shown in

Figure 8-2, the business-oriented microservices (white hexagons) are distributed into

five layers; the bottom layer contains those microservices that do not depend on any

other microservice. The upper-layer microservices depend on the lower-layer

228

microservices. Microservices of the same layer may depend on each other. The system

has two means for deployment, Docker and Kubernetes. The artefacts for Docker

deployment are those which were selected for the analysis. Having selected the Docker

deployment option, the tracing infrastructure microservice for the system was based

on Jaeger open tracing. The Gateway, Load Balancer and Service Registry/Discovery

infrastructure are handled by a web application built on NGINX called “ts-ui-

dashboard”. The monitoring infrastructure is implemented with a dedicated

application named “ms-monitoring-core”. A detailed list of the endpoints and

dependency invocations of every microservice is provided in a wiki page at

TrainTicket GitHub titled “Service Guide and API Reference”29.

Figure 8-2: TrainTicket architectural diagram.

29 https://github.com/FudanSELab/train-ticket/wiki/Service-Guide-and-API-Reference.

https://github.com/FudanSELab/train-ticket/wiki/Service-Guide-and-API-Reference

229

8.3.3. Application of MiSAR

In the following, I explain how I applied the MiSAR architecture recovery process.

Step 1 – Artefact collection (semi-automatic): The content of the TrainTicket

GitHub was first downloaded locally. The required artefacts were then collected, in

order to be able to upload them to the existing MiSAR parser, as illustrated in Figure

8-3.

Figure 8-3: Artefact collection.

Mandatory artefact inputs for the recovery process are:

- Project name.

- Path of PSM Ecore metamodel file.

- Build directory of the system (multi-module) project.

- Path of every Docker Compose file (yml).

- Build directory of every microservice (single-module) project.

Additional (optional) artefact inputs include:

- Path of build file (POM) of the system (multi-module) project.

- Path of build file (POM) of every microservice (single-module) project.

- Directory of shared/centralised configurations (if they exist).

230

Configuration and Java Source artefacts are collected automatically by the parser with

the help of the build directory of every microservice project. It is worth mentioning

that the completeness of the recovery end results directly depends on the completeness

of the artefacts provided in the input. It took around two minutes to manually type in

all needed information about the artefacts for TrainTicket.

Step 2 – Instantiate PSM instance (automatic): The MiSAR parser will process the

provided artefacts and eventually generate the PSM model in XMI format30 at the same

path as the PSM Ecore file. This XMI file is instantly readable and viewable by the

Eclipse QVTo project, as illustrated in Figure 8-4. Parsing takes five minutes to

execute.

30 https://github.com/nuha77/MiSAR/blob/master/TrainTicketPSM%20(1).xmi.

Figure 8-4: Resulting PSM model as viewed in Eclipse QVTo project (from left to right).

https://github.com/nuha77/MiSAR/blob/master/TrainTicketPSM%20(1).xmi

231

For simplicity, an elaboration of retrieved PSM instances for just one Java Spring Boot

application “ts-auth-service” and four non-JVM applications “ts-news-service”, “ts-

ticket-office-service”, “ts-ui-dashboard”, and “ts-voucher-service” are presented here.

To illustrate, I will explain a PSM instance from the “ts-auth-service” microservice.

Figure 8-5 shows the instance of Docker Container definition that is retrieved for the

“ts-auth-service’” microservice, which is a Spring Java project, by parsing the Docker

Compose artefacts. Information about this particular PSM instance is extracted by

parsing lines 44 to 51 in the “docker-compose.yml” file, as illustrated in Figure 8-6.

Source line numbers are attached to every PSM instance for backtrack and reference.

By parsing lines 20 to 23 in the “pom.xml” build file of the Java Spring project “ts-

auth-service” (see Figure 8-8), a DependencyLibrary instance is generated, as depicted

in Figure 8-7. This particular DependencyLibrary instance attaches the library “spring-

boot-starter-data-mongodb” to the “ts-auth-service” project. On compilation, this

library will create a MongoDB client component which enables the “ts-auth-service”

service to connect to a MongoDB data store server at runtime. This connection

(dependency) is enabled and realised by lines 3 to 8 in the “application.yml”

configuration file, as presented in Figure 8-10. Parsing these lines results in the

ConfigurationProperty that is presented in Figure 8-9.

In addition to direct dependency libraries that appear in the build file of a single

project, POM specifications allow for transitive dependencies, i.e. dependency

libraries that are defined in the build files of other projects, so that a tree of POM files

has to be resolved so that their dependency libraries are parsed. An example of a

transitive dependency library is shown in lines 24 to 28 of the “pom.xml” file of “ts-

auth-service” (see Figure 8-12). The value “ts-common” of <artifactId> refers to a

Java Spring project “ts-common” that is not a microservice project; instead, it contains

dependency libraries and Java code files to be shared by other microservice projects,

such as “ts-auth-service”. By parsing lines 24 to 28 in “pom.xml” of the “ts-common”

project (see Figure 8-12), an additional DependencyLibrary instance is generated and

then attached to the “ts-auth-service” PSM model, as shown in Figure 8-11.

232

Figure 8-5: Docker Container definition instance retrieved for “ts-auth-service” container.

Figure 8-6: Lines that generated Docker Container definition instance for “ts-auth-service”.

Figure 8-7: DependencyLibrary instance retrieved for “ts-auth-

service” Spring Java project.

233

Figure 8-9: ConfigurationProperty instance retrieved for “ts-auth-service” Spring Java project.

Figure 8-8: Lines that generated DependencyLibrary instance for

“ts-auth-service”.

234

Figure 8-11: DependencyLibrary instance retrieved for “ts-auth-service” Spring Java project.

Figure 8-10: Lines that generated ConfigurationProperty

instance for “ts-auth-service”.

235

Figure 8-12: Lines that generated DependencyLibrary instance for “ts-auth-service”.

The retrieved Java Class Type instance depicted in Figure 8-13 reflects the Java source

file “AuthController.java”, shown in Figure 8-14. According to the PSM metamodel,

every Java Class Type may consist of a set of Java Annotations and Java Methods,

along with their children, as illustrated in Figure 8-14. A Java Class Type that has

“@RestController” defines the service RESTful endpoints of a microservice

application as Java methods decorated with special annotations. For example, the Java

class “AuthController” defined in Figure 8-14 declares two methods, “getHello()” and

“createDefaultUser()”. By looking at their annotations, it becomes clear that these

methods represent, respectively, the “GET” endpoint and the “POST” endpoint of “ts-

auth-service”.

For non-JVM microservice applications, such as “ts-news-service”, developed with

Go, “ts-ticket-office-service”, developed with “Node.js”, “ts-ui-dashboard”, built with

“NGINX” and docker image and “ts-voucher-service”, developed with Python, the

Docker Container definition instance (see Figure 8-15) will be parsed from Docker

Compose, and the MicroserviceProject instance (see Figure 8-16), the supertype of

Java Spring Web Application Project, will be parsed from the name of project’s build

directory.

236

Figure 8-13: JavaClassType instance retrieved for “ts-auth-service” Spring Java project.

Figure 8-14: Java source code that generated the Java Class Type instance for “ts-

auth-service”.

237

Figure 8-15: DockerContainerDefinition instance retrieved for non-JVM projects.

Figure 8-16: MicroserviceProject instance retrieved for non-JVM projects.

238

Step 3 – Recover PIM instance (automatic): this step is totally automated. The PIM

architecture model for TrainTicket is recovered by running the Eclipse QVTo project,

which contains the Ecore implementations of both PIM and PSM metamodels, the

QVTo implementation of all transformation mapping rules, and the PSM model of

TrainTicket generated in step 2. The TrainTicket PIM architecture was recovered

within less than two minutes in XMI format. Figure 8-17 illustrates the output PIM

model31. It can be seen that the TrainTicket architecture consists of 69 microservices:

36 instances of functional microservices (the purple diamonds), 27 instances of

infrastructure microservices (the green diamonds) and 6 instances of the supertype

microservice (the gold diamonds).

In fact, any recovered microservice is supposed to be an instance of either a functional

microservice or an infrastructure microservice. If, instead, an instance of the supertype

microservice is retrieved, it indicates that MiSAR has managed to capture the

existence of a certain microservice, but for some reason was not able to precisely

recognise (classify) its type. It happens that the set of partially recovered microservices

includes the “ts-ui-dashboard”, “ts-ticket-office-service”, “ts-news-service” and “ts-

voucher-service” microservices. It is known from the previous step (step 2) that the

source artefacts of these microservices belong to non-JVM projects, which MiSAR is

not able (yet) to completely recover. However, MiSAR managed to capture their

existence in the architecture with the help of Docker Compose artefacts and the name

of the build directory of every microservice project acquired by the parser at step 1.

In the following, I will demonstrate the results of the PIM instance for the “ts-auth-

service” microservice, a complete and successful recovery, and the “ts-ui-dashboard”,

“ts-voucher-service”, “ts-ticket-office-service”, “ts-news-service”, “jaeger” and “ms-

monitoring-core” microservices, which were incompletely recovered. For every

microservice previously mentioned, I will present the PIM instance output and a table

with attribute values of recovered PIM concepts.

31 https://github.com/nuha77/MiSAR/blob/master/TrainTicket.PIM.

https://github.com/nuha77/MiSAR/blob/master/TrainTicket.PIM

239

1) Complete and successful recovery example:

 “ts-auth-service” Microservice: “ts-auth-service” is an infrastructure

microservice that provides APIs to manage user information and auth

operations. Figure 8-18 represents the PIM instance for “ts-auth-service” and

Table 8-1 depicts all the attribute values of the recovered PIM concepts for “ts-

auth-service”.

Figure 8-17: PIM model for TrainTicket recovered by MiSAR.

240

Figure 8-18: Infrastructure microservice instance recovered for “ts-auth-service”.

Table 8-1: All recovered PIM elements for “ts-auth-service”.

 ConceptName ConceptAttribute AttributeValue

1 Container ContainerName ts-auth-service

2 InfrastructureMicroservice MicroserviceName ts-auth-service

3 InfrastructurePatternComponent Category:Technology Observability_Pattern_Application_Metrics_Generation:Actuator

4 InfrastructureClientComponent Category:Technology Development_Pattern_Data_Persistence:MongoDB

5 InfrastructurePatternComponent Category:Technology Observability_Pattern_Application_Metrics_Logging:Slf4j

6 InfrastructurePatternComponent Category:Technology Security_Pattern_Web_Security:Spring Security

7 InfrastructureServerComponent Category:Technology
Security_Pattern_Authorization_and_Authentication:Spring

Security

8 Endpoint RequestURI GET /actuator/health

9 ServiceMessage MessageType RESPONSE

10 ServiceMessage BodySchema
{"type":"object","properties":{"status":{"type":"string"},"details"

…

11 Endpoint RequestURI GET /actuator/info

12 ServiceMessage MessageType RESPONSE

13 ServiceMessage BodySchema
{"type":"object","properties":{"git":{"type":"object","properties"

…

14 Endpoint RequestURI GET /actuator/metrics

15 ServiceMessage MessageType RESPONSE

16 ServiceMessage BodySchema
{"type":"object","properties":{"Datacenter":{"type":"string"},"ID

"…

241

17 Endpoint RequestURI POST /actuator/shutdown

18 ServiceMessage MessageType RESPONSE

19 ServiceMessage BodySchema {"type":"object","properties":{"message":{"type":"string"}}}

20 Endpoint RequestURI POST /actuator/restart

21 ServiceMessage MessageType RESPONSE

22 ServiceMessage BodySchema {"type":"object","properties":{"message":{"type":"string"}}}

23 Endpoint RequestURI POST /api/v1/users/login

24 ServiceOperation OperationName getToken()

25 ServiceOperation OperationDescription
Receives a request of type: (BasicAuthDto) and returns a

response…

26 ServiceMessage MessageType REQUEST

27 ServiceMessage BodySchema
{"type":"object","properties":{"serialVersionUID":{"type":"integ

e…

28 ServiceMessage MessageType RESPONSE

29 ServiceMessage BodySchema
{"type":"object","properties":{"status":{"type":"integer"},"msg":{

…

30 Endpoint RequestURI POST /api/v1/auth

31 ServiceOperation OperationName createDefaultUser()

32 ServiceOperation OperationDescription
Receives a request of type: (AuthDto) and returns a response

mes…

33 ServiceMessage MessageType REQUEST

34 ServiceMessage BodySchema
{"type":"object","properties":{"userId":{"type":"string"},"userna

…

35 ServiceMessage MessageType RESPONSE

36 ServiceMessage BodySchema
{"type":"object","properties":{"status":{"type":"integer"},"msg":{

…

37 Endpoint RequestURI GET /api/v1/users/hello

38 ServiceOperation OperationName getHello()

39 ServiceOperation OperationDescription Returns a response message of type: (Object)

40 ServiceMessage MessageType RESPONSE

41 ServiceMessage BodySchema {"type":"object"}

42 Endpoint RequestURI DELETE /api/v1/users/{userId}

43 ServiceOperation OperationName deleteUserById()

44 ServiceOperation OperationDescription Returns a response message of type: (Response)

45 ServiceMessage MessageType RESPONSE

46 ServiceMessage BodySchema
{"type":"object","properties":{"status":{"type":"integer"},"msg":{

…

47 Endpoint RequestURI GET /api/v1/users

48 ServiceOperation OperationName getAllUser()

49 ServiceOperation OperationDescription Returns a response message of type: (List<User>)

50 ServiceMessage MessageType RESPONSE

51 ServiceMessage BodySchema
{"type":"object","properties":{"status":{"type":"integer"},"msg":{

…

52 Endpoint RequestURI GET /api/v1/auth/hello

53 ServiceOperation OperationName getHello()

54 ServiceOperation OperationDescription Returns a response message of type: (String)

55 ServiceMessage MessageType RESPONSE

56 ServiceMessage BodySchema {"type":"string"}

57 ServiceDependency ProviderName ts-auth-mongo

58 ServiceDependency ProviderName ts-verification-code-service

242

59 ServiceDependency ProviderDestination GET /api/v1/verifycode/verify/{verifyCode}

60 ServiceDependency ConsumerOperation getToken()

2) Incomplete and failed recovery example:

 The microservice “ts-ui-dashboard” is a service that provides all the UI

interface to interact with the system. Figure 8-19 shows the PIM instance for

“ts-ui-dashboard”, as can be seen, the container and service interface of “ts-ui-

dashboard” were both recovered. Table 8-2 depicts all attribute values of the

recovered PIM concepts for “ts-ui-dashboard”.

Figure 8-19: Microservice instance recovered for “ts-ui-dashboard”.

Table 8-2: All recovered PIM elements for “ts-ui-dashboard”.

ID ConceptName ConceptAttribute AttributeValue

1 Container ContainerName ts-ui-dashboard

2 Microservice MicroserviceName ts-ui-dashboard

 The microservice “ts-voucher-service” provides APIs to generate the

reimbursement voucher based on the order ID. Figure 8-20 shows the PIM

instance for “ts-voucher-service”, it can be seen that the container, service

interface and service dependency were recovered. Table 8-3 depicts all

attribute values of the recovered PIM concepts for “ts-voucher-service”.

243

Figure 8-20: Microservice instance recovered for “ts-voucher-service”.

Table 8-3: All recovered PIM elements for “ts-voucher-service”.

ID ConceptName ConceptAttribute AttributeValue

1 Container ContainerName ts-voucher-service

2 Microservice MicroserviceName ts-voucher-service

3 ServiceDependency ProviderName ts-voucher-mysql

 Microservice “ms-monitoring-core”: Figure 8-21 shows the PIM instance for

“ms-monitoring-core”. Table 8-4 depict all attribute values of the recovered

PIM concepts for “ms-monitoring-core”.

Figure 8-21: Microservice instance recovered for “ms-monitoring-core”.

244

Table 8-4: All recovered PIM elements for “ms-monitoring-core”.

ID ConceptName ConceptAttribute AttributeValue

1 Container ContainerName ms-monitoring-core

2 Microservice MicroserviceName ms-monitoring-core

3
InfrastructurePatternComponen

t
Category:Technology Observability_Pattern_Application_Metrics_Generation:Actuator

4 Endpoint RequestURI GET /actuator/health

5 ServiceMessage MessageType RESPONSE

6 ServiceMessage BodySchema {"type":"object","properties":{"status":{"type":"string"},"details"…

7 Endpoint RequestURI GET /actuator/info

8 ServiceMessage MessageType RESPONSE

9 ServiceMessage BodySchema {"type":"object","properties":{"git":{"type":"object","properties"…

10 Endpoint RequestURI GET /actuator/metrics

11 ServiceMessage MessageType RESPONSE

12 ServiceMessage BodySchema
{"type":"object","properties":{"Datacenter":{"type":"string"},"ID"

…

13 Endpoint RequestURI POST /actuator/shutdown

14 ServiceMessage MessageType RESPONSE

15 ServiceMessage BodySchema {"type":"object","properties":{"message":{"type":"string"}}}

16 Endpoint RequestURI POST /actuator/restart

17 ServiceMessage MessageType RESPONSE

18 ServiceMessage BodySchema {"type":"object","properties":{"message":{"type":"string"}}}

 Microservice “ts-ticket-office-service”: Figure 8-22 shows the PIM instance

for “ts-ticket-office-service”. Table 8-5 depict all attribute values of the

recovered PIM concepts for “ts-ticket-office-service”.

Figure 8-22: Microservice instance recovered for “ts-ticket-office-service”.

Table 8-5: All recovered PIM elements for “ts-ticket-office-service”.

ID ConceptName ConceptAttribute AttributeValue

1 Container ContainerName ts-ticket-office-service

2 Microservice MicroserviceName ts-ticket-office-service

245

 Microservice “ts-news-service”: Figure 8-23 shows the PIM instance for “ts-

news-service”. Table 8-6 depict all attribute values of the recovered PIM

concepts for “ts-news-service”.

Figure 8-23: Microservice instance recovered for “ts-news-service”.

Table 8-6: All recovered PIM elements for “ts-news-service”.

ID ConceptName ConceptAttribute AttributeValue

1 Container ContainerName ts-news-service

2 Microservice MicroserviceName ts-news-service

 Microservice “jaeger”: Figure 8-24 shows the PIM instance for “jaeger”. Table

8-7 depict all attribute values of the recovered PIM concepts for “jaeger”.

Figure 8-24: Microservice instance recovered for “jaeger”.

Table 8-7: All recovered PIM elements for “jaeger”.

ID ConceptName ConceptAttribute AttributeValue

1 Container ContainerName jaeger

2 Microservice MicroserviceName jaeger

246

8.3.4. Consistency Checks

This evaluation is based on manually checking the consistency between the generated

architectural model and the documentation. A consistency check is executed by

constructing a table with the expected target PIM elements according to the available

documentation against the PIM elements recovered by MiSAR, the results of the

previous section.

The selected case study, TrainTicket, has comprehensive documentation in two forms,

an architecture diagram and a wiki page32; the latter describes infrastructure

technologies used in the development of TrainTicket, as well as providing a complete

list of endpoints and invocations for every business microservice. The available

documentation corresponds to a subset of the recovered architecture elements in

MiSAR’s PIM metamodel. While the documented architecture diagram represents

functional/infrastructure microservices as well as infrastructure server/client/pattern

components, it doesn’t demonstrate, for instance, any data store infrastructure

microservices although they are defined in the Docker Compose artefact.

Moreover, while the list of endpoints and invocations defined in the wiki page is

consistent with the endpoint and service dependency elements recovered, it totally

lacks representation of the service operation and service message elements. This

encouraged me to add some architecture elements missed in the documentation to the

set of test cases, such as data store containers being infrastructure microservices and

the service messages to every endpoint, to ensure they contribute to the metrics, hence

a more accurate and comprehensive evaluation is performed of the MiSAR repository

(i.e. mapping rules and metamodels).

The comparison was conducted based on attributes for every element where the

expected architecture elements and attributes are deduced from the documentation and

then compared to the recovered elements. After that, the recovery result for every

element attribute (test case) was recorded in a table. For simplicity, I will present in

the following the test tables for the microservices considered previously in section

8.3.3 (step 3).

32 https://github.com/FudanSELab/train-ticket/wiki/Service-Guide-and-API-Reference.

247

Microservice “ts-auth-service”: By checking the documentation of “ts-auth-service”

provided in Figure 8-25, one can directly deduce that this microservice is providing

authorisation and authentication infrastructure. Moreover, this microservice exposes

four REST-full endpoints and interacts with the “ts-verification-code-service”

microservice by sending requests to one endpoint at the provider. In addition, by

checking the documented architecture diagram in Figure 8-2, it can be seen that this

microservice makes use of three types of infrastructure components: service

registry/discovery, logging and tracing server. To facilitate the comparison, the

documented architecture is described in terms of PIM elements, as illustrated in Table

8-8.

➢ Consistent with documentation: By comparing Table 8-1 showing the

recovered PIM instance for “ts-auth-service” to Table 8-8 showing the

expected PIM elements, it is clear that MiSAR correctly recovered 23

architecture elements with their attributes out of 26, with the help of its current

repository of the PSM metamodel, PSM instance and QVTo mapping rules.

➢ Additional elements: With reference to Table 8-1, MiSAR also recovered

more architecture elements compared to the documentation. In particular,

MiSAR was able to recover the service operation of the documented endpoints,

in addition to several infrastructure pattern component, infrastructure client

component and service dependency elements that are not documented. To

illustrate, the infrastructure client component element of the category

Development_Pattern_Data_Persistence (ID=4 in Table 8-1) and the service

dependency element with provider name “ts-auth-mongo” (ID=57 in Table 8-

1) both state that the “ts-auth-service” microservice uses and interacts with a

data store named “ts-auth-mongo”. To ensure the validity of this statement, I

backtracked the Generating PSM attribute of the two retrieved elements, as

indicated in figures 8-26 and 8-27. The first refers to a dependency library PSM

element extracted from the build file, as shown in figures 8-7 and 8-8, while

the second refers to a configuration property PSM element extracted from the

config file, as shown in figures 8-9 and 8-10.

248

➢ Missed elements: The first missed component is a client to service registry

infrastructure (ID=4 in Table 8-8), which, according to the documentation,

implements Kubernetes (k8s). The second and third are related to tracing

infrastructure (ID=5 and ID=26 in Table 8-8), which, according to the

documentation, implements Jaeger. MiSAR does not yet support the two

technologies in its repository of mapping rules.

Figure 8-25: TrainTicket’s documentation for “ts-auth-service”.

249

Table 8-8: Expected elements for “ts-auth-service” as per the documentation vs

MiSAR result.

I

D
Element Name

Element

Attribute
Attribute Value MiSAR Output

1 Container ContainerName ts-auth-service RECOVERED

2 InfrastructureMicroservice MicroserviceName ts-auth-service RECOVERED

3 InfrastructureServerComponent Category Security_Pattern_Authorization_and_Authentication RECOVERED

4 InfrastructureClientComponent Category Service_Routing_Pattern_Registry_and_Discovery NOT_RECOVERED

5 InfrastructureClientComponent Category Observability_Pattern_Distributed_Tracing NOT_RECOVERED

6 InfrastructurePatternComponent Category Observability_Pattern_Application_Metrics_Logging RECOVERED

7 InfrastructurePatternComponent Category
Observability_Pattern_Application_Metrics_Generati

on
RECOVERED

8 Endpoint RequestURI POST /api/v1/auth RECOVERED

9 ServiceMessage MessageType REQUEST RECOVERED

10 ServiceMessage BodySchema
{"type":"object","properties":{"userId":{"type":"strin

g"},”…
RECOVERED

11 ServiceMessage MessageType RESPONSE RECOVERED

12 ServiceMessage BodySchema
{"type":"object","properties":{"status":{"type":"integ

er"},"…
RECOVERED

13 Endpoint RequestURI POST /api/v1/users/login RECOVERED

14 ServiceMessage MessageType REQUEST RECOVERED

15 ServiceMessage BodySchema
{"type":"object","properties":{"verificationCode":{"t

ype…
RECOVERED

16 ServiceMessage MessageType RESPONSE RECOVERED

17 ServiceMessage BodySchema
{"type":"object","properties":{"status":{"type":"integ

er"},"…
RECOVERED

18 Endpoint RequestURI GET /api/v1/users RECOVERED

19 ServiceMessage MessageType RESPONSE RECOVERED

20 ServiceMessage BodySchema
{"type":"object","properties":{"status":{"type":"integ

er"},"…
RECOVERED

21 Endpoint RequestURI DELETE /api/v1/users/{userId} RECOVERED

22 ServiceMessage MessageType RESPONSE RECOVERED

23 ServiceMessage BodySchema
{"type":"object","properties":{"status":{"type":"integ

er"},"…
RECOVERED

24 ServiceDependency ProviderName ts-verification-code-service RECOVERED

25 ServiceDependency
ProviderDestinatio

n
GET /api/v1/verifycode/verify/{verifyCode} RECOVERED

26 ServiceDependency ProviderName jaeger NOT_RECOVERED

250

Figure 8-27: Generating PSM attribute for recovered service dependency element.

Microservice “ts-ui-dashboard”: By reading the brief documentation of “ts-ui-

dashboard” provided in Figure 8-28, one might assume that this microservice is

providing gateway and routing infrastructure. To confirm this assumption, I checked

artefacts in the build directory of the “ts-ui-dashboard” project. I found that this

microservice is built from a Docker hub image of the NGINX proxy and web server.

Therefore, “ts-ui-dashboard” offers proxy, service registry/discovery and load

balancer infrastructure. Moreover, I checked the “nginx.conf” file and found that “ts-

ui-dashboard”, as it interfaces all backend microservices, has 83 endpoints in addition

to 40 service dependencies via a total of 83 provider endpoints. Similar to “ts-auth-

Figure 8-26: Generating PSM attribute for recovered infrastructure pattern

component element.

251

service”, by checking the documented diagram in Figure 8-2, “ts-ui-dashboard” makes

use of three types of infrastructure, monitoring, logging and tracing server. To

facilitate the comparison, the documented architecture is described in terms of PIM

elements, as illustrated in Table 8-9.

➢ Consistent with documentation: By comparing Table 8-2 for the recovered

PIM instance for “ts-ui-dashboard” to Table 8-9 for the expected PIM

elements, it is clear that MiSAR, out of 212 expected elements, correctly

recovered the container element and inaccurately recovered the infrastructural

microservice element as a microservice. It only captured the existence of this

microservice with the help of the Docker Compose artefact and the name of

build directory acquired from the parser.

➢ Missed elements: Apparently, MiSAR failed to recover infrastructure

components, endpoints and service dependencies for “ts-ui-dashboard”. In

fact, MiSAR does not yet transform NGINX configuration artefacts such as

“nginx.conf” to recover endpoints and service dependencies. Although

NGINX as a proxy, service registry/discovery and load balancer server is

familiar to MiSAR, the Docker hub image with the name “openresty” is not.

Figure 8-28: TrainTicket’s documentation for “ts-ui-dashboard”.

Table 8-9: Expected elements for “ts-ui-dashboard” as per the documentation vs MiSAR result

ID Element Name Element Attribute Attribute Value MiSAR Output

1 Container ContainerName ts-ui-dashboard RECOVERED

2 InfrastructureMicroservice MicroserviceName ts-ui-dashboard MICROSERVICE

3
InfrastructureServerComponent Category

Service_Routing_Pattern_API_Gateway_and_Pro

xy
NOT_RECOVERED

4 InfrastructureServerComponent Category Client_Resiliency_Pattern_Load_Balancer NOT_RECOVERED

5
InfrastructureServerComponent Category

Service_Routing_Pattern_Registry_and_Discover

y
NOT_RECOVERED

252

6 InfrastructureClientComponent Category Observability_Pattern_Distributed_Tracing NOT_RECOVERED

7
InfrastructurePatternComponent Category

Observability_Pattern_Application_Metrics_Loggi

ng
NOT_RECOVERED

8
InfrastructurePatternComponent Category

Observability_Pattern_Application_Metrics_Gene

ration
NOT_RECOVERED

9 Endpoint RequestURI /api/v1/travelservice/trips/left NOT_RECOVERED

10 ServiceDependency ProviderName ts-travel-service NOT_RECOVERED

11 ServiceDependency ProviderDestination /api/v1/travelservice/trips/left NOT_RECOVERED

12 Endpoint RequestURI /api/v1/travel2service/trips/left NOT_RECOVERED

13 ServiceDependency ProviderName ts-travel2-service NOT_RECOVERED

14 ServiceDependency ProviderDestination /api/v1/travel2service/trips/left NOT_RECOVERED

15 Endpoint RequestURI /api/v1/userservice/users NOT_RECOVERED

16 ServiceDependency ProviderName ts-user-service NOT_RECOVERED

17 ServiceDependency ProviderDestination /api/v1/userservice/users NOT_RECOVERED

18 Endpoint RequestURI /api/v1/users/auth NOT_RECOVERED

19 Endpoint RequestURI /api/v1/users/login NOT_RECOVERED

20 ServiceDependency ProviderName ts-user-service NOT_RECOVERED

21 ServiceDependency ProviderDestination /api/v1/users/auth NOT_RECOVERED

22 ServiceDependency ProviderDestination /api/v1/users/login NOT_RECOVERED

23 Endpoint RequestURI /api/v1/verifycode/generate NOT_RECOVERED

24 ServiceDependency ProviderName ts-verification-code-service NOT_RECOVERED

25 ServiceDependency ProviderDestination /api/v1/verifycode/generate NOT_RECOVERED

26 Endpoint RequestURI /api/v1/stationservice NOT_RECOVERED

27 ServiceDependency ProviderName ts-station-service NOT_RECOVERED

28 ServiceDependency ProviderDestination /api/v1/stationservice NOT_RECOVERED

29 Endpoint RequestURI /api/v1/trainservice NOT_RECOVERED

30 ServiceDependency ProviderName ts-train-service NOT_RECOVERED

31 ServiceDependency ProviderDestination /api/v1/trainservice NOT_RECOVERED

32 Endpoint RequestURI /api/v1/configservice NOT_RECOVERED

33 ServiceDependency ProviderName ts-config-service NOT_RECOVERED

34 ServiceDependency ProviderDestination /api/v1/configservice NOT_RECOVERED

35 Endpoint RequestURI /api/v1/securityservice NOT_RECOVERED

36 ServiceDependency ProviderName ts-security-service NOT_RECOVERED

37 ServiceDependency ProviderDestination /api/v1/securityservice NOT_RECOVERED

38 Endpoint RequestURI /api/v1/executeservice/execute/execute NOT_RECOVERED

39 Endpoint RequestURI /api/v1/executeservice/execute/collected NOT_RECOVERED

40 ServiceDependency ProviderName ts-execute-service NOT_RECOVERED

41 ServiceDependency ProviderDestination /api/v1/executeservice/execute/execute NOT_RECOVERED

42 ServiceDependency ProviderDestination /api/v1/executeservice/execute/collected NOT_RECOVERED

43 Endpoint RequestURI /api/v1/contactservice/contacts NOT_RECOVERED

44 Endpoint RequestURI /api/v1/contactservice/contacts/account NOT_RECOVERED

45 ServiceDependency ProviderName ts-contacts-service NOT_RECOVERED

46 ServiceDependency ProviderDestination /api/v1/contactservice/contacts NOT_RECOVERED

47 ServiceDependency ProviderDestination /api/v1/contactservice/contacts/account NOT_RECOVERED

48 Endpoint RequestURI /api/v1/orderservice/order/refresh NOT_RECOVERED

49 ServiceDependency ProviderName ts-order-service NOT_RECOVERED

253

50 ServiceDependency ProviderDestination /api/v1/orderservice/order/refresh NOT_RECOVERED

51 Endpoint RequestURI /api/v1/orderOtherService/orderOther/refresh NOT_RECOVERED

52 ServiceDependency ProviderName ts-order-other-service NOT_RECOVERED

53 ServiceDependency ProviderDestination /api/v1/orderOtherService/orderOther/refresh NOT_RECOVERED

54 Endpoint RequestURI /api/v1/preserveservice/preserve NOT_RECOVERED

55 ServiceDependency ProviderName ts-preserve-service NOT_RECOVERED

56 ServiceDependency ProviderDestination /api/v1/preserveservice/preserve NOT_RECOVERED

57 Endpoint RequestURI /api/v1/preserveotherservice/preserveOther NOT_RECOVERED

58 ServiceDependency ProviderName ts-preserve-other-service NOT_RECOVERED

59 ServiceDependency ProviderDestination /api/v1/preserveotherservice/preserveOther NOT_RECOVERED

60 Endpoint RequestURI /price/query NOT_RECOVERED

61 Endpoint RequestURI /price/queryAll NOT_RECOVERED

62 Endpoint RequestURI /price/create NOT_RECOVERED

63 Endpoint RequestURI /price/delete NOT_RECOVERED

64 Endpoint RequestURI /price/update NOT_RECOVERED

65 ServiceDependency ProviderName ts-price-service NOT_RECOVERED

66 ServiceDependency ProviderDestination /price/query NOT_RECOVERED

67 ServiceDependency ProviderDestination /price/queryAll NOT_RECOVERED

68 ServiceDependency ProviderDestination /price/create NOT_RECOVERED

69 ServiceDependency ProviderDestination /price/delete NOT_RECOVERED

70 ServiceDependency ProviderDestination /price/update NOT_RECOVERED

71 Endpoint RequestURI /basic/queryForTravel NOT_RECOVERED

72 ServiceDependency ProviderName ts-basic-service NOT_RECOVERED

73 ServiceDependency ProviderDestination /basic/queryForTravel NOT_RECOVERED

74 Endpoint RequestURI /ticketinfo/queryForTravel NOT_RECOVERED

75 ServiceDependency ProviderName ts-ticketinfo-service NOT_RECOVERED

76 ServiceDependency ProviderDestination /ticketinfo/queryForTravel NOT_RECOVERED

77 Endpoint RequestURI /notification/preserve_success NOT_RECOVERED

78 Endpoint RequestURI /notification/order_create_success NOT_RECOVERED

79 Endpoint RequestURI /notification/order_changed_success NOT_RECOVERED

80 ServiceDependency ProviderName ts-notification-service NOT_RECOVERED

81 ServiceDependency ProviderDestination /notification/preserve_success NOT_RECOVERED

82 ServiceDependency ProviderDestination /notification/order_create_success NOT_RECOVERED

83 ServiceDependency ProviderDestination /notification/order_changed_success NOT_RECOVERED

84 Endpoint RequestURI /api/v1/inside_pay_service/inside_payment NOT_RECOVERED

85 ServiceDependency ProviderName ts-inside-payment-service NOT_RECOVERED

86 ServiceDependency ProviderDestination /api/v1/inside_pay_service/inside_payment NOT_RECOVERED

87 Endpoint RequestURI /payment/pay NOT_RECOVERED

88 Endpoint RequestURI /payment/addMoney NOT_RECOVERED

89 Endpoint RequestURI /payment/query NOT_RECOVERED

90 ServiceDependency ProviderName ts-payment-service NOT_RECOVERED

91 ServiceDependency ProviderDestination /payment/pay NOT_RECOVERED

92 ServiceDependency ProviderDestination /payment/addMoney NOT_RECOVERED

93 ServiceDependency ProviderDestination /payment/query NOT_RECOVERED

254

94 Endpoint RequestURI /rebook NOT_RECOVERED

95 Endpoint RequestURI /api/v1/rebookservice/rebook NOT_RECOVERED

96 Endpoint RequestURI /api/v1/rebookservice/rebook/difference NOT_RECOVERED

97 ServiceDependency ProviderName ts-rebook-service NOT_RECOVERED

98 ServiceDependency ProviderDestination /rebook NOT_RECOVERED

99 ServiceDependency ProviderDestination /api/v1/rebookservice/rebook NOT_RECOVERED

100 ServiceDependency ProviderDestination /api/v1/rebookservice/rebook/difference NOT_RECOVERED

101 Endpoint RequestURI /api/v1/cancelservice/cancel NOT_RECOVERED

102 Endpoint RequestURI /api/v1/cancelservice/cancel/refound NOT_RECOVERED

103 ServiceDependency ProviderName ts-cancel-service NOT_RECOVERED

104 ServiceDependency ProviderDestination /api/v1/cancelservice/cancel NOT_RECOVERED

105 ServiceDependency ProviderDestination /api/v1/cancelservice/cancel/refound NOT_RECOVERED

106 Endpoint RequestURI /api/v1/stationservice/stations/name NOT_RECOVERED

107 ServiceDependency ProviderName ts-station-service NOT_RECOVERED

108 ServiceDependency ProviderDestination /api/v1/stationservice/stations/name NOT_RECOVERED

109 Endpoint RequestURI /route/createAndModify NOT_RECOVERED

110 Endpoint RequestURI /route/delete NOT_RECOVERED

111 Endpoint RequestURI /route/queryAll NOT_RECOVERED

112 Endpoint RequestURI /route/queryById NOT_RECOVERED

113 Endpoint RequestURI /route/queryByStartAndTerminal NOT_RECOVERED

114 ServiceDependency ProviderName ts-route-service NOT_RECOVERED

115 ServiceDependency ProviderDestination /route/createAndModify NOT_RECOVERED

116 ServiceDependency ProviderDestination /route/delete NOT_RECOVERED

117 ServiceDependency ProviderDestination /route/queryAll NOT_RECOVERED

118 ServiceDependency ProviderDestination /route/queryById NOT_RECOVERED

119 ServiceDependency ProviderDestination /route/queryByStartAndTerminal NOT_RECOVERED

120 Endpoint RequestURI /api/v1/assuranceservice/assurances/types NOT_RECOVERED

121 Endpoint RequestURI /assurance/getAssuranceById NOT_RECOVERED

122 Endpoint RequestURI /assurance/findAssuranceByOrderId NOT_RECOVERED

123 Endpoint RequestURI /assurance/findAll NOT_RECOVERED

124 Endpoint RequestURI /assurance/create NOT_RECOVERED

125 Endpoint RequestURI /assurance/deleteAssurance NOT_RECOVERED

126 Endpoint RequestURI /assurance/deleteAssuranceByOrderId NOT_RECOVERED

127 Endpoint RequestURI /assurance/modifyAssurance NOT_RECOVERED

128 ServiceDependency ProviderName ts-assurance-service NOT_RECOVERED

129 ServiceDependency ProviderDestination /api/v1/assuranceservice/assurances/types NOT_RECOVERED

130 ServiceDependency ProviderDestination /assurance/getAssuranceById NOT_RECOVERED

131 ServiceDependency ProviderDestination /assurance/findAssuranceByOrderId NOT_RECOVERED

132 ServiceDependency ProviderDestination /assurance/findAll NOT_RECOVERED

133 ServiceDependency ProviderDestination /assurance/create NOT_RECOVERED

134 ServiceDependency ProviderDestination /assurance/deleteAssurance NOT_RECOVERED

135 ServiceDependency ProviderDestination /assurance/deleteAssuranceByOrderId NOT_RECOVERED

136 ServiceDependency ProviderDestination /assurance/modifyAssurance NOT_RECOVERED

137 Endpoint RequestURI /office/getRegionList NOT_RECOVERED

255

138 Endpoint RequestURI /office/getAll NOT_RECOVERED

139 Endpoint RequestURI /office/getSpecificOffices NOT_RECOVERED

140 Endpoint RequestURI /office/addOffice NOT_RECOVERED

141 Endpoint RequestURI /office/deleteOffice NOT_RECOVERED

142 Endpoint RequestURI /office/updateOffice NOT_RECOVERED

143 ServiceDependency ProviderName ts-ticket-office-service NOT_RECOVERED

144 ServiceDependency ProviderDestination /office/getRegionList NOT_RECOVERED

145 ServiceDependency ProviderDestination /office/getAll NOT_RECOVERED

146 ServiceDependency ProviderDestination /office/getSpecificOffices NOT_RECOVERED

147 ServiceDependency ProviderDestination /office/addOffice NOT_RECOVERED

148 ServiceDependency ProviderDestination /office/deleteOffice NOT_RECOVERED

149 ServiceDependency ProviderDestination /office/updateOffice NOT_RECOVERED

150 Endpoint RequestURI /travelPlan/getTransferResult NOT_RECOVERED

151 Endpoint RequestURI /api/v1/travelplanservice/travelPlan/cheapest NOT_RECOVERED

152 Endpoint RequestURI /api/v1/travelplanservice/travelPlan/quickest NOT_RECOVERED

153 Endpoint RequestURI /api/v1/travelplanservice/travelPlan/minStation NOT_RECOVERED

154 ServiceDependency ProviderName ts-travel-plan-service NOT_RECOVERED

155 ServiceDependency ProviderDestination /travelPlan/getTransferResult NOT_RECOVERED

156 ServiceDependency ProviderDestination /api/v1/travelplanservice/travelPlan/cheapest NOT_RECOVERED

157 ServiceDependency ProviderDestination /api/v1/travelplanservice/travelPlan/quickest NOT_RECOVERED

158 ServiceDependency ProviderDestination /api/v1/travelplanservice/travelPlan/minStation NOT_RECOVERED

159 Endpoint RequestURI /api/v1/consignservice/consigns NOT_RECOVERED

160 Endpoint RequestURI /api/v1/consignservice/consigns/account NOT_RECOVERED

161 ServiceDependency ProviderName ts-consign-service NOT_RECOVERED

162 ServiceDependency ProviderDestination /api/v1/consignservice/consigns NOT_RECOVERED

163 ServiceDependency ProviderDestination /api/v1/consignservice/consigns/account NOT_RECOVERED

164 Endpoint RequestURI /getVoucher NOT_RECOVERED

165 ServiceDependency ProviderName ts-voucher-service NOT_RECOVERED

166 ServiceDependency ProviderDestination /getVoucher NOT_RECOVERED

167 Endpoint RequestURI /routePlan/minStopStations NOT_RECOVERED

168 Endpoint RequestURI /routePlan/cheapestRoute NOT_RECOVERED

169 Endpoint RequestURI /routePlan/quickestRoute NOT_RECOVERED

170 ServiceDependency ProviderName ts-route-plan-service NOT_RECOVERED

171 ServiceDependency ProviderDestination /routePlan/minStopStations NOT_RECOVERED

172 ServiceDependency ProviderDestination /routePlan/cheapestRoute NOT_RECOVERED

173 ServiceDependency ProviderDestination /routePlan/quickestRoute NOT_RECOVERED

174 Endpoint RequestURI /api/v1/foodservice/foods NOT_RECOVERED

175 Endpoint RequestURI /food/createFoodOrder NOT_RECOVERED

176 Endpoint RequestURI /food/cancelFoodOrder NOT_RECOVERED

177 Endpoint RequestURI /food/updateFoodOrder NOT_RECOVERED

178 Endpoint RequestURI /food/findAllFoodOrder NOT_RECOVERED

179 Endpoint RequestURI /food/findFoodOrderByOrderId NOT_RECOVERED

180 ServiceDependency ProviderName ts-food-service NOT_RECOVERED

181 ServiceDependency ProviderDestination /api/v1/foodservice/foods NOT_RECOVERED

256

182 ServiceDependency ProviderDestination /food/createFoodOrder NOT_RECOVERED

183 ServiceDependency ProviderDestination /food/cancelFoodOrder NOT_RECOVERED

184 ServiceDependency ProviderDestination /food/updateFoodOrder NOT_RECOVERED

185 ServiceDependency ProviderDestination /food/findAllFoodOrder NOT_RECOVERED

186 ServiceDependency ProviderDestination /food/findFoodOrderByOrderId NOT_RECOVERED

187 Endpoint RequestURI /news-service/news NOT_RECOVERED

188 ServiceDependency ProviderName ts-news-service NOT_RECOVERED

189 ServiceDependency ProviderDestination /news-service/news NOT_RECOVERED

190 Endpoint RequestURI /api/v1/adminbasicservice/adminbasic/contacts NOT_RECOVERED

191 Endpoint RequestURI /api/v1/adminbasicservice/adminbasic/stations NOT_RECOVERED

192 Endpoint RequestURI /api/v1/adminbasicservice/adminbasic/trains NOT_RECOVERED

193 Endpoint RequestURI /api/v1/adminbasicservice/adminbasic/prices NOT_RECOVERED

194 Endpoint RequestURI /api/v1/adminbasicservice/adminbasic/configs NOT_RECOVERED

195 ServiceDependency ProviderName ts-admin-basic-info-service NOT_RECOVERED

196 ServiceDependency ProviderDestination /api/v1/adminbasicservice/adminbasic/contacts NOT_RECOVERED

197 ServiceDependency ProviderDestination /api/v1/adminbasicservice/adminbasic/stations NOT_RECOVERED

198 ServiceDependency ProviderDestination /api/v1/adminbasicservice/adminbasic/trains NOT_RECOVERED

199 ServiceDependency ProviderDestination /api/v1/adminbasicservice/adminbasic/prices NOT_RECOVERED

200 ServiceDependency ProviderDestination /api/v1/adminbasicservice/adminbasic/configs NOT_RECOVERED

201 Endpoint RequestURI /api/v1/adminorderservice/adminorder NOT_RECOVERED

202 ServiceDependency ProviderName ts-admin-order-service NOT_RECOVERED

203 ServiceDependency ProviderDestination /api/v1/adminorderservice/adminorder NOT_RECOVERED

204 Endpoint RequestURI /api/v1/adminrouteservice/adminroute NOT_RECOVERED

205 ServiceDependency ProviderName ts-admin-route-service NOT_RECOVERED

206 ServiceDependency ProviderDestination /api/v1/adminrouteservice/adminroute NOT_RECOVERED

207 Endpoint RequestURI /api/v1/admintravelservice/admintravel NOT_RECOVERED

208 ServiceDependency ProviderName ts-admin-travel-service NOT_RECOVERED

209 ServiceDependency ProviderDestination /api/v1/admintravelservice/admintravel NOT_RECOVERED

210 Endpoint RequestURI /api/v1/adminuserservice/users NOT_RECOVERED

211 ServiceDependency ProviderName ts-admin-user-service NOT_RECOVERED

212 ServiceDependency ProviderDestination /api/v1/adminuserservice/users NOT_RECOVERED

Microservice “ts-voucher-service”: By checking the documentation of “ts-voucher-

service” provided in Figure 8-29, one can deduce that this microservice is functional

(business), has one endpoint as well as interaction (dependency) with two

microservices, “ts-order-service” and “ts-order-other-service”. Moreover, by checking

the documented diagram in Figure 8-2, it can be seen that “ts-voucher-service” makes

use of three types of infrastructure, service registry and discovery, logging, and tracing

server. To facilitate the comparison, the documented architecture is described in terms

of PIM elements, as illustrated in Table 8-10.

257

➢ Consistent with documentation: By comparing Table 8-3 for the recovered

PIM instance for “ts-voucher-service” to Table 8-10 for the expected PIM

elements, it is clear that MiSAR, out of 13 documented elements, correctly

recovered the container element and inaccurately recovered the functional

microservice element as a microservice. It only captured the existence of this

microservice with the help of the Docker Compose artefact and the name of

the build directory acquired from the parser.

➢ Additional elements: With reference to Table 8-3, it can be seen that MiSAR

recovered one undocumented service dependency element with “ts-voucher-

mysql” data store (ID=3 in Table 8-3). To ensure the validity of this extra

element, I checked the Generating PSM attribute that is attached to it, as

indicated in Figure 8-30. It refers to a Docker Container Link element extracted

from the Docker Compose file, as shown in figures 8-31 and 8-32.

➢ Missed elements: Apparently, MiSAR failed to recover infrastructure

components, endpoint and some service dependencies for “ts-voucher-

service”. In fact, the project “ts-voucher-service” is a “Python” application and

MiSAR does not yet transform Python source artefacts.

Figure 8-29: TrainTicket’s documentation for “ts-voucher-

service”.

258

Table 8-10: Expected elements for “ts-voucher-service” as per the documentation vs MiSAR

result.

I

D
Element Name

Element

Attribute
Attribute Value MiSAR Output

1 Container ContainerName ts-voucher-service RECOVERED

2 FunctionalMicroservice MicroserviceName ts-voucher-service MICROSERVICE

3
InfrastructureClientCo

mponent
Category Service_Routing_Pattern_Registry_and_Discovery NOT_RECOVERED

4
InfrastructureClientCo

mponent
Category Observability_Pattern_Distributed_Tracing NOT_RECOVERED

5
InfrastructurePatternCo

mponent
Category Observability_Pattern_Application_Metrics_Logging NOT_RECOVERED

6
InfrastructurePatternCo

mponent
Category

Observability_Pattern_Application_Metrics_Generatio

n
NOT_RECOVERED

7 Endpoint RequestURI POST /getVoucher NOT_RECOVERED

8 ServiceMessage MessageType RESPONSE NOT_RECOVERED

9 ServiceMessage BodySchema
{"type":"object","properties":{"orderId":{"type":"strin

g"},"…
NOT_RECOVERED

1
0

ServiceDependency ProviderName ts-order-service NOT_RECOVERED

1
1

ServiceDependency ProviderDestination GET /api/v1/orderservice/order/{orderId} NOT_RECOVERED

1
2

ServiceDependency ProviderName ts-order-other-service NOT_RECOVERED

1
3

ServiceDependency ProviderDestination GET /api/v1/orderOtherService/orderOther/{orderId} NOT_RECOVERED

Figure 8-30: Generating PSM attribute for recovered service dependency element.

259

Figure 8-31: Docker Container Link instance retrieved for “ts-voucher-service”.

Microservice “ms-monitoring-core”: There is no documentation for the “ms-

monitoring-core” microservice in the wiki page. However, in the documented

architecture diagram in Figure 8-2, the “ms-monitoring-core” microservice is implied

by the “Monitoring” infrastructure at the bottom layer. In addition, the documented

architecture diagram implies that “ms-monitoring-core” has dependencies with all 42

backend microservices. No other information can be directly deduced from the

available documentation. To facilitate the comparison, the documented architecture is

described in terms of PIM elements, as illustrated in Table 8-11.

➢ Consistent with documentation: By comparing Table 8-4 showing the

recovered PIM instance for “ms-monitoring-core” to Table 8-11 showing the

expected PIM elements, it is clear that MiSAR, out of 45 expected elements,

Figure 8-32: Lines that generated DockerContainerLink instance for “ts-

voucher-service”.

260

correctly recovered the container element and inaccurately recovered the

infrastructure microservice element as a microservice. It only captured the

existence of this microservice with the help of the POM build file artefact and

the name of the build directory acquired from the parser.

➢ Additional elements: With reference to Table 8-4, it can be seen that MiSAR

recovered many undocumented elements, including one infrastructure pattern

component element with category “Observability_Pattern_Application_

Metrics_Generation”, as well as five endpoint elements along with their

response service message elements. These elements were also recovered in “ts-

auth-service”. To ensure their validity, I checked the Generating PSM attribute

attached to each of them and found that they all were generated by the

transformation of one dependency library with library name “spring-boot-

starter-actuator” in the POM build file. This Spring Actuator library enables

the microservice to generate and expose its health metrics. Hence, it is

transformed into a metric generation infrastructure component in addition to a

set of production endpoints.

➢ Missed elements: Apparently, MiSAR failed to recover infrastructure

components and service dependencies for “ms-monitoring-core”. MiSAR

mapping rules are currently based on applications that make use of distributed

application frameworks such as Spring Boot, Spring Cloud and Netflix OSS,

because they have libraries, annotations and methods with distinguished

identifiers that act as keywords to indicate infrastructure and other architecture

elements. Alternatively, “ms-monitoring-core” is a Java Spring Boot

application which implements monitoring infrastructure with developer-

specific logic that doesn’t utilise any out-of-the-box monitoring framework

such as ELK or Prometheus (which are supported by MiSAR).

261

Table 8-11: Expected elements for “ms-monitoring-core” as per the documentation vs MiSAR

result.

ID Element Name
Element

Attribute
Attribute Value MiSAR Output

1 Container ContainerName ms-monitoring-core RECOVERED

2 InfrastructureMicroservice MicroserviceName ms-monitoring-core MICROSERVICE

3
InfrastructureServerComponent Category

Observability_Pattern_Applicati

on_Metrics_Monitoring
NOT_RECOVERED

4 ServiceDependency ProviderName ts-admin-basic-info-service NOT_RECOVERED

5 ServiceDependency ProviderName ts-admin-order-service NOT_RECOVERED

6 ServiceDependency ProviderName ts-admin-route-service NOT_RECOVERED

7 ServiceDependency ProviderName ts-admin-travel-service NOT_RECOVERED

8 ServiceDependency ProviderName ts-admin-user-service NOT_RECOVERED

9 ServiceDependency ProviderName ts-assurance-service NOT_RECOVERED

10 ServiceDependency ProviderName ts-auth-service NOT_RECOVERED

11 ServiceDependency ProviderName ts-basic-service NOT_RECOVERED

12 ServiceDependency ProviderName ts-cancel-service NOT_RECOVERED

13 ServiceDependency ProviderName ts-config-service NOT_RECOVERED

14 ServiceDependency ProviderName ts-consign-price-service NOT_RECOVERED

15 ServiceDependency ProviderName ts-consign-service NOT_RECOVERED

16 ServiceDependency ProviderName ts-contacts-service NOT_RECOVERED

17 ServiceDependency ProviderName ts-execute-service NOT_RECOVERED

18 ServiceDependency ProviderName ts-food-map-service NOT_RECOVERED

19 ServiceDependency ProviderName ts-food-service NOT_RECOVERED

20 ServiceDependency ProviderName ts-inside-payment-service NOT_RECOVERED

21 ServiceDependency ProviderName ts-news-service NOT_RECOVERED

22 ServiceDependency ProviderName ts-notification-service NOT_RECOVERED

23 ServiceDependency ProviderName ts-order-other-service NOT_RECOVERED

24 ServiceDependency ProviderName ts-order-service NOT_RECOVERED

25 ServiceDependency ProviderName ts-payment-service NOT_RECOVERED

26 ServiceDependency ProviderName ts-preserve-other-service NOT_RECOVERED

27 ServiceDependency ProviderName ts-preserve-service NOT_RECOVERED

28 ServiceDependency ProviderName ts-price-service NOT_RECOVERED

29 ServiceDependency ProviderName ts-rebook-service NOT_RECOVERED

30 ServiceDependency ProviderName ts-route-plan-service NOT_RECOVERED

31 ServiceDependency ProviderName ts-route-service NOT_RECOVERED

32 ServiceDependency ProviderName ts-seat-service NOT_RECOVERED

33 ServiceDependency ProviderName ts-security-service NOT_RECOVERED

34 ServiceDependency ProviderName ts-station-service NOT_RECOVERED

35 ServiceDependency ProviderName ts-ticket-office-service NOT_RECOVERED

36 ServiceDependency ProviderName ts-ticketinfo-service NOT_RECOVERED

37 ServiceDependency ProviderName ts-train-service NOT_RECOVERED

38 ServiceDependency ProviderName ts-travel-plan-service NOT_RECOVERED

39 ServiceDependency ProviderName ts-travel-service NOT_RECOVERED

40 ServiceDependency ProviderName ts-travel2-service NOT_RECOVERED

262

41 ServiceDependency ProviderName ts-ui-dashboard NOT_RECOVERED

42 ServiceDependency ProviderName ts-user-service NOT_RECOVERED

43 ServiceDependency ProviderName ts-verification-code-service NOT_RECOVERED

44 ServiceDependency ProviderName ts-voucher-service NOT_RECOVERED

45 ServiceDependency ProviderName jaeger NOT_RECOVERED

Microservice “ts-ticket-office-service”: By checking the documentation of “ts-

ticket-office-service” provided in Figure 8-33, one can deduce that this microservice

is functional (business), has six endpoints and uses a data store infrastructure.

Moreover, by checking the documented diagram in Figure 8-2, “ts-ticket-office-

service” also makes use of three types of infrastructure, service registry and discovery,

logging, and tracing server. To facilitate the comparison, the documented architecture

is described in terms of PIM elements, as illustrated in Table 8-12.

➢ Consistent with documentation: By comparing Table 8-5 for the recovered

PIM instance for “ts-ticket-office-service” to Table 8-12 for the expected PIM

elements, it is clear that MiSAR, out of 26 expected elements, correctly

recovered the container element and inaccurately recovered the functional

microservice element as a microservice. It only captured the existence of this

microservice with the help of the Docker Compose artefact and the name of

the build directory acquired from the parser.

➢ Missed elements: Apparently, MiSAR failed to recover infrastructure

components, endpoints and service dependencies for “ts-ticket-office-service”.

In fact, the project “ts-ticket-office-service” is a “Node.js” application and

MiSAR does not yet transform JavaScript source artefacts.

263

Table 8-12: Expected elements for “ts-ticket-office-service” as per the documentation vs

MiSAR result.

ID Element Name
Element

Attribute
Attribute Value MiSAR Output

1 Container ContainerName ts-ticket-office-service RECOVERED

2 FunctionalMicroservice MicroserviceName ts-ticket-office-service MICROSERVICE

3
InfrastructureClientComponen

t
Category

Service_Routing_Pattern_Registry_and_Dis

covery
NOT_RECOVERED

4
InfrastructureClientComponen

t
Category Observability_Pattern_Distributed_Tracing NOT_RECOVERED

5
InfrastructureClientComponen

t
Category Development_Pattern_Data_Persistence NOT_RECOVERED

6
InfrastructurePatternCompone

nt
Category

Observability_Pattern_Application_Metrics

_Logging
NOT_RECOVERED

7
InfrastructurePatternCompone

nt
Category

Observability_Pattern_Application_Metrics

_Generation
NOT_RECOVERED

8 Endpoint RequestURI GET /getRegionList NOT_RECOVERED

9 ServiceMessage MessageType RESPONSE NOT_RECOVERED

10 ServiceMessage BodySchema
{"type":"array","items":{"type”:”object”,”

properties”:{“prov...
NOT_RECOVERED

11 Endpoint RequestURI GET /getAll NOT_RECOVERED

12 ServiceMessage MessageType RESPONSE NOT_RECOVERED

13 ServiceMessage BodySchema
{"type":"array","items":{"type”:”object”,”

properties”:{“prov...
NOT_RECOVERED

14 Endpoint RequestURI POST /getSpecificOffices NOT_RECOVERED

15 ServiceMessage MessageType REQUEST NOT_RECOVERED

16 ServiceMessage BodySchema
{"type":"object","properties":{"province":{

"type":"string"},"…
NOT_RECOVERED

17 Endpoint RequestURI POST /addOffice NOT_RECOVERED

18 ServiceMessage MessageType REQUEST NOT_RECOVERED

Figure 8-33: TrainTicket’s documentation for “ts-ticket-

office-service”.

264

19 ServiceMessage BodySchema
{"type":"object","properties":{"province":{

"type":"string"},"…
NOT_RECOVERED

20 Endpoint RequestURI DELETE /deleteOffice NOT_RECOVERED

21 ServiceMessage MessageType REQUEST NOT_RECOVERED

22 ServiceMessage BodySchema
{"type":"object","properties":{"province":{

"type":"string"},"…
NOT_RECOVERED

23 Endpoint RequestURI POST /updateOffice NOT_RECOVERED

24 ServiceMessage MessageType REQUEST NOT_RECOVERED

25 ServiceMessage BodySchema
{"type":"object","properties":{"province":{

"type":"string"},"…
NOT_RECOVERED

26 ServiceDependency ProviderName ts-ticket-office-mongo NOT_RECOVERED

Microservice “ts-news-service”: There is no documentation for the “ts-news-

service” microservice in the wiki page. However, by checking the documented

diagram in Figure 8-2, it can be seen that the “ts-news-service” microservice has an

interaction (service dependency) with the “ts-travel-service” microservice. Also, it

makes use of three types of infrastructure: service registry and discovery, logging, and

tracing server. By inspecting the “main.go” script file, I found one endpoint named

“hello” for the microservice. To facilitate the comparison, the documented architecture

is described in terms of PIM elements, as illustrated in Table 8-13.

➢ Consistent with documentation: By comparing Table 8-6 for the recovered

PIM instance for “ts-news-service” to Table 8-13 for the expected PIM

elements, it is clear that MiSAR, out of 10 documented elements, correctly

recovered the container element and inaccurately recovered the functional

microservice element as a microservice. It only captured the existence of this

microservice with the help of the Docker Compose artefact and the name of

the build directory acquired from the parser.

➢ Missed elements: Apparently, MiSAR failed to recover infrastructure

components, endpoint and service dependency for “ts-news-service”. In fact,

the project “ts-news-service” is a “Go” application and MiSAR does not yet

transform Go source artefacts.

265

Table 8-13: Expected elements for “ts-news-service” as per the documentation vs MiSAR

result.

ID Element Name
Element

Attribute
Attribute Value MiSAR Output

1 Container ContainerName ts-news-service RECOVERED

2 FunctionalMicroservice MicroserviceName ts-news-service MICROSERVICE

3 InfrastructureClientComponent Category
Service_Routing_Pattern_Registry_and_Dis

covery
NOT_RECOVERED

4 InfrastructureClientComponent Category Observability_Pattern_Distributed_Tracing NOT_RECOVERED

5
InfrastructurePatternComponen

t
Category

Observability_Pattern_Application_Metrics

_Logging
NOT_RECOVERED

6
InfrastructurePatternComponen

t
Category

Observability_Pattern_Application_Metrics

_Generation
NOT_RECOVERED

7 Endpoint RequestURI GET /hello NOT_RECOVERED

8 ServiceMessage MessageType RESPONSE NOT_RECOVERED

9 ServiceMessage BodySchema
{"type":"array","items":{"type":”object”,”p

roperties”:{“Title”…
NOT_RECOVERED

10 ServiceDependency ProviderName ts-travel-service NOT_RECOVERED

Microservice “jaeger”: There is no documentation for the “jaeger” microservice in

the wiki page. However, it is mentioned in the home page of TrainTicket’s github that

a tracing system has been provided that is based on Jaeger. Therefore, the “jaeger”

microservice provides tracing infrastructure. Hence, in the documented architecture

diagram in Figure 8-2, the “jaeger” microservice is implied by the “Traffic

Management” infrastructure at the bottom layer. No other information can be directly

deduced by the available documentation. To facilitate the comparison, the documented

architecture is described in terms of PIM elements, as illustrated in Table 8-14.

➢ Consistent with documentation: By comparing Table 8-7 for the recovered

PIM instance for “jaeger” to Table 8-14 for the expected PIM elements, it is

clear that MiSAR, out of three documented elements, correctly recovered the

container element and inaccurately recovered the infrastructure microservice

element as a microservice. It only captured the existence of this microservice

with the help of the Docker Compose artefact and the name of the build

directory acquired from the parser.

➢ Missed elements: Apparently, MiSAR failed to recover an infrastructure

component for “jaeger” since it does not yet support Jaeger tracing technology

in its current repository of mapping rules.

266

Table 8-14: Expected elements for “jaeger” as per the documentation vs MiSAR result.

ID Element Name Element Attribute Attribute Value MiSAR Output

1 Container ContainerName jaeger RECOVERED

2 InfrastructureMicroservice MicroserviceName jaeger MICROSERVICE

3 InfrastructureServerComponent Category Observability_Pattern_Distributed_Tracing NOT_RECOVERED

8.3.5. Results

The results are presented according to research questions presented in section 8.3.1.

 RQ1 (degree of completeness of the recovered microservice architecture

model)

 RQ2 (degree of correctness of the recovered microservice architecture model)

In order to answered RQ1 and RQ2, recall, precision and F1-score metrics were

calculated to measure, respectively, the completeness, correctness and overall

accuracy of the recovery model. The following metrics were applied for every PIM

element to assess the overall effectiveness of MiSAR:

1) Recall: this metric measures how completely MiSAR captures the existing

architectural elements. It is calculated as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑒𝑑 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (TP + FN)

2) Precision: this metric measures how correct (valid) the elements recovered by

MiSAR are. It is calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (TP)

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑇𝑃 + 𝐹𝑃)

3) F-measure: this metric measures the overall quality of MiSAR’s recovery

performance. It is an average of both recall and precision. It is calculated as

follows:

𝐹_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

267

Where TP is the number of True Positives (correctly recovered elements) and FP is

the number of False Positive (incorrectly recovered elements).

These metrics were calculated for every PIM element, as shown in Table 8-15. It can

be seen from the results in Table 8-15, the overall effectiveness of MiSAR based on

the F-measure is 89.41% for this case study based on the documentation. MiSAR also

achieved a precision score of 99.55% of correct elements. The recall score is also high

but lower than precision. The recall score indicates that MiSAR has recovered 81.20%

of architectural elements. The lower recall is due to the large number of missed

elements which, in turn, is due to encountering microservices with artefacts that

belong to non-JVM platforms or that were developed with unconventional

implementation (a.k.a. developer-specific logic), as discussed in section 8.3.4.

To illustrate, one of the partially recovered microservices was the gateway

microservice, i.e. “ts-ui-dashboard”, which is supposed to have at least 40 Service

Dependency elements (because it routes requests to all of the 40 business

microservices), and 83 Endpoint elements (because it exposes the main endpoints of

all the 40 business microservices). The “ts-ui-dashboard” microservice is built with

HTML/JS artefacts plus an NGINX configuration artefact. Both kinds of artefacts are

not yet supported by the MiSAR repository. The second partially recovered

microservice was the monitoring microservice, i.e. “ms-monitoring-core”, which is

supposed to have at least 42 Service Dependency elements because it requests the

health and metrics endpoints of all the 42 business microservices as well as pulling

their logs for monitoring purposes. Such a large count of missed elements contributed

to the recorded drop in recall.

The recall and precision score achieved 100% for container elements recovered from

Docker Compose and POM artefacts. This indicates that MiSAR can capture the

existence of all microservices but it might miss the underlying elements of those

microservices, such as their infrastructure components, endpoints and dependencies.

The next highest recall score of 96.20% was achieved for Endpoint element because

their recovery is based on a Java Method from the standard Rest Template class

available in the Spring Boot, Spring Cloud framework.

268

Table 8-15: Evaluation metrics for MiSAR recovery of TrainTicket system

PIM Element
Expected

Elements

Correctly

Recovered

Incorrectly

Recovered

Missed

Elements

Missed

Classified

Recall Precision
F-

Measure

Container 69 69 0 0 0 100% 100% 100%

InfrastructureMicroservice 30 27 3 0 3 90% 90% 90%

FunctionalMicroservice 39 36 3 0 3 92.31% 92.31% 92.31%

InfrastructureServerComponent 32 27 0 5 0 84.38% 100% 91.53%

InfrastructurePatternComponent

&

InfrastructureClientComponent

208 131 0 77

0

62.98% 100% 77.29%

Endpoint 474 456 0 94 0 96.20% 100% 98.06%

ServiceDependency 792 589 0 203 0 74.37% 100% 85.30%

All 1644 1335 6 379 6 81.20% 99.55% 89.41%

Annotation

Correctly recovered for Infrastructure/Functional microservice recovered as a microservice

without classify its type.

Missed elements for Infrastructure server component belonging to “ts-ui-dashboard”, “ms-

monitoring-core” and “jaeger” microservices.

Missed elements for Infrastructure pattern/client component belonging to tracing and service

registry/discovery client infrastructure of all backend microservices.

PIM Element (Endpoint) Including the count of service message elements (if any) associated

with each endpoint.

Missed elements for Endpoint Including the 83 endpoints of the “ts-ui-dashboard”

microservice alone.

PIM Element (ServiceDependency) separately counting the Provider Name and Provider

Destination attributes for each service dependency.

Missed elements for ServiceDependency including 40 ProviderName and 83

ProviderDestination values in “ts-ui-dashboard” as well as 42 ProviderName values in “ms-

monitoring-core” and one Provider Name = “jaeger” in 37 backend microservices.

269

➢ RQ3: Is the execution of the MiSAR transformation efficient or not?

In order to answer this question, I measured the runtime at each stage of the MiSAR

recovery for TrainTicket by using the runtime metric as shown in Table 8-16.

1) Runtime: this metric measures the efficiency of MiSARs static approach after

the automation of parsing and QVTo transformation.

Table 8-16: Time spent at each stage of MiSAR recovery for TrainTicket

Artefact Collection Parsing QVTo Transformation Total

~ 2minutes ~ 5 minutes ~ 2 minutes ~ 9 minutes

It can be seen from the results in Table 8-16 the overall automatic MiSAR static

recovery process took less than 9 minutes to complete, which indicates the efficiency

of MiSAR’s static approach after the automation of parsing and QVTo transformation.

This time equation includes the two minutes spent on selecting the path of all

mandatory artefacts in TrainTicket via the MiSAR parser (including three Docker

Compose files, 42 microservice build directories and 39 build files), the five minutes

required to finish automatic parsing and generating the PSM model of TrainTicket

artefacts, and finally the less than two minutes required to generate the architecture

PIM model via the Eclipse QVTo project.

Generally, the count of steps necessary to execute a transformation is proportional to

the count of elements in the source model as well as the count of transformation rules

applicable to those elements. As for MiSAR, with the help of implementation in

Eclipse QVTo, the recovery process took less than two minutes to transform the source

model that belongs to TrainTicket with size of 13 MB into a target model with a size

of 427 KB.

270

8.3.6. Updates to MiSAR’s Repository

As a result of this study and after the recovery process was completed and the

generated model had been analysed, some limitations were noticed. This led to

necessary updates to MiSAR’s repository (PIM metamodel, PSM metamodel and

mapping rules). To illustrate, the following mapping rules were added in order to

overcome limitations noticed in the recovery of architecture elements related to Jaeger

open tracing technology identified in the previous step:

1) One Docker hub image container with image field value which contains

“jaegertracing” indicates one infrastructure server component with category

value: observability pattern distributed tracing.

2) One dependency library with image field value which contains “opentracing-

spring-jaeger-web-starter” indicates one infrastructure client component with

category value: observability pattern distributed tracing.

3) One configuration property with fully qualified property name value which

contains “opentracing.jaeger.udp-sender.host” and property value {provider-

name} indicates one service dependency with provider name value: {provider-

name}.

Technical limitations that are related to the use of a new framework, infrastructure and

even non-Java programming languages can be solved simply by extending MiSAR’s

PSM metamodel and transformation rules to include these new encounters. However,

when a developer-specific logic is encountered, such as the case of recovering the

“ms-monitoring-core” microservice, a different approach needs to be considered. One

recommendation could be the design of an additional input metamodel (e.g. UML

Sequence Diagram) where particular sets of elements map to particular sets of

infrastructure microservices and/or architectural elements. To illustrate, monitoring

microservices tend to implement a common functionality that collects logs

periodically from other microservices, parses them and finally visualises metrics.

Therefore, if such an algorithm is recovered as a UML sequence diagram model,

whether statically by source code analysis or dynamically by analysing tracing

packets, then this microservice will eventually be recovered as a monitoring

infrastructure microservice.

271

8.4. Summary

In this chapter, I present an evaluation of MiSAR artefacts and the results obtained

through its application to the recovery of the TrainTicket system’s architecture. The

objective of this chapter was to show the usefulness of the MiSAR through a case

study by measure the correctness, completeness and efficiency of architecture

elements recovered by MiSAR against documentation. This chapter also presented the

architecture recovery process through a step-by-step recovery experiment involving

the use of a set of QVT mapping rules. The case study reports that MiSAR’s

transformation is efficient and able to obtain architectural models effectively. This

case study has enabled the improvement and refinement of the MiSAR artefacts.

272

Chapter 9

 Discussion

9.1. Introduction

This chapter discusses the findings of the studies presented in chapters 5, 6 and 8.

Three separate studies were carried out in order to build and evaluate the MiSAR

artefacts. The first study explored the MiSAR artefacts from empirical data by defining

the initial artefacts of MiSAR, the metamodel and mapping rules from the

microservice systems analysed. The second study explored the incremental

enhancement of these artefacts from analysis of more microservice systems, which led

to a more refined version of the MiSAR artefacts. The third study applied the refined

version of the MiSAR artefacts via a large-scale microservice system. Section 9.2

discusses the results of studies 1 and 2, which answer the four research questions of

the thesis. Section 9.3 discusses study 3. Section 9.4 spotlights how the findings of

these studies are similar to or different from previous studies. Section 9.5 presents

consideration and positive aspects of MiSAR, divided into six sub-sections: the degree

of recovery MiSAR attains, MiSAR’s efficiency and reliability, MiSAR’s

architectural expressiveness, backtracking support, the ability of MiSAR to discover

the existence of non-JVM applications, and model traceability support. Finally,

section 9.6 presents lessons to research community be learned concerning

microservice architecture recovery.

9.2. Discussion of Study 1 and Study 2: Empirical Studies

This section discusses the results of study 1 and study 2 in terms of each thesis research

question. The main problem I wanted to address in this thesis is the following: What

are the architecture recovery processes that allow software engineers to recover the

architecture of microservice systems? In order to answer this main research question,

I conducted two studies that answer the sub-questions, as depicted in Figure 9-1. The

first study developed MiSAR artefacts by defining the metamodel and mapping rules

which correspond to the artefacts of the Model-Driven Engineering (MDE) approach,

273

as presented in Chapter 5. The second study enhanced and refined the MiSAR

artefacts, as presented in Chapter 6.

The research questions of this thesis are:

 RQ1: What are the microservice architectural elements/concepts that need to

be present in metamodels in order to abstract microservice-based systems at a

platform-independent model level?

 RQ2: What are the mapping rules that can transform microservice-based

implementations into architectural models?

 RQ3: What are the suitable elements in the source model to be able to create

a platform-specific model for the recovery of the architecture model?

 RQ4: What is an appropriate process/technique for microservice architecture

recovery?

Figure 9-1: Research questions.

274

❖ RQ1 and RQ2: metamodel and mapping rules

These two questions were answered in parallel, first in study 1, which required

understanding and defining the various concepts and elements that form a

microservice architectural model and that define the characteristics of architectural

models of a microservice system. This was followed by investigating the appropriate

mapping rules between the source code of microservice implementation and the

architectural model; these mapping rules transform the microservice system

implemented in a technology-specific way to architectural elements in a technology-

independent way. These questions were answered via the empirical study, which

involved analysing eight open-source projects from the GitHub repository

implemented in the Java and Spring Cloud frameworks that employed microservice

architecture.

The aim of study 1 is to identify the concepts and elements needed to build metamodel

concepts, that abstract a microservice-based system, and to develop mapping rules that

derive a target model from the source model. To achieve this, study 1 addressed the

following research questions:

 What are the microservice architectural elements/concepts that are identified

from the source code?

 What are the mapping rules between the source code of microservice

implementations and the architectural model?

Study 1 followed a manual recovery process. Initially, I wanted to follow the same

steps as described in van Deursen et al. (2004), in terms of Recovery Design (RD) and

Recovery Execution (RE). This kind of process begins by defining the architectural

concepts, abstractions and concerns that can be recovered. Usually, abstractions and

concerns are known beforehand, and architects extract and classify system data to map

them to the architectural concepts. However, I noticed when I started this process that

there is no standard metamodel for microservice architecture. Therefore, I opted to

extract the data of the system and analyse it first, and then abstract the result into

275

architectural concepts. For the architectural concerns of microservices, there are

standard ones.

From the results of the study, which included analysis of eight systems, I noticed that

in the first case study analysed in the RD stage (Table 5-3, ID=1) I identified the

architectural concepts Microservice Architecture, Microservice, Functional

Microservice, Infrastructure Microservice, Service Interface, Container, Service

Operation, Load Balancer, Circuit Breaker, Endpoint, Data Store and Service

Dependency, but only two concepts, Message Bus and Cache Store, were discovered

in the RE stage. In the RD stage, I identified 104 mapping rules. In the RE stage, I

identified 164 new rules and refined 47 rules which were identified in the RD stage.

These mapping rules use natural language, informal descriptions and a non-

executable.

I noticed that the refinement of the mapping rules became less as I validated them with

new case studies. The mapping of architectural elements from source artefact elements

identified are not one-to-one; that is, many mapping rules can be applied to map one

concept type. For example, nine mapping rules can be applied to generate the API

Gateway architectural concept, as shown in Chapter 5, Table 5-5. Many of the newly

added mapping rules were not related to new concepts but to the fact that different

technologies can be used for the same architectural concepts.

To illustrate, the mapping rules presented in Table 5-5 support the recovery of the API

Gateway concept implemented in three technologies, Apache HTTP, Netflix Zuul and

Spring Sidecar. This makes the implementation of these mappings more complicated,

and any future MiSAR tool should be able to identify and analyse a range of different

technologies. All of the mapping rules use static code analysis. I also observed that the

model recovered from these rules can be validated if a dynamic analysis is performed

at system runtime. This is an important finding, as it demonstrates that many parts of

a microservice architecture can be recovered statically, which is much easier than

using dynamic analysis.

The initial MiSAR artefacts are: the PIM metamodel, which supports the creation of

microservice architectural models and mapping rules, which map microservice

276

artefact elements (PSM) into the PIM metamodel in study 1. However, in study 2 a

natural question to ask is “To what extent do the current MiSAR artefacts such as the

metamodel and the mapping rules satisfy microservice architecture recovery?”. I

answered this question empirically by applying MiSAR artefacts to a new set of open-

source microservice projects implemented in the Java, Docker and Spring Cloud

frameworks. In this study, I aimed to validate that the existing MiSAR artefacts can

recover an architectural model and that these artefacts can be enhanced. To achieve

this, study 2 addressed the following research questions:

 What are the enhancements that have to be performed to the existing MiSAR

metamodel to represent more richly recovered architectural models of

microservice systems?

 What enhancements have to be applied to the current MiSAR mapping rules

that map Java and Spring Cloud microservice systems into architectural

models?

Nine additional open-source microservice systems were selected systematically, as I

aimed in this study to address more complex systems that have more services than

those addressed in study 1, such as systems that implement a

synchronous/asynchronous inter-microservice interaction style, and integrate

variation implementation of patterns. I manually applied the metamodel and the

mapping rules presented in study 1 to every system incrementally and achieved

improved artefacts.

In study 2, the initial PSM elements structure has been modified into PSM metamodel,

this metamodel identifies the information that needs to be extracted from source

artefacts. Like the PIM metamodel, the PSM metamodel consists of abstract artefact

elements that can be easily extended in the future e.g. the abstract (Microservice

Project) can have other sub-types than JavaSpringWebApplicationProject. For that

purpose, I had to modify the structure of the mapping rules so that they can transform

each particular PSM concept in the artefacts to particular PIM architecture concepts.

Mapping rules become easy to implement with such a defined structure. This

modification motivated the automation of the entire recovery process, presented in

Chapter 7. As a result of this study, I identified requirements for a PIM metamodel

that declares abstract microservice architecture elements, along with the new PSM

277

MiSAR metamodel and refinement of MiSAR mapping rules. The PIM metamodel

concepts can be easily extended in the future e.g. the abstract element (Message

Destination) can have other sub-types than Endpoint for synchronous service interface

and Queue Listener for asynchronous service interface.

After that, I implemented the final version of the MiSAR PIM/PSM metamodels in

Ecore format using the Eclipse Modelling Framework (EMF), and the mapping rules

were implemented in the QVT operational transformation language using Eclipse

M2M/QVTo, as presented in Chapter 7. Mapping rules were also improved further to

transform architecture elements that do not have source artefacts available. Such

mapping rules become augmented with hard-coded values for the attributes of these

architectural elements. To illustrate, a microservice built from a Spring project having

an Actuator library attached to it will expose production REST endpoints such as

“/health” and “/metrics” at start-up. This information cannot be recovered statically

from source artefacts as they are hidden (encoded) in the Actuator’s library

(executable). Therefore, I hard-coded in mapping rules the values of the Actuator’s

production endpoints from its public documentation. Some of these hard-coded

mapping rules are demonstrated in listings 7-6 and 7-7.

As demonstrated in study 2, the majority of the current mapping rules were initially

captured by study 1. Value added by the new case studies included new elements in

the PIM metamodel, new mapping rules for new PIM elements, as well as new

mapping rules that support different technologies and varying styles of

implementation. There are variations in the implementation style of PIM elements;

these variations could involve many PSM elements from different source artefacts,

along with their mapping rules for defining the same PIM element. E.g. Reactive web

application (WebFlux) or MVC web application, both have different architecture

implementation style in the source code which are then abstracted and recovered later

to an architectural element named Service operation concept. As an example of

mapping rules variation that recovers same PIM concept, mapping rules in Table 6-7,

Chapter 6, the rule R8 recovers the Service Operation concept, which is the exact

output of R7 except that the input in R8 represents a reactive, non-blocking

microservice. The nine case studies analysed in study 2 introduced the following new

technologies to the current mapping rules: asynchronous message-based message

278

destinations and service dependencies, Neo4j Graph database, Spring Web Flux non-

blocking reactive implementation, etc. MSAR at current stage recover the architecture

of microservice based systems if developed with Spring Boot/Spring Cloud

framework, due to the fact that all applications developed using Spring Boot/Spring

Cloud framework were noticed to share a common core structure.

❖ RQ3: source artefacts model

In this section, I first discuss the particular information selected from the source

artefacts in order to build a suitable PSM for the microservice-based system. Although

this question has been answered in detail in study 2 by conducting the systematic steps

(in Figure 6-2) for the identification of PSM metamodel (see Chapter 6), the analysis

started early in study 1 at the stage of creating the initial mapping rules. At that time,

I already noticed that not all implementation text carries information that indicates and

expresses the architecture elements I identified in the PIM metamodel. Only the

necessary information that contributed to the mapping rules to build the PSM

metamodel (see Static Analysis in Appendix A, 2), while the unnecessary information

was naturally filtered out and excluded. In other words, in order to create a concise

representation of the source artefacts that best map to architecture elements of

MiSAR’s PIM metamodel, a partial coverage approach was employed. Later on, in

study 3 (see Chapter 8), the resultant concise source model proved to perform faster

and generated a more accurate architecture model.

Next, I discuss the primary differences between the two types of model transformation,

text-to-model transformation and model-to-model transformation. Various abstraction

levels can be used to transform text to model, as shown in Figure 9-2. It is possible to

create a high-level PIM of the architecture from the code, which would then imply that

the logic of the transformation will be of high complexity in terms of bridging the gap

of details between the code and the PIM. On the other hand, a PSM can be created

based on the textual code and then a PIM can be generated from the PSM. The model

transformation from PSM to PIM contains less complexity. I conclude that with the

help of PIM/PSM abstraction levels, it is possible to carry out textual transformations

to any level of model abstraction. The main challenge lies in finding the level which

is appropriate and then designing the transformation. The more abstract the model, the

279

more complexity will be involved in the transformation. Thus, the models diagram

recovered at PSM to PIM level shows the suitable architectural models allowing

microservice software to be properly recovered.

Figure 9-2: Transformations: text to model / model to model.

❖ RQ4: What is an appropriate process/technique for microservice architecture

recovery?

In the first study, the architectural model was manually created from the system

implementation, specifically in the recovery execution (RE) stage, by applying the

first version of the metamodel and mapping rules, written in natural language,

presented in Chapter 5 and Appendix B, 2 and 3, as I found that the manual application

of mapping rules was difficult and inefficient in terms of time. After that, in the second

study (Chapter 6 and 8), I developed and refined the recovery process into three steps

to recover the architecture model of the microservice-based system, as depicted in

Figure 8-1, Chapter 8.

The MiSAR recovery process aims to assist the activities of reverse engineering to

recover the architecture of the software at different levels of abstraction. The current

MiSAR recovery process consists of three steps that can be summarised as follows:

280

The first step is artefact collection (semi-automatic); this step involves collecting

artefacts (e.g. source code) and reviewing them to search for any artefact that may give

information about the system. The second step is to instantiate PSM instance

(automatic); this step produces the required information to describe the software

architecture. It extracts the static elements from the system’s source code and other

artefacts and eventually generates a PSM that conforms to the PSM metamodel. This

step is executed either manually or using the MiSAR parser. The last step is to recover

PIM instance (automatic); this step populates the target model with a high-level

abstraction of the system by applying the automated mapping rules implemented using

the Eclipse QVTo project. The output of this stage is the architecture PIM that

conforms to the PIM metamodel.

In addition, the architecture of the source microservice system has a graphical

representation. Architecture models are mostly represented in an illustrative and

graphical manner, unless they require some description, modelling or textual

language. First, based on study 1, the final recovered model is visualised in two

diagrams: the instance diagram and the architecture diagram. The instance diagram is

equivalent to a UML object diagram that conforms to the PIM metamodel, where each

PIM metamodel concept is equivalent to a UML class. The architecture diagram is

equivalent to Newman's (2019) graphical notations diagram, as presented in Appendix

B, 1. Second, in study 2, the recovered architecture in MiSAR is represented as an

auto-generated PIM instance in XMI format and graphically represented at two levels:

at an architectural level and at a microservice level, where each microservice has a

more detailed view.

The architectural level, which reflects the recovered PIM instance, they include the

high-level view of all microservices, their types and dependencies. In the architecture

diagram at the architectural level, both the Infrastructure Microservice and Functional

Microservice concepts are represented with a hexagon; the representation of the

Infrastructure Microservice is distinguished by adding all of its Infrastructure Server

Components as circles inside the hexagon in order to specify the composite category

of that Infrastructure Microservice (see Figure 6-25 and Appendix B,1). A

microservice-to-microservice Service Dependency is represented by a link connecting

the two microservices, while a microservice-group-to-microservice Service

281

Dependency is represented by a box surrounding all the microservices that share the

same Service Dependency with one microservice. The notations related to

microservice level (see Figure 6-26 and Appendix B, 4) reflect the recovered PIM

instance of an individual microservice, including its Service Interface, Service

Operations, Messages Destinations (e.g. Endpoint and/or Queue Listener) and the

Infrastructure Pattern Components.

After the recovery process is complete and the generated model is analysed, some

limitations can be noticed. The main threat to MiSAR’s validity is the implementation

technology and implementation logic that are not supported in the current repository

of mapping rules and metamodels. However, the Update MiSAR’s Repository step

comes to the rescue. In this case, the MiSAR repository (PIM/PSM metamodels and

mapping rules) is updated with new elements found. However, a natural question to

ask is “What parts of MiSAR repository need to be updated?”. This question can be

answered by providing the following scenarios:

• Limitations that are related to artefacts that are new to MiSAR, such as new

languages (non-Java) or new source artefacts (non-Spring configuration files):

in this case, the amendment will involve creating new PSM/PIM metamodel

elements; these elements need to define the new language or new source

artefact. Hence, mapping rules will also be added that map the PSM elements

to PIM elements.

• Limitations that are related to new frameworks and infrastructure technologies

not supported by MiSAR: if the source artefact of the technology is supported

by MiSAR, then this can be resolved simply by adding mapping rules.

However, if the source artefact of the technology not supported by MiSAR,

then adding a new PSM metamodel for this new artefact and as well as new

mapping rules is required.

• Limitations that are related to architectural concepts not supported by the

MiSAR PIM metamodel: this can be resolved by adding new concepts to the

PIM metamodel, amending/adding PSM metamodel elements that generate

these PIM elements and defining mapping rules for them.

282

9.3. Discussion of Study 3: Evaluation

In study 3, I applied the final version of the MiSAR artefacts to a large-scale

microservice system, involving a case study in an industry setting, to show the

usefulness of the MiSAR elements and to evaluate the recovery approach. This study

focuses on the integration of all MiSAR artefacts and applies them in order to obtain

architectural models.

Through the first study in Chapter 5, it was possible to have an initial evaluation in the

RE phase of the validity of architecture recovery based on initial MiSAR artefacts, i.e.

the metamodel (first version) and mapping rules written in natural language. In an

attempt to assess the applicability of MiSAR, I conducted manual architecture

recovery for a case study named Piggy Metrics that has 17 microservices. The system

was chosen with specific architectural patterns in mind. The recovered architecture

that conforms to the metamodel (version 1) was represented using an instance diagram

for a detailed description (e.g. see Figure 5-14) and a high-level architecture diagram

(see Appendix B, 2) which only symbolises microservice type and RESTful endpoints

that were involved in inter-service communication (dependencies). Those PIM

elements recovered by MiSAR which belong to the high-level architecture diagram

matched the documented architecture by 100%. However, when recovering

infrastructure microservices such as “registry”, their PIM instance models were

missing the Service Operation elements but recovered the descendants (e.g. Circuit

Breaker) disconnected as in Figure 5-14. The reason was that infrastructure

microservices abstract the implementation of their operations, i.e. hidden

implementation, due to the use of Spring Boot/Spring Cloud frameworks. This

observation, in addition to other considerations, raised the need for MiSAR

enhancements and hence led to the development of study 2.

Next, in the second study, as presented in Chapter 6, a second evaluation of MiSAR

was conducted, with the aim of testing the performance of the automated architecture

recovery using the new PSM metamodel, the enhanced PIM metamodel and the

enhanced mapping rules implemented with Eclipse QVTo. The criteria for the

selection of the case study concentrated mainly on the implementation of both

synchronous and asynchronous inter-microservice communication styles (i.e. service

283

dependencies), the integration of polyglot technologies (e.g. multiple datastores, non-

JVM applications, reactive programming, etc.), as well as multiple configuration

profiles, in order to ensure that the validity and effectiveness of all enhancements made

to MiSAR in this study are evaluated. The selected case study meeting these criteria

was the Microservices Sample application, which consists of 14 microservices. The

recovered architecture was represented using an instance diagram for detailed

description, a high-level architecture diagram which only symbolises microservice

type, infrastructure components, synchronous/asynchronous destinations that were

involved in service dependencies, as well as the newly added microservice-level

diagram which consists of the service interface, infrastructure pattern components,

infrastructure client components, and a complete list of endpoints and queue listeners,

along with their operations and service messages. The architecture model recovered

by MiSAR demonstrated great consistency with the documentation, except for a few

missed elements and, interestingly, there were some additional elements, as presented

in Chapter 6. The missing elements were the infrastructure components and

dependencies of only two infrastructure microservices with new technologies that are

unfamiliar to the MiSAR repository. This was resolved simply by updating the

mapping rules so that these technologies were included. Moreover, MiSAR managed

to recover more information about the architecture and its elements than was

documented, such as the recovery of one microservice as well as the service operations

and business data messages of recovered microservices. This shows that MiSAR has

the potential to provide expressive documentation for the recovered architecture

elements, with the condition that mapping rules are comprehensive. Otherwise, human

intervention comes to the rescue.

Finally, in the third study, as presented in Chapter 8, a third evaluation of MiSAR was

conducted on a large, documented scale: a microservice-based application developed

with a variety of technologies and implementations. The main goal of this test was to

assess the effectiveness and efficiency of the final version of MiSAR’s automated

architecture recovery, as well as to highlight the threats to its validity. The selected

case study, meeting the aforementioned test goals, was the TrainTicket application,

which consists of 41 business microservices. TrainTicket offers comprehensive

documentation in two means: an architecture diagram and a wiki page that describes

the technologies used in the development of TrainTicket, as well as a complete list of

284

endpoints and invocations for every business microservice. However, I noticed that

the available documentation corresponds to a subset of the total architecture elements

represented by MiSAR’s PIM metamodel. While the architecture diagram corresponds

to Functional/Infrastructure microservices as well as Infrastructure

Server/Client/Pattern components, it doesn’t demonstrate, for instance, any Data Store

containers, although they are defined in the Docker Compose artefact. Moreover,

while the list of endpoints and invocations defined in the wiki page corresponds to the

Endpoint and Service Dependency elements, respectively, it totally lacks

representation of the Service Operation and Service Message elements. This

encouraged me to add two undocumented architecture elements, namely the Data

Store containers and endpoints’ Service Messages, into the test cases to ensure more

accurate evaluation of the MiSAR repository (i.e. mapping rules and metamodels).

The overall automatic static recovery process took less than 9 minutes to complete.

In particular, MiSAR managed to capture the existence of all microservices in

TrainTicket, as per the source artefacts (even those that are not documented); it was

not able to recover the underlying elements of just six microservices. When analysing

the six partially recovered microservices, I found that the artefacts that assisted in

recovering their existence, represented by the Container, Microservice, Service

Interface and Dependency elements, were the Docker Compose and/or POM build

artefacts. The gateway microservice, i.e. “ts-ui-dashboard”, and the monitoring

service, i.e. “ms-monitoring-core”, are an example of partially recovered

microservices that contributed to the recorded drop in recall measurement. The “ms-

monitoring-core” microservice differs from “ts-ui-dashboard” in that it meets the

restrictions on the selected case studies I initially defined at the time of study 1. It has

Java Spring artefacts that are supported by MiSAR. However, the monitoring task was

implemented with a type of logic that does not follow the Spring Cloud standard logic,

involving the use of specific keywords such as Java annotations and/or invocations to

library methods.

Based on the previous discussion of partially recovered microservices, the main threat

to MiSAR’s validity is the technology and implementation that are not supported in

the current repository of mapping rules and metamodels. However, the Update

MiSAR’s Repository step at the end of the architecture recovery process comes to the

285

rescue. Technical limitations that are related to the use of a new framework,

infrastructure and even non-Java programming language can be solved simply by

extending MiSAR’s PSM metamodel and transformation rules to include these new

encounters. However, when a developer-specific logic is encountered, such as the case

of recovering the “ms-monitoring-core” microservice, a different approach needs to

be considered. One recommendation is the design of an additional input metamodel

(e.g. UML Sequence Diagram) where particular sets of elements map to particular sets

of infrastructure microservices and/or architectural elements. To illustrate, monitoring

microservices tend to implement a common functionality that collects logs

periodically from other microservices, parses them, and finally visualises metrics.

Therefore, if such an algorithm is recovered as a UML Sequence Diagram model,

whether statically by source code analysis or dynamically by analysing tracing

packets, then this microservice will eventually be recovered as a monitoring

infrastructure microservice. On the other hand, after analysing the successful cases,

such as “ts-auth-service”, MiSAR was found to recover extra architecture elements

when compared to the documented approaches. In particular, it provides information

about the schema of request/response message(s) for every endpoint.

9.4. Previous Studies

This section spotlights how the findings of MiSAR are similar to or different from

previous studies. Although significant software architecture recovery methods exist

(Ducasse and Pollet, 2009; Raibulet et al., 2017), few of the current methods have their

main focus on a system that specifically addresses microservice architecture. One of

the few existing works related to the current project is MicroART (Granchelli,

Cardarelli, Francesco, et al., 2017). MicroART is a microservice architecture recovery

approach; similar to MiSAR approach, it uses model-driven engineering principles.

MicroART was the only study found in the literature that tackles architecture recovery

in microservices via model-driven engineering. In term of static analysis extraction,

MicroART is similar to MiSAR, in that static extraction is mainly from source code

repositories, where MicroART retrieves only information related to system name,

developer information and service descriptors.

286

One key limitation of the MicroART approach is that it requires a software architect

to manually refine the physical model generated in the first phase. The refining step

resolves the consumer-to-proxy and proxy-to-provider interactions into consumer-to-

provider interactions before the final logical architecture is generated. The main

drawback of this approach is that the manual step slows down the recovery process.

In MiSAR, the consumer-to-provider interactions (both in synchronous/asynchronous

mode) can be directly recovered using MiSAR’s mapping rules for the Service

Dependency concept, as depicted in figures 9-3 and 9-4. Moreover, MicroART’s DSL

metamodel presented in Granchelli et al. (2017) does not define the asynchronous

message-based input and output endpoints of the microservice, nor the structure of the

business logic data of the architecture. MiSAR has defined mapping rules to recover

asynchronous message destinations, named Queue Listeners, along with their

inbound/outbound Service Messages (business data). The asynchronous Service

Dependency mapping rules are a novel addition that adds value to the MiSAR mapping

rule repository. None of the existing approaches in the literature address the

asynchronous communication aspect; in an ideal world, communication between

microservices should be asynchronous (Westheide, 2016). In addition, the DSL

metamodel of MicroART allows for only one classification of infrastructure

microservices, while one infrastructure microservice can have multiple infrastructure

types – e.g. “consul” is an infrastructure microservice of three types together, service

registry and discovery, asynchronous message brokering, and centralised

configuration. MiSAR can support multiple-infrastructure patterns by introducing the

concept of Infrastructure Pattern Component.

MicroLyze (Kleehaus et al., 2018) is another work which proposes an architecture

recovery approach for microservices. MicroLyze, unlike MiSAR, does not adopt a

model-driven recovery approach. Instead, it utilises a distributed tracing component

that dynamically monitors simulated user requests. In term of service dependency,

MicroLyze is similar to MiSAR, where MicroLyze considers intra-relationships

among microservices in the application layer. However, MicroLyze does not recover

information about the service interface of each microservice and its exposed

synchronous endpoints or inbound asynchronous queues. In MiSAR this information

corresponds to MiSAR’s Endpoint and Queue Listener concepts. Moreover,

MicroLyze does not recover the particular classification of an infrastructure

287

microservice rather, it considers only two classifications of microservice: functional

or infrastructure.

Another study (Mayer and Weinreich, 2018) focuses mainly on the extraction

approach of the architecture. Mayer and Weinreich’s approach can continuously

extract the REST-based architecture from microservice software in which the

communication in the services is synchronous and based on HTTP. This work uses

dynamic analysis, i.e. monitoring of simulated requests at runtime, to recover

synchronous REST-based communications in microservice architecture, while

MiSAR currently uses static analysis to recover the same information. Only REST-

based and synchronous communication is captured in their work, while MiSAR’s

approach supports synchronous and asynchronous communication. On the other hand,

MiSAR does not recover information about organisational or physical infrastructure

aspects of microservice architecture.

Two other studies (Düllmann and van Hoorn, 2017; Rademacher, Sorgalla, et al., 2019)

present work related to languages and metamodels for microservice architecture;

however, they are not oriented towards architecture recovery. Düllmann and van

Hoorn (2017) present the structure of the microservice environment from various

viewpoints, such as microservice types, dependency and deployment, focusing on the

area of application performance monitoring. The metamodel exhibits several

similarities to MiSAR metamodel, First, it comprises explicit concepts for service

endpoints and operations, support multiple configuration environment and it covers

basic deployment modeling. In contrast, however, their proposed metamodel, unlike

MiSAR’s metamodel, (a) does not consider asynchronous operation or asynchronous

dependencies. (b) the structure of business data offered by the services is also not

covered, while in MiSAR, this information corresponds to Service Message. (c) no

explicit modeling of infrastructure components e.g., API gateway, registry and

discovery, load balancers or circuit breakers.

Rademacher, Sorgalla, et al. (2019) present a metamodel for model-driven development

of microservice architecture. Their metamodel is structured into three distinct

viewpoints. These comprise only those concepts relevant to domain-specific data,

service and microservice architecture operation. Similar to MiSAR metamodel, it

288

comprises explicit concepts for service endpoint and operations, it covers deployment

modeling, it covers the structure of business data and consider asynchronous and

asynchronous dependencies. Unlike the MiSAR metamodel, the proposed service and

operation metamodels do not define queue or message brokering concepts for

asynchronous data exchange.

Rademacher et al. (2019) present a metamodel of a technology modelling language (a

PSM) in the context of microservice architecture. Similar to MiSAR, their approach

employs model-driven architecture in modelling microservice architecture. However,

their approach differs from MiSAR in that it is a top-down method, in which PIMs are

transformed into PSMs. The approach exhibits the PSM as more of a generalist point

of view, and on the other end there is no concrete distinction between PIM and PSM.

The main challenging of this approach is that it is general rather than technology-

dependent, and thus introduces a level of complexity when the parser is used to extract

the elements of the code that support the general PSM. The ideal scenario would be to

have a specific PSM for each programming language.

Compared to the approaches listed in Table 3-5 in Chapter 3, MiSAR is semi-

automatic architecture recovery that currently supports the Java language and Spring

Framework. The objective of MiSAR is architecture recovery from microservice

implementation systems. MiSAR performs static analysis on the source artefacts to

recover the architecture model. The metamodel was developed and validated

empirically from a set of open-source microservice systems, with the focus on the

‘technical’ concerns of microservice models, which refers to the building blocks and

interconnection that statically describe the characteristic of a software system, and

which carry most of the important information about the software systems to be

recovered, rather than business process models and non-technical/business-related

concerns, like organisation, structuring, culture, etc., which are not considered. Only

program-related artefacts are considered, for instance source codes and existing

documentation, based on their availability. The main emphasis of MiSAR is the

platform-specific model (PSM) and the platform-independent model (PIM) levels of

abstraction in modelling microservice architecture (MSA), which have a clearly

defined purpose in relation to the model and microservice concepts. The mapping rules

289

that map between PSM and PIM were implemented using the QVTo transformation

language. Manual intervention is required only in artefact collection.

With respect to other approaches, MiSAR includes well-defined concepts that are

constructed based on empirical studies. To the best of my knowledge, there is a lack

of empirical approaches in MDE and architecture recovery. The MiSAR metamodel

is architecturally expressive and includes support for asynchronous message-based

service interfaces and asynchronous message-based dependencies, as well as

infrastructure microservices. In addition, it has well-developed and thoroughly tested

mapping rules, which are essential when developing an automatic model

transformations and abstracting hidden architectural complexities.

290

Figure 9-3: Eclipse QVTo implementation of an example mapping rule that recovers synchronous Service Dependency

291

Figure 9-4: Eclipse QVTo implementation of an example mapping rule that recovers asynchronous message-based Service Dependency.

292

9.5. Considerations and Positive Aspects of MiSAR

In this section, the positive aspects of MiSAR are discussed. The discussion will be

carried out based on six major arguments, representing the main components of the

findings from the studies.

9.1.1. Degree of MiSAR Recovery

Even though MiSAR adopts the static approach to recovery, it can recover the service

interaction of an architecture as well as the structure of service data. It has been

observed that the Configuration Property and Java Method are the two artefact

elements responsible for the success of MiSAR in the recovery of the dynamic aspects

of a microservice architecture. This success is realised in practice for TrainTicket case

study by the exceptionally high recall score of 96.20% for the recovery of Endpoints,

which themselves are recovered from Java Method elements, compared to the overall

recall score of 81.20%. To illustrate, with the mapping rules that transform Service

Dependency associated to Message Destination (Endpoint/Queue Listener) PIM

elements, MiSAR becomes able to automatically resolve the consumer-to-proxy

(proxy examples are gateway, discovery, broker, etc.) and proxy-to-provider service

interactions into consumer-to-provider service interactions

(synchronous/asynchronous). Moreover, the Body Schema attribute of the Service

Message PIM element defines the structure of business data exchanged between

consumer and provider in the synchronous/asynchronous service interactions.

9.1.2. MiSAR’s Reliability

The current MiSAR recovery approach is based on static analysis of source artefacts.

The results confirmed that the static methodology of MiSAR is a good alternative to

dynamic analysis in many scenarios. In the dynamic recovery approach, e.g. using

Zipkin,33 the application needs to be in a running state so if it fails to run due to

expensive resources needed or due to existing bugs then the recovery process will not

33 https://zipkin.io/.

https://zipkin.io/

293

start at all. Despite that bugs will produce some logical false results, the static method

will still work under these scenarios.

In addition, with dynamic recovery which is based on tracing, there is an added effort

to design trace requests that can capture the entire behaviour of the application. This

effort is eliminated in the static method since it recovers all specifications of the

architecture as long as there is a mapping rule matching the source statements

implementing the specifications. It can be noticed from Table 8-15, Chapter 8 that

MiSAR achieved high correctness in the case study. This adds reliability to MiSAR’s

static approach. The recall score is also high but lower than precision. This indicates

that MiSAR for TrainTicket case study can recover 81.27% of existing architectural

elements. This particular figure is limited by artefact terms, implementation and

technologies of microservice applications that are currently supported by MiSAR’s

extendible repository. However, in the future if MiSAR concepts are extended to

include performance metrics such as response time dynamic analysis could be needed.

9.1.3. Architectural Expressiveness

MiSAR is architecturally expressive in terms of its metamodel concepts, which are

reusable, extendible and comprehensive to the core components in microservice

architecture, including asynchronous message-based service interfaces, asynchronous

message-based dependencies, service destination, which represents both the

provider’s Endpoint and the provider’s Queue, and Infrastructure pattern components

with its categories. For illustration, “ts-auth-service” is one of the successful cases in

the recovery process, as presented in Chapter 8. MiSAR was found to recover extra

architecture elements compared to the documentation presented by the TrainTicket

team. In particular, it provided information about the service operation names as well

as the schema of request/response data message(s) associated with every endpoint (see

additional elements in Section 8.3.4 in Chapter 8). This extra information recovered is

considered an added value to the current documentation of TrainTicket. MiSAR was

also able to recover the correct paths for “ts-order-service” endpoints even though they

were incorrectly documented. This advantage, when added to the high overall score in

precision, indicates that MiSAR has the potential to provide comprehensive and

294

implemented microservice architecture models. This is because the expressiveness of

the metamodel is higher than the informal models drawn by the developers.

9.1.4. Backtracking Support

In order to check the validity of the recovered elements, especially in the case of

generating erroneous or undocumented elements, MiSAR includes an attribute named

GeneratingPSM to every concept in the PIM metamodel in order to backtrack the PSM

source element that generated it, by checking the specific lines in the artefact that

generated those particular PSM elements (as discussed in additional elements in

Section 8.3.3). This attribute records all PSM elements that are involved in the

transformation of one target PIM element. The more PSM elements involved in the

transformation, the more certain the existence of a generated PIM element in the

architecture is. One exception is the JavaMethod PSM. If a target PIM element is

transformed from one JavaMethod element, then its existence in the architecture is

100% certain. This attribute assists in the validation and update stages after the

recovery stage.

9.1.5. The Ability of MiSAR to Discover the Existence of Non-JVM

Applications

MiSAR was built via analysis of Java applications developed with the Spring

Boot/Spring Cloud frameworks, hence a common infrastructure, common

technologies and common artefact terms were expected. However, some non-JVM

applications were encountered, such as in study 3: TrainTicket developed with Python

(ts-voucher-service), Node.js (ts-office-ticket-service), HTML/JS (ts-ui-dashboard)

and Go (ts-news-service). MiSAR managed to capture and recover their existence at

the container level, namely the elements of Container, Microservice, Service Interface

and Dependency from the Docker Compose and/or POM build files. However, it was

not able to recover the underlying elements. This indicates the significance of the

Docker Compose and POM build artefacts to the static approach of architecture

recovery in general as well as to MiSAR in particular.

295

9.1.6. Model Traceability Support

MiSAR mapping rules are implemented with Eclipse QVTo, which accomplishes

model traceability by means of the resolve() function and its variants (see Table 7-1).

The resolve() function returns a set of target objects. These objects are the result of an

earlier mapping rules from the source object on which the resolving is being applied.

These traces can assist the developers in analysing the orders in which mappings rule

were invoked.

9.6. Observations and Lessons Learned

The research community can learn several lessons concerning microservice

architecture recovery. A number of observation points also emerged from studies

presented in this thesis.

1) Among reverse engineering approaches, the MDE approach proved to have

great potential for microservice architecture recovery. Models are used to

bridge the gap between software implementation and architecture using

systematic transformation between the software implementation concepts and

the architecture level, as they define the complex systems at multiple

abstraction levels through a variety of viewpoints. The suitable abstraction

levels recommended for architecture recovery are observed to be the PSM as

the source and the PIM as the target.

2) Microservice architecture recovery approaches must be linked to assessing the

runtime platform configuration, which influences the runtime behaviour of the

service: I learned that an assessing source code alone, e.g. Java source file

(low-level artefact), is not sufficient to reverse engineer an architecture which

is based on microservices. In order to successfully carry out the process of

reverse engineering, different aspects of architectures must be analysed. These

aspects include the characteristics of the platform leveraged by the

microservice, the platform on which each microservice is deployed, and the

interaction of the microservice with other applications external to the

architecture being analysed. It is critically important to analyse and understand

296

the configurations, build and deployment artefacts files (high-level artefacts)

that the microservice application uses for development and deployment, since

they reflect the abstract and reusable structure of the application, its

components and its configurations.

3) The most essential artefacts that participated in the success of a static approach

for architecture recovery were the high-level artefacts, including the

containerisation (i.e. Docker Compose) and project build (i.e. POM) files.

They were observed to be used by a wide span of software development

frameworks. As observed from the results in study 3, MiSAR was able to

recover all microservices deployed remotely as Docker Hub images, as well as

those built locally as non-JVM applications. One Docker Container Definition

PSM element is transformed by MiSAR into at least three essential PIM

elements: the Microservice, Container and Service Interface elements. In other

cases, with the help of hard-coded mapping rules, it can also transform into

Infrastructure Microservice, Infrastructure Server Component, Endpoint,

Service Dependency and Service Dependency PIM elements.

4) A static approach for architecture recovery can reveal the service interaction

(dynamic aspect) of an architecture as well as the structure of service data

(business model), which are usually recovered with dynamic approaches. A lot

of information on the possible runtime architecture for a distributed system is

accessible from its implementation when the mapping rules reflect a high-level

understanding and simulating of the required aspects (dynamic and business),

and the source model represents the source code in way that simulates the

application execution.

To illustrate, the resolving of the consumer-to-proxy (proxy examples are

gateway, discovery, broker, etc.) and proxy-to-provider service interactions

into consumer-to-provider service interactions (synchronous/asynchronous)

was performed manually in the MicroART approach (Granchelli, Cardarelli,

Francesco, et al., 2017), while it was performed easily in other dynamic

approaches. In order to accomplish this in MiSAR’s static approach, the

297

mapping rules that transform Service Dependency PIM elements need to

reflect understanding of the interaction mechanisms at a higher level than the

source code. In practice, Java implementation of AMQP asynchronous

interaction transmits the consumer’s data message to the broker (rather than

the provider) with the routing key attached to the request. Direct

transformation of PSM to PIM elements will not accomplish the required

resolution. Instead, the MiSAR mapping rule presented in Figure 9-4 simulates

the AMQP protocol and hence connects the consumer to a recovered

Microservice element with a Queue Listener element matching the routing key.

Moreover, the Body Schema attribute of the Service Message PIM element

defines the structure of business data exchanged between consumer and

provider in the synchronous/asynchronous service interaction.

5) MDE is supported with languages and plugins that aid the semi-automatic

generation and manipulation of models. This allows models to be validated

against precise metamodels. For example, the implementation of MiSAR’s

transformation mapping rules with QVTo (MDA transformation language)

utilises the Ecore implementation of MiSAR’s PSM/PIM metamodels and

facilitates the construction of precise, non-error-prone design models. The

elements in the source model and their attribute values are always checked

prior to the execution of corresponding transformation rules. The automation

of the metamodels and model transformations together with the model-driven

development principles make it possible to reuse the models involved in

reverse engineering processes, and to check and automate the mapping rules,

and maintains traceability between codes and models.

9.7. Summary

This chapter has discussed the overall findings that emerged from the studies presented

in chapters 5, 6 and 8. I highlighted the main considerations and positive aspects of

MiSAR. Based on the discussion of the findings, I then outlined possible lessons to

research community be learned concerning microservice architecture recovery.

298

Chapter 10

 Conclusions and Further Work

10.1. Introduction

This thesis reports the development of a novel approach for the recovery of the

software architecture of existing microservice software systems, called MiSAR. I

present an in-depth empirical investigation into microservice-based systems for

defining and evaluation MiSAR. It has been shown that a bottom-up approach using

model-driven engineering can be adapted painlessly to reverse engineer microservice-

based systems. This chapter summarizes the main ideas presented in this thesis and

discusses briefly the research stages to define MiSAR, followed by research

contributions. Finally, the limitations of the current study and future research

directions in regard to architecture recovery of microservice-based systems are

addressed and explained.

10.2. Major Topics Addressed

Chapter 1 presented an overview of software architecture and architecture recovery in

the context of microservices, a gap that has been addressed in this research. The

chapter highlighted the major research aims and objectives which helped in answering

the research question.

Chapter 2 presented a mapping study that looked into available studies on

microservice architecture. The outcomes of this analysis assisted in finding the gaps

and the prevailing trends in previous research. Microservice architecture recovery was

identified as a gap in the microservice field.

Chapter 3 presented useful information and necessary background concerning the field

of microservice architecture, model-driven engineering, reverse engineering and

software architecture recovery. This chapter also analysed the existing gaps in the

available approaches and techniques that are related to the topic.

299

Chapter 4 discussed the research methodology used to conduct the research. It also

discussed the systems selected for the different studies conducted in this thesis.

Chapter 5 presented a description of microservice architecture recovery (MiSAR), an

approach that follows a model-driven engineering (MDE) framework. An empirical

study was conducted to define MiSAR based on empirical data. The findings in this

chapter led to an initial version of the MiSAR artefacts: a metamodel at the platform-

independent model (PIM) level and mapping rules.

Chapter 6 presented the second empirical study, which incrementally evaluated and

enhanced the initial MiSAR artefacts in order to achieve improved artefacts. This

chapter defined the final version of the MiSAR artefacts in order to be able to generate

architectural models of implemented microservice systems.

Chapter 7 presented the implementation of the MiSAR artefacts developed with the

help of the Eclipse framework, the implementation of the metamodel using Ecore and

the implementation of the mapping rules using QVT.

The prime aim of Chapter 8 was to evaluate the usefulness of the MiSAR elements

(metamodels and mapping rules) through a case study. In this regard, the TrainTicket

system was applied. The efficiency and effectiveness of the MiSAR technique were

measured in the case study via the applied criteria. This chapter presents a process for

recovering the software architecture of microservice-based systems, which takes

platform-specific models (PSMs) concerning the system and obtains PIMs to represent

the target model.

Chapter 9 presented a discussion of the studies conducted in the thesis and their results.

This chapter also included different considerations regarding the main components of

the findings.

300

10.3. Research Stages

This research involved three stages of exploration and evaluation of the MiSAR

artefacts: metamodels, which are microservice architectural elements/concepts that are

identified from the source code, and mapping rules between the source code of

microservice implementations and the architectural model, which assist the

architecture model recovery process. Each stage has methods of collecting and

analysing data from microservice systems. Empirical studies were conducted to build

and evaluate the approach from empirical data. The following subsections provide a

brief overview of the studies conducted in each stage.

Stage One

In this stage, the aim was to identify the concepts and elements needed to build a

metamodel and a specific-purpose abstraction of a microservice-based system, and to

develop mapping rules that derive a target model from the source model. Two main

steps were followed: recovery design (RD) and recovery execution (RE). Eight

microservice systems were analysed to identify the architectural concepts, abstractions

and concerns that can be recovered. The microservice source systems were then

mapped into the metamodel. The outcomes of this stage included initial MiSAR

artefacts, the metamodel and the mapping rules, which are artefacts that are used to

manually recover architectures of microservice systems. Finally, the metamodel and

mapping rules were applied to create architectural models manually (Chapter 5).

Stage Two

The purpose of this stage was a final version of the MiSAR artefacts, including the

PIM metamodel, PSM metamodel and mapping rules, which are artefacts that are used

to automatically recover architectures of microservice systems. This stage analysed

nine microservice systems to validate that the existing artefacts of MiSAR can recover

an architectural model. This stage included activities (application to metamodels,

application to mapping rules) that helped enhance and refine MiSAR in increments.

The mapping rules were then implemented using the QVTo Operational language,

while metamodels were implemented as Ecore models using the Eclipse Modeling

Framework (EMF). Finally, the implemented MiSAR artefacts (mapping rules and

metamodels) were validated by generating a software architecture model of an

301

unanalysed software system and checking its conformance to the documentation

(Chapter 6).

Stage Three

Finally, in the last study, I applied the final version of the MiSAR artefacts via a large-

scale microservice system for evaluation purpose, involving a case study in an industry

setting, to show the usefulness of the MiSAR elements and evaluate the recovery

approach. This study focuses on the integration of all MiSAR artefacts and applies

them to obtain architectural models (Chapter 8).

10.4. Summary of Contributions

The main research contributions of this thesis are as follows:

• MiSAR, a novel microservice architecture recovery approach, based on static

analysis, to recovering microservice architectural models from existing

microservice applications. The approach follows a bottom-up model-driven

engineering approach. I have presented an in-depth empirical investigation into

microservice-based systems for the purposes of defining and evaluating

MiSAR.

• MiSAR metamodels (PSM and PIM): I developed a well-defined concept

constructed based on static analysis, reusable, extendible and comprehensive

in regard to the core components in a microservice architecture. A systematic

approach was used in developing a metamodel. This approach was developed

empirically to support comprehension of recovered architectural models. To

the best of my knowledge, there are no empirical studies on the evaluation of

microservice modelling approaches.

• MiSAR mapping rules: I developed a set of mapping rules that transform

microservice implementations into architectural concepts, as a part of the

architecture recovery process, which is essential to abstracting the hidden

complexities of software architecture. MiSAR’s mapping rules allow us to

recover a software system’s architecture. Mapping rule features are automatic

302

and implemented using Eclipse Operational QVTo, uni-directional from

source to target, and traceable.

• A detailed architecture recovery of a large-scale microservice system has been

presented. This contribution is twofold:

1) It serves to validate the MiSAR architecture recovery process and verify

that the recovery process is efficient, effective and applicable to larger

software systems.

2) It enlarges the body of knowledge about the microservice architecture

recovery process.

10.5. Threats to Validity

There are several limitations and threats to validity intrinsic to the study and results

reported in this thesis. Internal threats of validity concern factors that impact the

integrity of the study results. There are three major threats to the internal validity of

the empirical study.

• T1. Absence of Applicable Concepts: The first one lies in the absence of

applicable concepts. Even though the architectural concepts, which are

essential and applicable to microservice architecture, are acquired confidently,

the research was conducted manually (extracted, compiled and analyzed),

which implies that there could be unintentionally a few concepts that are

missed out. To mitigate this threat, I performed architecture recovery

automatically and compared the recovered model with the documented one.

• T2. Extraction data from artefacts: The second one lies in the extraction

data from artefacts. As long as the parsing task generating the PSM instance

model is automatic, there is a threat that the PSM instance model will either be

exposed to errors or will take an extremely long time to complete before the

recovery process even starts. The parsing task involves mainly the evaluation

of fields and methods’ arguments, as well as the tracing of nested methods’

invocations, i.e. when a method invokes another method, as well as nested

property fields. Such complexity is doubled when the number of artefacts is a

303

lot and the content is lengthy. To mitigate this threat, I performed manual

parsing to validate the results.

• T3. Bugs in Source Code: The third one lies in the bugs found in the source

code. Even though the static recovery process can still run if there are bugs in

the source code, unlike dynamic recovery, the resultant model might represent

some incorrect information.

Threats to external validity concerning this study are related to the generalization of

results.

• T4. Recovery scope: MiSAR, at the current stage, effectively recovers the

architecture microservice-based applications if developed in Java and Spring

Boot/Spring Cloud framework. The popularity of the Spring Cloud framework

in MSA is the reason for supporting it in MiSAR. Furthermore, the recovery

approach is limited to static analysis for architecture recovery that produces

static information, service interaction as well as the structure of service data.

Dynamic analysis and test cases methodologies or expensive static techniques

e.g. (data-flow analysis), would derive and extract increased information.

Nonetheless, it is still necessary to investigate these costlier methods.

• T5. Mapping rules scope: The mapping rules generated were exclusively

from applications developed in Spring Framework, the Java language and

Spring configuration artefacts (Bootstrap Yaml/Application Yaml). Mapping

rules are limited to the version of the framework’s and technologies’

specifications used to develop the source applications, i.e. libraries,

annotations, methods, etc. To mitigate this threat, MiSAR designed as

extendible artefacts that might include a new framework version, new

technologies and new languages.

 In addition, MiSAR mapping rules were extracted from specific lines in the

source artefacts that hold deterministic information/indicators about the output

PIM elements. As one architecture element can be declared across multiple

artefacts, one PIM element can be generated from multiple mapping rules

304

having distinct PSM elements. If a particular PIM element is instantiated once,

the subsequent mapping rules that generate the same PIM element will update

it. However, conflicts in the output of some mapping rules can result from bugs

or misleading text existing in the source artefacts before the recovery process.

To mitigate this threat, a strategy to find issues in the lines of source artefacts

needs to be designed to exclude the possibility of invoking the mapping rules

initiating from them.

• T6. Selecting case studies: The present empirical studies were based on

systems considered to represent basic and best practices. Although the study

results have been validated by many case studies, the mapping rules and

architectural concepts could be identified by analyzing more projects.

Furthermore, empirical reliability, which refers to the consistency of data

capture and interpretation, is relevant to this type of study as data extracted and

analysed is qualitative and can be interpreted differently. To minimize this, the

validation was conducted with systems that have illustrative architecture

diagrams and documentation.

• T7. Evaluation measurements: The completeness of the MiSAR recovery

process is measured mathematically by recall, which, in turn, is determined by

the amount of architecture elements extracted from the available application

artefacts. Precision, on the other hand, measures the correctness of those

extracted architecture elements. As demonstrated in the evaluation Chapter 8,

MiSAR achieved results (greater than 80%) for both recall and precision when

evaluated against a benchmark case study that meets the selection criteria. A

threat to the validity of these measurements is directly related to the test cases

on which the calculation is based. When only the documented elements are

compared to the extracted elements, the recall score, in particular, is likely to

drop, since it will not reflect the undocumented elements existing in the

architecture and expressed by the MiSAR metamodel. To mitigate this threat,

the test cases included those additional architecture elements that are expressed

by MiSAR and expected elements to be recovered.

305

• T8. Scalability to larger systems: It has been observed by empirical study

and evaluation of cases of various size that the scalability of a microservice-

based application could be a threat to the validity of MiSAR’s recovery process

if new technologies/implementation languages are encountered that are not

supported by the metamodel and/or the mapping rules. Otherwise, MiSAR’s

performance in terms of parsing time and recovery time will increase as the

microservice-based application scales up. MiSAR’s performance and

efficiency were evaluated through the time spent on the recovery as well as

scalability to larger systems. While the threat to performance is unavoidable,

the former threat is mitigated by user intervention in enhancing the output

model, as well as updates to MiSAR artefacts by extending the metamodel and

mapping rules to support the new technologies/implementation languages.

• T9. Replication of MiSAR: In principle, MiSAR recovery process is based on

rules that perform a direct mapping from source PSM model to target PIM

model. A generated model of other systems might introduce some limitations.

MiSAR’s effectiveness, precision and recall values will vary from one system

to another, although in train ticket evaluation the value of precision was higher

than recall. This means that MiSAR retrieves a great number of architectural

elements that are correct, but a few of them could be erroneous. In addition, a

small set of activities could not be retrieved. The main threat to MiSAR’s

validity is the implementation technology and implementation logic that are

not supported in the current repository of mapping rules and metamodels. This

indicates that MiSAR may be limited by the artefact terms, implementation

languages and technologies of the microservice applications that are currently

supported by MiSAR’s extendible repository. To mitigate this threat, the

MiSAR repository (PIM/PSM metamodels and mapping rules) is must

continuous updating with the new-found elements. In this sense, the recovery

process is said to be deterministic rather than stochastic. In the case of new

recovery cases, the precision results will not encounter major change while the

recall results of the process may drop if the specifications of the new

application are not supported yet by MiSAR artefacts (rules and metamodels).

306

10.6. Future Directions

As already discussed, the need to adequately understand existing software

architectures is evident. Software architecture recovery needs to be regarded as a

proactive approach, as it is always undertaken for prospective progression of the

system in question, and is the point of initiation for engineering activities. This

research is an initial step in the research field of software re-engineering, with the

focus on resolving the issues associated with the early stages of the software lifecycle,

including validation, specification, system knowledge, maintenance and impact

analysis. The MiSAR approach is still ongoing. The following points present certain

areas for future research that could broaden the work covered in this thesis:

• MiSAR tool: In order to decrease the requirement for manual support to

architecture recovery, a set of efficacious tools and tactics capable of

supporting the process needs to be developed. However, this is an extensive

question to answer in this field, and beyond the scope of this thesis. The

mapping rules automated through the QVT language and the metamodels were

developed with effective usage of Ecore. Thus, architectural recovery requires

tools for the purpose of integrating all MiSAR artefacts (metamodels, mapping

rules). A future intention is the utilising MiSAR tool in an industrial setting

and obtains feedback from practitioners in the usefulness of the architectural

models recovered and the user-friendliness of the tool. For example, that would

help to acknowledge challenges related to user-friendliness and/or

understandability of the MiSAR concepts to microservice practitioners.

• Enlarging the coverage of MiSAR: Currently, MiSAR architecture recovery

provides a specific solution for Java software and spring OSS framework. The

intention is to enhance MiSAR’s coverage of artefacts by considering different

frameworks and languages beyond Java. Along with this, the aim is to extend

MiSAR to support components which are positioned in deployment platforms

and the public cloud (e.g. Vagrant).

307

• A graphical modelling tool for MiSAR: Currently, the graphical process of

MISAR architectural models still encompasses mainly manual work, which

involves a repetitive process, and is labour intensive and time-consuming. A

future intention is to develop a graphical tool for the MiSAR graphical model

diagram that has a dedicated parser which takes the Ecore PIM as input and

performs both parsing and graphical model diagram generation tasks. The

former is in charge of extracting information from the PIM (in XML format),

while the latter generates the graphical diagram/documentation. A future

intention is to investigate more about the graphical notations that best fit to

properly represent the microservice architecture model.

• Microservice architectural inconsistency tool: The findings drawn from

architecture recovery are used prominently for identifying inconsistencies

between two aspects, microservice-based systems and architectural models. In

this respect, the study (Buckley et al., 2015) claimed that consistency checking

and combining architecture recovery are becoming a crucial approach to

identifying architecture erosion/drift. A future intention is to develop a tool

that allowing software engineers to recover and check inconsistency of

microservice-based systems and their planned architecture.

• Future studies should compare architecture recovery based on static analysis

and architecture recovery based on dynamic analysis.

• Future research should consider what the effect of architecture recovery is in

identifying microservice ‘bad smells’. A further extension would be to add

detection strategies to automatically detect microservice smells such as shared

persistence, hard-coded endpoints and cyclic dependency, in projects

developed with microservices.

308

 References

Abi-Antoun, M. and Aldrich, J. (2008), “A field study in static extraction of runtime

architectures”, ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering, ACM Press, New York, New York, USA, pp.

22–28.

Agrawal, A. and Aditya. (2003), “Metamodel based model transformation language

to facilitate domain specific model driven architecture”, Companion of the 18th

Annual ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications - OOPSLA ’03, ACM Press, New York,

New York, USA, p. 118.

Akehurst, D. and Kent, S. (2002), “A Relational Approach to Defining

Transformations in a Metamodel”, Springer, Berlin, Heidelberg, pp. 243–258.

Akkiraju, R., Mitra, T. and Thulasiram, U. (2012), “Reverse engineering platform

independent models from business software applications.”, In Reverse

Engineering-Recent Advances and Applications. InTech, p. 64.

Ali, N., Baker, S., O’Crowley, R., Herold, S. and Buckley, J. (2018), “Architecture

consistency: State of the practice, challenges and requirements”, Empirical

Software Engineering, Springer New York LLC, Vol. 23 No. 1, pp. 224–258.

Ali, N., Rosik, J. and Buckley, J. (2012), “Characterizing real-time reflexion-based

architecture recovery: an in-vivo multi-case study”, Proceedings of the 8th

International ACM SIGSOFT Conference on Quality of Software Architectures,

pp. 23–32.

Alpers, S., Becker, C., Oberweis, A. and Schuster, T. (2015), “Microservice based

tool support for business process modelling”, Proceedings of the 2015 IEEE

19th International Enterprise Distributed Object Computing Conference

Workshops and Demonstrations, EDOCW 2015, Institute of Electrical and

Electronics Engineers Inc., pp. 71–78.

Alshuqayran, N., Ali, N. and Evans, R. (2016), “A Systematic Mapping Study in

Microservice Architecture”, IEEE International Conference on Service-

Oriented Computing and Applications, not yet published.

Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M. and Steinder, M. (2016),

“Performance evaluation of microservices architectures using containers”,

Proceedings - 2015 IEEE 14th International Symposium on Network

Computing and Applications, NCA 2015, Institute of Electrical and Electronics

Engineers Inc., pp. 27–34.

Ameller, D., Burgués, X., Collell, O., Costal, D., Franch, X. and Papazoglou, M.P.

(2015), “Development of service-oriented architectures using model-driven

development: A mapping study”, Information and Software Technology,

Elsevier B.V., Vol. 62 No. 1, pp. 42–66.

AndroMDA.org. (2003), “AndroMDA Model Driven Architecture Framework”,

available at: https://www.andromda.org/ (accessed 25 April 2019).

Arnold, R.S. (1993), Software Reengineering, IEEE Computer Society Press.

Bak, P., Melamed, R., Moshkovich, D., Nardi, Y., Ship, H. and Yaeli, A. (2015),

“Location and Context-Based Microservices for Mobile and Internet of Things

Workloads”, Proceedings - 2015 IEEE 3rd International Conference on Mobile

Services, MS 2015, Institute of Electrical and Electronics Engineers Inc., pp. 1–

8.

Barendrecht, P.J. (2010), Modeling Transformations Using QVT Operational

309

Mappings, available at: http://redpanda.nl/BEP_P.J.Barendrecht.pdf (accessed

11 March 2019).

Bass, L., Clements, P. and Kazman, R. (2003), Software Architecture in Practice,

Vasa, Vol. 2nd, Addison-Wesley Professional, available

at:https://doi.org/10.1024/0301-1526.32.1.54.

El Beggar, O., Bousetta, B. and Gadi, T. (2013), “Comparative Study between

Clustering and Model Driven Reverse Engineering Approaches”, Lecture Notes

on Software Engineering, 1(2), p.135., Vol. 1 No. 2, pp. 135–140.

Benoit, C., Robert, F., Jean-Marc, J., Bernhard, R., James, S. and Didier, V. (2016),

Engineering Modeling Languages: Turning Domain Knowledge into Tools,

CRC Press.

Bex, G.J., Maneth, S. and Neven, F. (2002), “A formal model for an expressive

fragment of XSLT”, Information Systems, Vol. 27 No. 1, pp. 21–39.

Bézivin, J. (2005), “On the Unification Power of Models”, Software & Systems

Modeling, pp. 1–31.

Bezivin, J. and Gerbe, O. (2001), “Towards a precise definition of the OMG/MDA

framework”, Proceedings 16th Annual International Conference on Automated

Software Engineering (ASE 2001), pp. 273–280.

Bibi, M. and Maqbool, O. (2011), “Version information support for software

architecture recovery”, 2011 7th International Conference on Emerging

Technologies, pp. 1–6.

Biehl, M. (2010), “Literature study on model transformations”, Royal Institute of

Technology, Tech. Rep. ISRN/KTH/MMK, No. July, pp. 1–28.

Brambilla, M., Cabot, J. and Wimmer, M. (2017), Model-Driven Software

Engineering in Practice: Second Edition, Synthesis Lectures on Software

Engineering, Vol. 3, Morgan & Claypool Publishers LLC, available

at:https://doi.org/10.2200/s00751ed2v01y201701swe004.

Brereton, P., Kitchenham, B., Budgen, D. and Li, Z.H. (2008), “Using a Protocol

Template for Case Study Planning”, BCS Learning & Development, available

at:https://doi.org/10.14236/EWIC/EASE2008.5.

Brown, S. (2018), “The C4 model for visualising software architecture”, available at:

https://c4model.com/ (accessed 22 July 2020).

Brunelière, H., Cabot, J., Dupé, G. and Madiot, F. (2014), “MoDisco: A model

driven reverse engineering framework”, Information and Software Technology,

Vol. 56 No. 8, pp. 1012–1032.

Buckley, J., Ali, N., English, M., Rosik, J. and Herold, S. (2015), “Real-Time

Reflexion Modelling in architecture reconciliation: A multi case study”,

Information and Software Technology, Elsevier, Vol. 61, pp. 107–123.

Buckley, J., Mooney, S., Rosik, J. and Ali, N. (2013), “JITTAC: A Just-in-Time tool

for architectural consistency”, Proceedings - International Conference on

Software Engineering, pp. 1291–1294.

Budgen, D., Turner, M., Brereton, P. and Kitchenham, B. (2008), “Using Mapping

Studies in Software Engineering”, PPIG, Vol. 8 No. 2, pp. 195–204.

Burson, S., Kotik, G.B. and Markosian, L.Z. (1990), “A program transformation

approach to automating software re-engineering”, Computer Software and

Applications Conference, 1990. COMPSAC 90. Proceedings., Fourteenth

Annual International, pp. 314–322.

Cerny, T., Donahoo, M.J. and Trnka, M. (2018), “Contextual understanding of

microservice architecture”, ACM SIGAPP Applied Computing Review,

Association for Computing Machinery (ACM), Vol. 17 No. 4, pp. 29–45.

310

Chikofsky, E.J. and Cross, J.H. (1990), “Reverse engineering and design recovery: A

taxonomy. IEEE software”, No. January, pp. 13–17.

Ciuffoletti, A. (2015), “Automated Deployment of a Microservice-based Monitoring

Infrastructure”, Procedia Computer Science, Elsevier B.V., Vol. 68, pp. 163–

172.

Cosentino, V., Cabot, J., Albert, P., Bauquel, P. and Perronnet, J. (2012), “A model

driven reverse engineering framework for extracting business rules out of a java

application”, Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 7438

LNCS, pp. 17–31.

Czarnecki, K. and Helsen, S. (2003), “"Classification of model transformation

approaches”, Proceedings of the 2nd OOPSLA Workshop on Generative

Techniques in the Context of the Model Driven Architecture, Vol. 45, pp. 1–17.

Czarnecki, K. and Helsen, S. (2006), “Feature-based survey of model transformation

approaches”, IBM Systems Journal, IBM Corporation, Vol. 45 No. 3, pp. 621–

645.

Dave, S., Budinsky, F., Paternostro, M. and Merks, E. (2008), EMF: Eclipse

Modeling Framework, Addison-Wesley Professional., available at:

https://www.eclipse.org/modeling/emf/ (accessed 5 December 2019).

Daya, S., Duy, N. Van, Eati, K., Ferreira, C.M., Glozic, D., Gucer, V., Gupta, M., et

al. (2015), “Microservices from Theory to Practice: Creating Applications in

IBM Bluemix Using the Microservices Approach”, August.

van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L. and Riva, C. (2004),

“Symphony: view-driven software architecture reconstruction”, Proceedings.

Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA

2004), IEEE Comput. Soc, pp. 122–132.

Devanbu, P.T. (1992), “GENOA - A Customizable, Language- And Front-end

Independent Code Analyzer”, International Conference on Software

Engineering, pp. 307–317.

Ding, L. and Medvidovic, N. (2001), “Focus: A light-weight, incremental approach

to software architecture recovery and evolution”, Software Architecture, 2001.

Proceedings. Working IEEE/IFIP Conference On, pp. 191–200.

Dirckze, R. (2002), Java Metadata Interface (JMI) Specification, Java Community

Process.

Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R.

and Safina, L. (2017), “Microservices: Yesterday, today, and tomorrow”,

Present and Ulterior Software Engineering, pp. 195–216.

Ducasse, S. and Pollet, D. (2009), “Software architecture reconstruction: A process-

oriented taxonomy”, IEEE Transactions on Software Engineering, Vol. 35 No.

4, pp. 573–591.

Düllmann, T.F. and van Hoorn, A. (2017), “Model-driven Generation of

Microservice Architectures for Benchmarking Performance and Resilience

Engineering Approaches”, Proceedings of the 8th ACM/SPEC on International

Conference on Performance Engineering Companion - ICPE ’17 Companion,

ACM Press, New York, New York, USA, pp. 171–172.

Eberhard, W. (2016), Microservices: Flexible Software Architecture, 1st ed., Boston:

Addison-Wesley Professional.

Esposito, C., Castiglione, A. and Choo, K.K.R. (2016), “Challenges in Delivering

Software in the Cloud as Microservices”, IEEE Cloud Computing, Institute of

Electrical and Electronics Engineers Inc., Vol. 3 No. 5, pp. 10–14.

311

Fakeeh, R. and Alshuqayran, N. (2019), “Misar Parser”, available at:

https://github.com/RanaFakeeh-87/MisarParser (accessed 27 July 2020).

Falleri, J.-R., Huchard, M. and Nebut, C. (2006), Towards a Traceability Framework

for Model Transformations in Kermeta.

Feijs, L., Krikhaar, R. and Ommering, R. Van. (1998), “A relational approach to

support software architecture analysis”, Software: Practice and Experience,

John Wiley & Sons, Ltd, Vol. 28 No. 4, pp. 371–400.

Fernandez, A., Insfran, E. and Abrahão, S. (2011), “Usability evaluation methods for

the web: A systematic mapping study”, Information and Software Technology,

Elsevier B.V., Vol. 53 No. 8, pp. 789–817.

Finnigan, P.J., Holt, R.C., Kalas, I., Kerr, S., Kontogiannis, K., Muller, H.A.,

Mylopoulos, J., et al. (1997), “The software bookshelf”, IBM Systems Journal,

Vol. 36 No. 4, pp. 564–593.

Fleurey, F., Breton, E., Baudry, B., Nicolas, A. and Jézéquel, J.-M. (2007), “Model-

Driven Engineering for Software Migration in a Large Industrial Context”,

Lecture Notes in Computer Science, Vol. 4735, pp. 482–497.

Di Francesco, P., Malavolta, I. and Lago, P. (2017), “Research on Architecting

Microservices: Trends, Focus, and Potential for Industrial Adoption”,

Proceedings - 2017 IEEE International Conference on Software Architecture,

ICSA 2017, IEEE, pp. 21–30.

François, A., Richard, R. and John, H. (2015), “Migrating Healthcare Applications to

the Cloud through Containerization and Service Brokering”, In HEALTHINF

(Pp. 164-171).

Gadea, C., Trifan, M., Ionescu, D. and Ionescu, B. (2016), “A reference architecture

for real-time microservice API consumption”, 3rd Workshop on CrossCloud

Infrastructures and Platforms, CrossCloud 2016 - Colocated with EuroSys

2016, Association for Computing Machinery, Inc, New York, New York, USA,

pp. 1–6.

Gall, H., Jazayeri, M., Klösch, R., Lugmayr, W. and Trausmuth, G. (1996),

“Architecture recovery in ARES”, Joint Proceedings of the Second

International Software Architecture Workshop (ISAW-2) and International

Workshop on Multiple Perspectives in Software Development (Viewpoints’ 96)

on SIGSOFT’96 Workshops, pp. 111–115.

Garlan, D. (2000), “Software architecture: a roadmap”, Proceedings of the

Conference on the Future of Software Engineering, pp. 91–101.

Gaševic, D., Djuric, D. and Devedžic, V. (2009), “Model Driven Engineering”,

Model Driven Engineering and Ontology Development, Springer Berlin

Heidelberg, Berlin, Heidelberg, pp. 125–155.

Granchelli, G., Cardarelli, M., Francesco, P. Di, Malavolta, I., Iovino, L. and Salle,

A. Di. (2017), “Towards recovering the software architecture of microservice-

based systems”, Proceedings - 2017 IEEE International Conference on

Software Architecture Workshops, ICSAW 2017: Side Track Proceedings, No.

November, pp. 46–53.

Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L. and Di

Salle, A. (2017), “MicroART: A software architecture recovery tool for

maintaining microservice-based systems”, Proceedings - 2017 IEEE

International Conference on Software Architecture Workshops, ICSAW 2017:

Side Track Proceedings.

Gruman, G. and Morrison, A. (2014), “Microservices : The resurgence of SOA

principles and an alternative to the monolith”, PwC Technology Forecast, No.

312

1, pp. 1–8.

Guo, D., Wang, W., Zeng, G. and Wei, Z. (2016), “Microservices architecture based

cloudware deployment platform for service computing”, Proceedings - 2016

IEEE Symposium on Service-Oriented System Engineering, SOSE 2016,

Institute of Electrical and Electronics Engineers Inc., pp. 358–364.

Guo, G.Y., Atlee, J.M. and Kazman, R. (1999), “A Software Architecture

Reconstruction Method”, Springer, Boston, MA, pp. 15–33.

Hassan, S., Ali, N. and Bahsoon, R. (2017), “Microservice Ambients: An

Architectural Meta-Modelling Approach for Microservice Granularity”, 2017

IEEE International Conference on Software Architecture (ICSA), IEEE, pp. 1–

10.

Hassan, S. and Bahsoon, R. (2016), “Microservices and their design trade-offs: A

self-adaptive roadmap”, Proceedings - 2016 IEEE International Conference on

Services Computing, SCC 2016, Institute of Electrical and Electronics

Engineers Inc., pp. 813–818.

Hassan, S., Bahsoon, R. and Kazman, R. (2019), “Microservice Transition and its

Granularity Problem: A Systematic Mapping Study”, available at:

http://arxiv.org/abs/1903.11665 (accessed 15 April 2020).

Hevner, A.R. (2007), “A Three Cycle View of Design Science Research”,

Scandinavian Journal of Information Systems, Vol. 19 No. 2, pp. 87–92.

Hevner, March, Park and Ram. (2004), “Design Science in Information Systems

Research”, MIS Quarterly, Vol. 28 No. 1, p. 75.

Ibryam, B. (2016), “Spring Cloud for Microservices Compared to Kubernetes - RHD

Blog”, Redhat, available at:

https://developers.redhat.com/blog/2016/12/09/spring-cloud-for-microservices-

compared-to-kubernetes/ (accessed 12 February 2019).

Jambunathan, B. and Kalpana, Y. (2016), “Multi cloud deployment with containers”,

International Journal of Engineering and Technology, Vol. 8 No. 1, pp. 421–

428.

Jilani, A.A.A., Aftab, A., Jilani, A., Usman, M. and Halim, Z. (2010), “Model

Transformations in Model Driven Architecture”, Universal Journal of

Computer Science and Engineering Technology, Vol. 1 No. 1, pp. 50–54.

K. Petersen, R. Feldt, S.M. (2008), “Systematic mapping studies in software

engineering”, Proceedings of the 12th International Conference on Evaluation

and Assessment in Software Engineering, No. February 2015, pp. 1-10.

Kang, H., Le, M. and Tao, S. (2016), “Container and microservice driven design for

cloud infrastructure DevOps”, Proceedings - 2016 IEEE International

Conference on Cloud Engineering, IC2E 2016: Co-Located with the 1st IEEE

International Conference on Internet-of-Things Design and Implementation,

IoTDI 2016, Institute of Electrical and Electronics Engineers Inc., pp. 202–211.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H. and Carriere, J.

(1998), “The architecture tradeoff analysis method”, Proceedings. Fourth IEEE

International Conference on Engineering of Complex Computer Systems (Cat.

No.98EX193), IEEE Comput. Soc, pp. 68–78.

Kazman, R., O’Brien, L. and Verhoef, C. (2002), Architecture Reconstruction

Guidelines.

Kent, S. (2002), “Model Driven Engineering”, International Conference on

Integrated Formal Methods, pp. 286–298.

Killalea, T. (2016), “The hidden dividends of microservices”, Communications of the

ACM, Association for Computing Machinery, Vol. 59 No. 8, pp. 42–45.

313

Kitchenham, B. and Charters, S. (2007), Guidelines for Performing Systematic

Literature Reviews in Software Engineering, Technical Report, Vol. 2.

Kleehaus, M., Uludağ, Ö., Schäfer, P. and Matthes, F. (2018), “MICROLYZE: A

framework for recovering the software architecture in microservice-based

environments”, Lecture Notes in Business Information Processing, Vol. 317,

pp. 148–162.

Kleppe, A.G., Warmer, J.B. and Bast, W. (2003), MDA Explained : The Model

Driven Architecture : Practice and Promise, Addison-Wesley.

Knoche, H. (2016), “Sustaining runtime performance while incrementally

modernizing transactional monolithic software towards microservices”, ICPE

2016 - Proceedings of the 7th ACM/SPEC International Conference on

Performance Engineering, Association for Computing Machinery, Inc, New

York, New York, USA, pp. 121–124.

Koskimies, K., Systä, T., Tuomi, J. and Männistö, T. (1998), “Automated support for

modeling OO software”, IEEE Software, Vol. 15 No. 1, pp. 87–94.

Kreger, H. and Estefan, J. (2009), Navigating the SOA Open Standards Landscape

Around Architecture, available at: www.opengroup.org (accessed 23 April

2020).

Krikhaar, R.L. (1997), “Reverse architecting approach for complex systems”,

Proceedings International Conference on Software Maintenance, pp. 4–11.

Krylovskiy, A., Jahn, M. and Patti, E. (2015), “Designing a Smart City Internet of

Things Platform with Microservice Architecture”, Proceedings - 2015

International Conference on Future Internet of Things and Cloud, FiCloud

2015 and 2015 International Conference on Open and Big Data, OBD 2015,

Institute of Electrical and Electronics Engineers Inc., pp. 25–30.

Le, V.D., Neff, M.M., Stewart, R. V., Kelley, R., Fritzinger, E., Dascalu, S.M. and

Harris, F.C. (2015), “Microservice-based architecture for the NRDC”,

Proceeding - 2015 IEEE International Conference on Industrial Informatics,

INDIN 2015, Institute of Electrical and Electronics Engineers Inc., pp. 1659–

1664.

Lewis, J. and Fowler, M. (2014), “Microservices”, available at:

http://martinfowler.com/articles/microservices.html (accessed 10 August 2016).

Liu, D., Zhu, H., Xu, C., Bayley, I., Lightfoot, D., Green, M. and Marshall, P.

(2016), “CIDE: An Integrated Development Environment for Microservices”,

2016 IEEE International Conference on Services Computing (SCC), IEEE, pp.

808–812.

LONG, J. (2016), “This Year in Spring - 2016 edition”, available at:

https://spring.io/blog/2016/12/28/this-year-in-spring-2016-edition (accessed 12

February 2019).

Mackenzie, C.M., Mccabe, F., Brown, P.F., Net, P., Metz, R. and Hamilton, A.

(2006), Reference Model for Service Oriented Architecture 1.0, available at:

http://docs.oasis-open.org/soa-rm/v1.0/ (accessed 23 April 2020).

Malavalli, D. and Sathappan, S. (2015), “Scalable microservice based architecture

for enabling DMTF profiles”, Proceedings of the 11th International Conference

on Network and Service Management, CNSM 2015, Institute of Electrical and

Electronics Engineers Inc., pp. 428–432.

Maqbool, O. and Babri, H. (2007a), “Hierarchical clustering for software

architecture recovery”, IEEE Transactions on Software Engineering, IEEE,

Vol. 33 No. 11, pp. 759–780.

Maqbool, O. and Babri, H.A. (2007b), “Bayesian Learning for Software Architecture

314

Recovery”, 2007 International Conference on Electrical Engineering, pp. 1–6.

Marru, S., Pamidighantam, S., Pierce, M. and Wimalasena, C. (2015), “Apache

airavata as a laboratory: Architecture and case study for component-based

gateway middleware”, SCREAM 2015 - Proceedings of the 2015 Workshop on

the Science of Cyberinfrastructure: Research, Experience, Applications and

Models, Part of HPDC 2015, Association for Computing Machinery, Inc, New

York, New York, USA, pp. 19–26.

Mayer, B. and Weinreich, R. (2018), “An Approach to Extract the Architecture of

Microservice-Based Software Systems”, Proceedings - 12th IEEE International

Symposium on Service-Oriented System Engineering, SOSE 2018 and 9th

International Workshop on Joint Cloud Computing, JCC 2018, Institute of

Electrical and Electronics Engineers Inc., pp. 21–30.

Meinke, K. and Nycander, P. (2015), “Learning-based testing of distributed

microservice architectures: Correctness and fault injection”, In SEFM 2015

Collocated Workshops, Vol. 9509, Springer Verlag, pp. 3–10.

Mendonça, N.C. and Kramer, J. (1996), “Requirements for an effective architecture

recovery framework”, Joint Proceedings of the Second International Software

Architecture Workshop (ISAW-2) and International Workshop on Multiple

Perspectives in Software Development, pp. 101–105.

Mendonça, N.C. and Kramer, J. (2001), “An approach for recovering distributed

system architectures”, Automated Software Engineering, Springer, Vol. 8 No.

3–4, pp. 311–354.

Mens, T. and Van Gorp, P. (2006), “A taxonomy of model transformation”,

Electronic Notes in Theoretical Computer Science, Vol. 152 No. 1–2, pp. 125–

142.

Mens, T., Magee, J. and Rumpe, B. (2010), “Evolving Software Architecture

Descriptions of Critical Systems Distributed software engineering View project

SECO-ASSIST View project”, available

at:https://doi.org/10.1109/MC.2010.136.

Miller, J., Mukerji, J. and Belaunde France, M. (2003), MDA Guide Version 1.0.1,

available at:

https://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-

2_MDA_Guide_v1.0.1.pdf (accessed 29 January 2019).

Mitchell, B.S. and Mancoridis, S. (2006), “On the automatic modularization of

software systems using the bunch tool”, IEEE Transactions on Software

Engineering, Vol. 32 No. 3, pp. 193–208.

Müller, H.A., Tilley, S.R. and Wong, K. (1993), “Understanding Software Systems

Using Reverse Engineering Technology Perspectives from the Rigi Project”,

Proceedings of the 1993 Conference of the Centre for Advanced Studies on

Collaborative Research: Software Engineering - Volume 1, pp. 217–226.

Murphy, G.C., Notkin, D. and Sullivan, K. (1995), “Software reflexion models”,

ACM SIGSOFT Software Engineering Notes, Vol. 20 No. 4, pp. 18–28.

Murphy, G.C., Notkin, D. and Sullivan, K.J. (2001), “Software reflexion models:

Bridging the gap between design and implementation”, IEEE Transactions on

Software Engineering, Vol. 27 No. 4, pp. 364–380.

Myers, M.D. (1997), “Qualitative research in information systems”, Management

Information Systems Quarterly, Vol. 21 No. June, pp. 1–18.

Namiot, D. and Sneps-sneppe, M. (2014), “On Micro-services Architecture”, Vol. 2

No. 9, pp. 24–27.

Newman, S. (2015), Building Microservices: Designing Fine Grained System,

315

O’Reilly Media, Inc.

Newman, S. (2019), Monolith to Microservices: Evolutionary Patterns to Transform

Your Monolith.

Nicolaescu, P., Toubekis, G. and Klamma, R. (2015), “A microservice approach for

near real-time collaborative 3D objects annotation on the web”, In International

Conference on Web-Based Learning, Vol. 9412, Springer Verlag, pp. 187–196.

Nycander, P. (2015), “Learning-Based Testing of Microservices: An Exploratory

Case Study Using LBTest”, available at: http://www.diva-

portal.org/smash/record.jsf?pid=diva2:847215.

O’Brien, L., Smith, D. and Lewis, G. (2005), “Supporting Migration to Services

using Software Architecture Reconstruction”, 13th IEEE International

Workshop on Software Technology and Engineering Practice (STEP’05), IEEE,

pp. 81–91.

OMG. (2014), MDA Guide Rev.2.0, available at: http://www.omg.org/cgi-

bin/doc?ormsc/14-06-01.

OMG. (2016), “MOF Query/View/Transformation”, available at:

https://www.omg.org/spec/QVT/About-QVT/ (accessed 16 January 2020).

Pahl, C. and Jamshidi, P. (2015), “Microservices : a Systematic Mapping Study”,

No. January, available at:https://doi.org/10.5220/0005785501370146.

Pahl, C., Jamshidi, P. and Zimmermann, O. (2018), “Architectural Principles for

Cloud Software”, ACM Transactions on Internet Technology, ACM, Vol. 18

No. 2, pp. 1–23.

Paige, R. (2006), “The Meta-Object Facility (MOF)”, available at:

https://slideplayer.com/slide/5922445/ (accessed 4 March 2019).

Pashov, I. and Riebisch, M. (2004), “Using feature modeling for program

comprehension and software architecture recovery”, Proceedings - 11th IEEE

International Conference and Workshop on the Engineering of Computer-

Based Systems, ECBS 2004, pp. 406–417.

Patanjali, S., Truninger, B., Harsh, P. and Bohnert, T.M. (2015), “CYCLOPS: A

micro service based approach for dynamic rating, charging & billing for cloud”,

Proceedings of the 13th International Conference on Telecommunications,

ConTEL 2015, Institute of Electrical and Electronics Engineers Inc., available

at:https://doi.org/10.1109/ConTEL.2015.7231226.

Pérez-Castillo, R., Fernández-Ropero, M., Guzmán, I.G.R. De and Piattini, M.

(2011), “MARBLE. A business process archeology tool”, IEEE International

Conference on Software Maintenance, ICSM, pp. 578–581.

Pérez-Castillo, R., De Guzmán, I.G.R. and Piattini, M. (2011), “Business process

archeology using MARBLE”, Information and Software Technology, Vol. 53

No. 10, pp. 1023–1044.

Pires, L.., Hammoudi, S. and Selic, B. eds. (2018), Model-Driven Engineering and

Software Development: 5th International ., MODELSWARD 2017, Porto,

Portugal, February 19-21, 2017, Revised Selected Papers (Vol. 880). Springer.

Popma, R. (2004), “Introduction to JET”, available at:

https://www.eclipse.org/articles/Article-JET/jet_tutorial1.html (accessed 25

April 2019).

Quilici, A. and Chin, D.N. (1995), “DECODE: a cooperative environment for

reverse-engineering legacy software”, Proceedings of 2nd Working Conference

on Reverse Engineering, pp. 156–165.

Rademacher, F., Sachweh, S. and Zundorf, A. (2017), “Differences between model-

driven development of service-oriented and microservice architecture”,

316

Proceedings - 2017 IEEE International Conference on Software Architecture

Workshops, ICSAW 2017: Side Track Proceedings, pp. 38–45.

Rademacher, F., Sachweh, S. and Zundorf, A. (2019), “Aspect-oriented modeling of

technology heterogeneity in microservice architecture”, Proceedings - 2019

IEEE International Conference on Software Architecture, ICSA 2019, Institute

of Electrical and Electronics Engineers Inc., pp. 21–30.

Rademacher, F., Sorgalla, J., Sachweh, S. and Zundorf, A. (2019), “Viewpoint-

specific model-driven microservice development with interlinked modeling

languages”, Proceedings - 13th IEEE International Conference on Service-

Oriented System Engineering, SOSE 2019, 10th International Workshop on

Joint Cloud Computing, JCC 2019 and 2019 IEEE International Workshop on

Cloud Computing in Robotic Systems, CCRS 2019, Institute of Electrical and

Electronics Engineers Inc., pp. 57–66.

Rademacher, F., Sorgalla, J., Sachweh, S. and Zündorf, A. (2018), “Towards a

Viewpoint-specific Metamodel for Model-driven Development of Microservice

Architecture”, ArXiv Preprint ArXiv:1804.09948., available at:

http://arxiv.org/abs/1804.09948 (accessed 1 November 2019).

Rahman, M. and Gao, J. (2015a), “A Reusable Automated Acceptance Testing

Architecture for Microservices in Behavior-Driven Development”, 2015 IEEE

Symposium on Service-Oriented System Engineering, pp. 321–325.

Rahman, M. and Gao, J. (2015b), “A Reusable Automated Acceptance Testing

Architecture for Microservices in Behavior-Driven Development”, Service-

Oriented System Engineering (SOSE), 2015 IEEE Symposium On, pp. 321–325.

Raibulet, C., Arcelli Fontana, F. and Zanoni, M. (2017), “Model-driven reverse

engineering approaches: A systematic literature review”, IEEE Access, Institute

of Electrical and Electronics Engineers Inc., 29 July.

Richards, M. (2015), Microservices vs. Service-Oriented Architecture, edited by Nan

Barber, R.R., First Edition., O’Reilly Media, available at:

http://174.129.160.22/WilliamDengTechRef/Microservices_vs_SOA_NGINX.p

df (accessed 29 January 2019).

Richardson, C. (2018), “Microservice Architecture pattern”, available at:

https://microservices.io/patterns/microservices.html (accessed 12 February

2019).

Riva, C. (2000), “Reverse architecting: an industrial experience report”, Proceedings

Seventh Working Conference on Reverse Engineering, pp. 42–50.

Rory, O., Peter, E. and Paul, M.C. (2016), “Exploring the Impact of Situational

Context — A Case Study of a Software Development Process for a

Microservices Architecture - IEEE Conference Publication”, IEEE/ACM

International Conference on Software and System Processes (ICSSP).

Di Ruscio, D., Eramo, R. and Pierantonio, A. (2012), “Model Transformations”, In

International School on Formal Methods for the Design of Computer,

Communication and Software Systems (Pp. 91-136). Springer, Berlin,

Heidelberg.

Safina, L., Mazzara, M., Montesi, F. and Rivera, V. (2016), “Data-Driven

Workflows for Microservices: Genericity in Jolie”, 2016 IEEE 30th

International Conference on Advanced Information Networking and

Applications (AINA), IEEE, pp. 430–437.

Sartipi, K. (2003), “Software architecture recovery based on pattern matching”,

Software Maintenance, 2003. ICSM 2003. Proceedings. International

Conference On, pp. 293–296.

317

Sartipi, K., Lingdong, Y. and Safyallah, H. (2006), “Alborz: An interactive toolkit to

extract static and dynamic views of a software system”, IEEE International

Conference on Program Comprehension, Vol. 2006, pp. 256–259.

Savchenko, D. and Radchenko, G. (2015), “Microservices validation: Methodology

and implementation”, CEUR Workshop Proceedings, Vol. 1513, pp. 21–28.

Savchenko, D.I., Radchenko, G.I. and Taipale, O. (2015a), “Microservices

validation: Mjolnirr platform case study”, 2015 38th International Convention

on Information and Communication Technology, Electronics and

Microelectronics, MIPRO 2015 - Proceedings, pp. 235–240.

Savchenko, D.I., Radchenko, G.I. and Taipale, O. (2015b), “Microservices

validation: Mjolnirr platform case study”, Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 2015 38th

International Convention On, pp. 235–240.

Schmidt, D.C. (2006), Model-Driven Engineering, IEEE Computer, Vol. 39,

available at:

http://www.computer.org/portal/site/computer/menuitem.e533b16739f5...

(accessed 11 March 2019).

Schwanke, R.W. (1991), “An intelligent tool for re-engineering software

modularity”, Software Engineering, 1991. Proceedings., 13th International

Conference On, pp. 83–92.

Selic, B. (2003), “The pragmatics of model-driven development”, IEEE Software,

Vol. 20 No. 5, pp. 19–25.

Sorgalla, J., Rademacher, F., Sachweh, S. and Zündorf, A. (2018), “On collaborative

model-driven development of microservices”, In Federation of International

Conferences on Software Technologies: Applications and Foundations , Vol.

11176 LNCS, Springer Verlag, pp. 596–603.

SourceForge. (2003), “JAMDA Java Model Driven Architecture”, available at:

https://sourceforge.net/projects/jamda/ (accessed 25 April 2019).

Steinberg, D., Budinsky, F., Merks, E. and Paternostro, M. (2008), EMF: Eclipse

Modeling Framework, Person Education, 2008.

Stubbs, J., Moreira, W. and Dooley, R. (2015), “Distributed Systems of

Microservices Using Docker and Serfnode”, Proceedings - 7th International

Workshop on Science Gateways, IWSG 2015, Institute of Electrical and

Electronics Engineers Inc., pp. 34–39.

Systä, T. (2000), Static and Dynamic Reverse Engineering Techniques for Java

Software Systems, available at: http://acta.uta.fi (accessed 6 May 2020).

Thones, J. (2015), “Microservices”, IEEE Software, Vol. 32 No. 1, pp. 116–116.

Tip, F. (1995), “A Survey of Program Slicing Techniques”, Journal of Programming

Languages, Vol. 5399 No. 3, pp. 1–65.

Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F. and Edmonds, A. (2015), “An

architecture for self-managing microservices”, Proceedings: AIMC 2015 -

Automated Incident Management in Cloud, 1st International Workshop, in

Conjunction with EuroSYS 2015, Association for Computing Machinery, Inc,

New York, New York, USA, pp. 19–24.

Vaughan-Nichols, S. (2017), “What is Docker and why is it so darn popular? |

ZDNet”, ZDNet, available at: https://www.zdnet.com/article/what-is-docker-

and-why-is-it-so-darn-popular/ (accessed 12 February 2019).

Vianden, M., Lichter, H. and Steffens, A. (2014), “Experience on a Microservice-

based reference architecture for measurement systems”, Proceedings - Asia-

Pacific Software Engineering Conference, APSEC, Vol. 1, IEEE Computer

318

Society, pp. 183–190.

Viennot, N., Lécuyer, M., Bell, J., Geambasu, R. and Nieh, J. (2015), “Synapse: A

microservices architecture for heterogeneous-database web applications”,

Proceedings of the 10th European Conference on Computer Systems, EuroSys

2015, Association for Computing Machinery, Inc, New York, New York, USA,

pp. 1–16.

Vijayendra, M. (2019), “Microservices Sample”, available at:

https://github.com/microservices-sample (accessed 5 September 2019).

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R. and

Gil, S. (2015), “Evaluating the monolithic and the microservice architecture

pattern to deploy web applications in the cloud”, Computing Colombian

Conference (10CCC), 2015 10th, pp. 583–590.

Westheide, D. (2016), “Why RESTful communication between microservices can be

perfectly fine – INNOQ”, available at: https://www.innoq.com/en/blog/why-

restful-communication-between-microservices-can-be-perfectly-fine/ (accessed

28 January 2020).

Wieringa, R., Maiden, N., Mead, N. and Rolland, C. (2006), “Requirements

engineering paper classification and evaluation criteria: A proposal and a

discussion”, Requirements Engineering, Vol. 11 No. 1, pp. 102–107.

Wong, K. (1998), “Rigi user’s manual”, Department of Computer Science,

University of Victoria, available at:

http://www.rigi.cs.uvic.ca/downloads/pdf/rigi-5_4_4-manual.pdf.

Woods, D. (2015), “Building Microservices with Spring Boot”, InfoQ, available at:

https://www.infoq.com/articles/boot-microservices (accessed 12 February

2019).

Woods, E. (2016), “Software Architecture in a Changing World”, IEEE Software,

IEEE Computer Society, Vol. 33 No. 6, pp. 94–97.

Yuqiong, S., Susanta, N. and Trent, J. (2015), “Security-as-a-Service for

Microservices-Based Cloud Applications ”, 2015 IEEE 7th International

Conference on Cloud Computing Technology and Science (CloudCom),

available at: https://ieeexplore.ieee.org/abstract/document/7396137 (accessed

31 March 2020).

Zeiner, H., Goller, M., Expósito Jiménez, V.J., Salmhofer, F. and Haas, W. (2016),

“SeCoS: Web of Things platform based on a microservices architecture and

support of time-awareness”, Elektrotechnik Und Informationstechnik, Springer-

Verlag Wien, Vol. 133 No. 3, pp. 158–162.

Zhou, X., Peng, X., Xie, T., Sun, J., Xu, C., Ji, C. and Zhao, W. (2018),

“Benchmarking microservice systems for software engineering research”,

Proceedings of the 40th International Conference on Software Engineering

Companion Proceeedings - ICSE ’18, pp. 323–324.

319

 Appendices

Appendix-A: 1- Recovery Design Phase: Source artefacts collected.

Docker Compose Files

Filename URL

docker-compose.dev.yml https://github.com/sqshq/PiggyMetrics

docker-compose.yml https://github.com/sqshq/PiggyMetrics

docker-compose.yml 34 https://github.com/sqshq/ELK-docker/blob/master/docker-

compose.yml

List of Service Projects
account-service config gateway auth-service kibana elasticsearch rabbitmq

statistics-service registry monitoring turbine-stream service notification-service logstash

System Project Build Files

Filename URL
pom.xml https://github.com/sqshq/PiggyMetrics

Service Project Build Files

Service Project

Name

Filename URL

account-service pom.xml https://github.com/sqshq/PiggyMetrics/tree/master/account-service

auth-service pom.xml https://github.com/sqshq/PiggyMetrics/tree/master/auth-service

config pom.xml https://github.com/sqshq/PiggyMetrics/tree/master/config

gateway pom.xml https://github.com/sqshq/PiggyMetrics/tree/master/gateway

monitoring pom.xml https://github.com/sqshq/PiggyMetrics/tree/master/monitoring

notification-service pom.xml https://github.com/sqshq/PiggyMetrics/tree/master/notification-service

registry pom.xml https://github.com/sqshq/PiggyMetrics/tree/master/registry

statistics-service pom.xml https://github.com/sqshq/PiggyMetrics/tree/master/statistics-service

turbine-stream-

service
pom.xml https://github.com/sqshq/PiggyMetrics/tree/master/turbine-stream-service

Count of Configuration Files for Service Project35

Service Name Count URL and Location
account-service 3 Local

https://github.com/sqshq/PiggyMetrics/blob/master/account-

service/src/main/resources/bootstrap.yml

Remote

https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resourc

es/shared/application.yml

https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resourc

es/shared/account-service.yml

config 2 Local

https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resourc

es/application.yml

Remote

https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resourc

es/shared/application.yml

34 For log analysis microservices.
35 For account-service and config microservices.

https://github.com/sqshq/PiggyMetrics
https://github.com/sqshq/PiggyMetrics
https://github.com/sqshq/ELK-docker/blob/master/docker-compose.yml
https://github.com/sqshq/ELK-docker/blob/master/docker-compose.yml
https://github.com/sqshq/PiggyMetrics
https://github.com/sqshq/PiggyMetrics/tree/master/account-service
https://github.com/sqshq/PiggyMetrics/tree/master/auth-service
https://github.com/sqshq/PiggyMetrics/tree/master/config
https://github.com/sqshq/PiggyMetrics/tree/master/gateway
https://github.com/sqshq/PiggyMetrics/tree/master/monitoring
https://github.com/sqshq/PiggyMetrics/tree/master/notification-service
https://github.com/sqshq/PiggyMetrics/tree/master/registry
https://github.com/sqshq/PiggyMetrics/tree/master/statistics-service
https://github.com/sqshq/PiggyMetrics/tree/master/turbine-stream-service
https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/resources/bootstrap.yml
https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/resources/bootstrap.yml
https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/shared/application.yml
https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/shared/application.yml
https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/shared/account-service.yml
https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/shared/account-service.yml
https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/application.yml
https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/application.yml
https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/shared/application.yml
https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/shared/application.yml

320

Count of Service Java Source Files

Service Project Name Java Source File Count
account-service 24

auth-service 9

config 2

gateway 1

monitoring 1

notification-service 17

registry 1

statistics-service 23

turbine-stream-service 1

Architecture Diagram

321

Analysis

Type

Extracted

Source File

 Extracted Information

Type of

Extraction

(Manual/Tool)

S
ta

ti
c

A
n

a
ly

si
s

Docker file ❖ Commands: For example, command EXPOSE 6000 as in Docker file36 indicates

the exposed port number at which the service’s container account-service is

running.

 Manual

Docker compose file ❖ Service definition keys: For example, keys rabbitmq, config, statistics-service,

account-service, notification-service, auth-service, gateway, auth-mongodb,

account-mongodb, statistics-mongodb, notification-mongodb, monitoring and

registry keys in docker-compose.yml indicate services deployed to Docker

containers.

❖ Configuration keys and their options: For example, the configuration key ports

under service definition rabbitmq indicates the exposed port number at which the

service’s container is running, while the key depends on under service definition

registry indicates its dependencies, i.e. which services should be running first.

 Manual

Java source code ❖ Imported libraries and classes: For example, importing the package

‘org.springframework.data’ indicates that this service implements some sort of

data storage, as in line 5 and 6 of Account.java.37

Manual

GitHub-

metadat

a

36 https://github.com/sqshq/PiggyMetrics/blob/master/account-service/Dockerfile.
37 https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/domain/Account.java.

Appendix-A: 2- Recovery Design Phase: Extracted information from both static and dynamic analysis.

https://github.com/sqshq/PiggyMetrics/blob/master/docker-compose.yml
https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/domain/Account.java

322

❖ Java annotations (class-level, method-level, field-level): For example, the

POJO class, e.g. Account.java, annotated with @Document indicates that a this

class is mapped to a Mongo NoSQL data store document named ‘Account’ while

the field level annotation @Id, at line 17 of Account.java, identifies the primary

key for this document, e.g. the field name.

❖ Java annotations’ parameters: For example, the path parameter of

@RequestMapping in a controller class, e.g. AccountController.java,38 indicates

the URL of the REST endpoint exposed by the service while the method

parameter indicates the HTTP method type of the exposed request, e.g. GET as

in line 20 of AccountController.java.

❖ Java user-defined types’ super types: For example, defining a class that extends

AuthorizationServerConfigurerAdapter indicates that this service is an OAuth2

security server, as in OAuth2AuthorizationConfig.java.39

❖ Java field types: For example, fields of type OAuth2RestOperations and/or

OAuth2RestTemplate as in line 40 and 119, respectively, of

CustomUserInfoTokenServices.java40 indicate that this service has a client

component of authorisation pattern.

Enterpri

se

architect

ure tool,

visual

paradig

m tool

38 https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/controller/AccountController.java.
39 https://github.com/sqshq/PiggyMetrics/blob/master/auth-service/src/main/java/com/piggymetrics/auth/config/OAuth2AuthorizationConfig.java.
40 https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/service/

security/CustomUserInfoTokenServices.java.

https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/domain/Account.java
https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/domain/Account.java
https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/controller/AccountController.java
https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/controller/AccountController.java
https://github.com/sqshq/PiggyMetrics/blob/master/auth-service/src/main/java/com/piggymetrics/auth/config/OAuth2AuthorizationConfig.java
https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/service/security/CustomUserInfoTokenServices.java

323

❖ Java methods (definition, invocation): For example, an invocation to the method

RestTemplate::getForEntity() as in line 129 of

CustomUserInfoTokenServices.java indicates that this service is a client that will

request data from a remote service.

Maven build file

(system level)

❖ Project-XML-element: Forexample, <artifactId>piggymetrics</artifactId> of

<project> element at line 6 of pom.xml41 indicates the name of the architecture is

piggymetrics.

❖ Module XML element: For example, the value of <module> elements at lines

37-45 of pom.xml indicate the name of microservices composing the architecture.

Manual

Maven build file

(service level)

❖ Project XML element: For example, <artifactId> account-service </artifactId>

of <project> element at line 6 of pom.xml42 indicates the name of the

microservice is account-service.

❖ Dependency XML element: For example, <artifactId>spring-cloud-starter-

netflix-eureka-client</artifactId>of<dependency> element at line 41 of pom.xml

indicates that this service uses client components of service registry and

discovery pattern.

Manual

41 https://github.com/sqshq/PiggyMetrics/blob/master/pom.xml.
42 https://github.com/sqshq/PiggyMetrics/blob/master/account-service/pom.xml.

https://github.com/sqshq/PiggyMetrics/blob/master/account-service/src/main/java/com/piggymetrics/account/service/security/CustomUserInfoTokenServices.java
https://github.com/sqshq/PiggyMetrics/blob/master/pom.xml
https://github.com/sqshq/PiggyMetrics/blob/master/pom.xml
https://github.com/sqshq/PiggyMetrics/blob/master/account-service/pom.xml
https://github.com/sqshq/PiggyMetrics/blob/master/account-service/pom.xml

324

Spring Boot

configurations file

(service level)

❖ Configuration properties: For example, property “feign:hystrix:enabled: true”

at lines 24-26 of account-service.yml43 indicates that this service uses the client

component of monitoring pattern.

Manual

D
y
n

a
m

ic
 A

n
a
ly

si
s

Traces ❖ Traces provide us information about how microservices are communicating with

another, a sequence of various calls between different microservices. Traces

provide us information about a single message call from an external system or UI

to a microservice which in turn calls other microservices. I was able to construct

service call graphs that describe runtime sequence and dependencies between

different interconnected microservices.

Zipkin tool

Logs ❖ Logs provide us information about how the system is behaving and if there are

any errors or exceptions that occurred while system operated.

Docker logs

command

Containers ❖ Image name, IP addresses.

Docker inspect

command

Network trace/logs ❖ Confirmation of the connectivity between various microservices. This

information is redundant to traces which provide similar but higher-level

information. The difference between Zipkin traces and network logs is that Zipkin

traces are designed specifically for microservice communication whereas

Tcpdump

43 https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/shared/account-service.yml.

https://github.com/sqshq/PiggyMetrics/blob/master/config/src/main/resources/shared/account-service.yml

325

network traces provide low-level TCP connection and communication

information.

Appendix-A: 3- A Summary of microservice systems used in Recovery Extraction phase

Ref. System Name Microservices Technologies Used
Corresponding Architecture

Element from Technology

[1] piggymetrics

• account-service

• statistics-service

• notification-service

• auth-service

• config

• registry

• gateway

• auth-mongodb

• account-mongodb

• statistics-mongodb

• notification-mongodb

• monitoring

• rabbitmq

Docker Containerization

Spring Boot / Cloud Development Framework

Netflix Zuul API Gateway

Spring Cloud Config Configuration

Netflix Eureka Registry and Discovery

Netflix Ribbon Load Balancing

Netflix Feign Microservice Discovery Client

Spring Cloud Security with OAuth2 Security

Netflix Hystrix Circuit Breaker

Netflix Hystrix Dashboard with Turbine Monitoring

Elasticsearch, Logstash and Kibana (ELK) Log Analysis

MongoDB Data Store

RabbitMQ Message Broker Asynchronous Communication

[2] microservice-blog
• employee

• reward

Docker Containerization

Spring Boot / Cloud Development Framework

Tutom / HAProxy Load Balancing

326

• mission

• mongodb

• ha_employee

• ha_mission

• ha_reward

MongoDB Data Store

[3] spmia-chapter10

• authenticationservice

• configserver

• eurekaserver

• licensingservice

• organizationservice

• zuulserver

• kafkaserver

Docker Containerization

Spring Boot / Cloud Development Framework

Spring Cloud Config Configuration

Netflix Zuul API Gateway

Netflix Eureka Registry and Discovery

Netflix Ribbon Load Balancing

Netflix Feign Microservice Discovery Client

Spring Cloud Security with OAuth2 Security

Netflix Hystrix Circuit Breaker

Spring Sleuth with Zipkin Tracing

MongoDB Data Store

Redis Cache Store

Kafka Message Broker Asynchronous Communication

[4] microservice-consul

• customer

• catalog

• order

• consul

• apache

• hystrix-dashboard

• zipkin

• prometheus

• filebeat

• elasticsearch

• kibana

Docker Containerization

Spring Boot / Cloud Development Framework

Apache HTTP API Gateway

Consul Discovery Registry and Discovery

Netflix Ribbon Load Balancing

Netflix Hystrix Circuit Breaker

Spring Sleuth with Zipkin Tracing

Netflix Hystrix Dashboard with

Prometheus
Monitoring

Elasticsearch, Filebeat and Kibana (ELK) Log Analysis

HSQLDB Data Store

[5]
spring-cloud-consul-

example

• service-a

• service-b

• consul

• zuul

• admin-dashboard

• hystrix-dashboard

• zipkin

Docker Containerization

Spring Boot / Cloud Development Framework

Consul Config Configuration

Netflix Zuul API Gateway

Consul Discovery Registry and Discovery

Netflix Ribbon Load Balancing

Netflix Feign Microservice Discovery Client

Netflix Hystrix Circuit Breaker

327

Netflix Hystrix Dashboard with Turbine Monitoring

Spring Sleuth with Zipkin Tracing

RabbitMQ Message Broker Asynchronous Communication

[6]
spring-cloud-netflix-

example

• service-a

• service-b

• config-server

• eureka-server

• zuul

• admin-dashboard

• hystrix-dashboard

• zipkin

• rabbitmq

Docker Containerization

Spring Boot / Cloud Development Framework

Netflix Zuul API Gateway

Spring Cloud Config Configuration

Netflix Eureka Registry and Discovery

Netflix Ribbon Load Balancing

Netflix Feign Microservice Discovery Client

Netflix Hystrix Dashboard with Turbine Monitoring

Spring Sleuth with Zipkin Tracing

RabbitMQ Message Broker Asynchronous Communication

[7]
microservices-sidecar-

example

• simple1

• simple2

• railsdemo

• eureka

• zuul

Docker Containerization

Spring Boot / Cloud Development Framework

Netflix Zuul API Gateway

Netflix Eureka Registry and Discovery

Netflix Ribbon Load Balancing

Netflix Sidecar Non-JVM API Gateway

[8] blog-microservices

• discovery

• config

• auth-server

• product-service

• recommendation-service

• review-service

• composite-service

• monitor-dashboard

• edge-server

• zipkin-server

• rabbitmq

• logstash

• elasticsearch

• kibana

Docker Containerization

Spring Boot / Cloud Development Framework

Netflix Zuul API Gateway

Spring Cloud Config Configuration

Netflix Eureka Registry and Discovery

Netflix Ribbon Load Balancing

Netflix Feign Microservice Discovery Client

Netflix Hystrix Dashboard with Turbine Monitoring

Spring Sleuth with Zipkin Tracing

RabbitMQ Message Broker Asynchronous Communication

328

Appendix-A: 4- Mapping Rules (104 in total) extracted from case study 1 (PiggyMetrics)

ID Artefact Type (PSM) PIM Concept (Source) PIM Concept

(Destination)

Mapping Rule (PSM -> PIM)

1 GitHub Repository Microservice Architecture - The name of Microservice Architecture concept is indicated by the

name of the root GitHub Repository which contains all artifacts of the

application's project.

2 Build File Microservice Architecture - The name of Microservice Architecture concept is indicated by the

value of <project><artifactId> key in the Build File of the application's

project.

3 Build File Microservice Architecture - The name of Microservice Architecture concept is indicated by the

value of <project><parent><artifactId> key in the Build File of the

microservice's project.

4 Build File Microservice Architecture Microservice The name of Microservice concept is indicated by the value of

<project><modules><module> key in the Build File of the application's

project.

5 Build File Microservice Architecture Microservice The name of Microservice concept is indicated by the value of

<project><artifactId> key in the Build File of the microservice's

project.

6 Build File Microservice Container The name of Container concept is indicated by the value of

<project><modules><module> key in the Build File of the application's

project.

7 Build File Microservice Container The name of Container concept is indicated by the value of

<project><artifactId> key in the Build File of the microservice's

project.

8 Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-zuul' in the Build File of the microservice's

project.

9 Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-eureka-server' in the Build File of the

microservice's project.

10 Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-eureka-client' in the Build File of the

microservice's project.

329

11 Build File Microservice Service Interface The server path of Service Interface concept is indicated by the value of

<project><modules><module> key in the Build File of the application's

project.

12 Build File Microservice Service Interface The server path of Service Interface concept is indicated by the value of

<project><artifactId> key in the Build File of the microservice's

project.

13 Build File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId> key

with value 'spring-boot-starter-data-mongodb' in the Build File of the

microservice's project.

14 Build File Microservice Service Dependency A 'Netflix Turbine' Monitoring provider to a Microservice is indicated

by a <project><dependencies><dependency><artifactId> key with

value 'spring-cloud-starter-netflix-hystrix-dashboard' in the Build File

of the microservice's project.

15 Build File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId> key

with value 'spring-cloud-starter-config' in the Build File of the

microservice's project.

16 Build File Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId> key

with value 'spring-cloud-starter-netflix-eureka-client' in the Build File

of the microservice's project.

17 Build File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId> key

with value 'spring-cloud-starter-stream-rabbit' or 'spring-cloud-starter-

bus-amqp' in the Build File of the microservice's project.

18 Build File API Gateway - An API Gateway concept with technology of 'Netflix Zuul' is indicated

by a <project><dependencies><dependency><artifactId> key with

value 'spring-cloud-starter-netflix-zuul' in the Build File of the

microservice's project.

19 Build File Configuration - A 'Spring Cloud Config' Configuration concept is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-config-server' in the Build File of the microservice's

project.

20 Build File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix Eureka'

is indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-netflix-eureka-server' in the Build

File of the microservice's project.

330

21 Build File Registry and Discovery Service Dependency A Microservice provider to a 'Netflix Eureka' Registry and Discovery is

indicated by a <project><dependencies><dependency><artifactId> key

with value 'spring-cloud-starter-netflix-eureka-client' in the Build File

of the microservice's project.

22 Build File Monitoring - A 'Netflix Hystrix Dashboard' Monitoring is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-hystrix-dashboard' in the Build File of the

microservice's project.

23 Build File Monitoring - A 'Netflix Turbine' Monitoring is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-turbine-stream' in the Build File of the

microservice's project.

24 Build File Monitoring Service Dependency A 'Netflix Turbine' Monitoring provider to a 'Netflix Hystrix

Dashboard' Monitoring is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-turbine-stream' in the Build File of the

microservice's project.

25 Build File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-hystrix' or 'spring-cloud-netflix-hystrix-

stream' in the Build File of the microservice's project.

26 Build File Tracing Service Dependency A Microservice provider to a 'Zipkin' Tracing is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-sleuth' in the Build File of the microservice's

project.

27 Configurations File Microservice Architecture Microservice The name of Microservice concept is indicated by the value of the

property 'spring.application.name:' in the Configurations File of the

microservice's project.

28 Configurations File Microservice Container The name of Container conceptis indicated by the value of the property

'spring.application.name:' in the Configurations File of the

microservice's project.

29 Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by the

property 'eureka.client.serviceUrl.defaultZone:' in the Configurations

File of the microservice's project.

30 Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by the

property name that starts with 'zuul.routes.' and ends with '.serviceId:' in

the Configurations File of the microservice's project.

331

31 Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by the

property 'ribbon.ReadTimeout:' or 'ribbon.ConnectTimeout:' with

nonzero values in the Configurations File of the microservice's project.

32 Configurations File Microservice Service Interface The server path of Service Interface concept is indicated by the value of

the property 'spring.application.name:' in the Configurations File of the

microservice's project.

33 Configurations File Microservice Service Interface A prefix to server path of Service Interface concept is indicated by the

value of property 'server.servlet.contextPath:' in the Configurations File

of the microservice's project.

34 Configurations File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a Microservice is

indicated by the value of property 'spring.data.mongodb.host:' in the

Configurations File of the microservice's project.

35 Configurations File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by the hostname section of the url value of the property

'spring.cloud.config.uri:' or 'spring.cloud.config.failFast: true' in the

Configurations File of the microservice's project.

36 Configurations File Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to a Microservice is

indicated by the hostname section of the url value of the property

'eureka.client.serviceUrl.defaultZone:' in the Configurations File of the

microservice's project.

37 Configurations File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by the hostname section of the url value of the property

'security.oauth2.resource.userInfoUri:' or

'security.oauth2.client.accessTokenUri:' in the Configurations File of

the microservice's project.

38 Configurations File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a Microservice is

indicated by the value of the property 'spring.rabbitmq.host:' in the

Configurations File of the microservice's project.

39 Configurations File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the value of

the property 'spring.mail.host:' in the Configurations File of the

microservice's project.

40 Configurations File API Gateway Service Dependency A Microservice provider to a 'Netflix Zuul' API Gateway is indicated

by the hostname section of the url value of the property that starts with

'zuul.routes.' and ends with '.url:' in the Configurations File of the

microservice's project.

41 Configurations File API Gateway Service Dependency A Microservice provider to a 'Netflix Zuul' API Gateway is indicated

by the value of the property that starts with 'zuul.routes.' and ends with

'.serviceId:' in the Configurations File of the microservice's project.

332

42 Configurations File API Gateway - An API Gateway concept with technology of 'Netflix Zuul' is indicated

by the property name that starts with 'zuul.routes.' in the Configurations

File of the microservice's project.

43 Configurations File Configuration - A 'Spring Cloud Config' Configuration concept is indicated by the

property 'spring.cloud.config.server.native.searchLocations:' and the

property 'profiles.active:' with value 'native' in the Configurations File

of the microservice's project.

44 Configurations File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix Eureka'

is indicated by the two properties 'eureka.client.registerWithEureka:

false' and 'eureka.client.fetchRegistry: false' in the Configurations File

of the microservice's project.

45 Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by the

two properties 'eureka.client.registerWithEureka: false' and

'eureka.client.fetchRegistry: false' in the Configurations File of the

microservice's project.

46 Configurations File Registry and Discovery Service Dependency A Microservice provider to a 'Netflix Eureka' Registry and Discovery is

indicated by the property 'eureka.client.serviceUrl.defaultZone:' in the

Configurations File of the microservice's project.

47 Configurations File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by the non-zero property

'hystrix.command.default.execution.isolation.thread.timeoutInMilliseco

nds:' or the property 'feign.hystrix.enabled: true' in the Configurations

File of the microservice's project.

48 Configurations File Log Analysis Service Dependency A Microservice provider to a Log Analysis is indicated by the property

name that starts with 'logging.level.' in the Configurations File of the

microservice's project.

49 Configurations File Service Interface Endpoint An Endpoint to Service Interface is indicated by the value of the

property that starts with 'zuul.routes.' and ends with '.path:' in the

Configurations File of the microservice's project.

50 Configurations File Service Operation Circuit Breaker A 'Netflix Hystrix' Circuit Breaker to Service Operation is indicated by

the non-zero property

'hystrix.command.default.execution.isolation.thread.timeoutInMilliseco

nds:' or the property 'feign.hystrix.enabled: true' in the Configurations

File of the microservice's project.

51 Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by the

property 'eureka.server.waitTimeInMsWhenSyncEmpty:' in the

Configurations File of the microservice's project.

333

52 Configurations File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix Eureka'

is indicated by the property

'eureka.server.waitTimeInMsWhenSyncEmpty:' in the Configurations

File of the microservice's project.

53 Source Code File Microservice Architecture Microservice The name of Microservice concept is indicated by last section of

package name of a Java Class with '@SpringBootApplication'

annotation in the Source Code File of the microservice's project.

54 Source Code File Microservice Architecture Microservice The name of Microservice concept is indicated by last section of

package name of a Java Class with Java Method with identifier of

'main' that invockes another Java Method with identifier of

'SpringApplication.run' in the Source Code File of the microservice's

project.

55 Source Code File Microservice Container The name of Container conceptis indicated by last section of package

name of a Java Class with '@SpringBootApplication' annotation in the

Source Code File of the microservice's project.

56 Source Code File Microservice Container The name of Container concept is indicated by last section of package

name of a Java Class with Java Method with identifier of 'main' that

invockes another Java Method with identifier of 'SpringApplication.run'

in the Source Code File of the microservice's project.

57 Source Code File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

Java Class with '@EnableZuulProxy' annotation in the Source Code

File of the microservice's project.

58 Source Code File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

Java Class with '@EnableEurekaServer' annotation in the Source Code

File of the microservice's project.

59 Source Code File Microservice Service Interface The server path of Service Interface concept is indicated by last section

of package name of a Java Class with '@SpringBootApplication'

annotation in the Source Code File of the microservice's project.

60 Source Code File Microservice Service Interface The server path of Service Interface concept is indicated by last section

of package name of a Java Class with Java Method with identifier of

'main' that invockes another Java Method with identifier of

'SpringApplication.run' in the Source Code File of the microservice's

project.

61 Source Code File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by a Java Class with '@EnableResourceServer' or

'EnableOAuth2Client' annotation in the Source Code File of the

microservice's project.

334

62 Source Code File Microservice Service Dependency A Registry and Discovery provider to a Microservice is indicated by a

Java Class with '@EnableDiscoveryClient' annotation in the Source

Code File of the microservice's project.

63 Source Code File Microservice Service Dependency A 'Netflix Turbine' Monitoring provider to a Microservice is indicated

by a Java Class with '@EnableHystrixDashboard' annotation in the

Source Code File of the microservice's project.

64 Source Code File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a Microservice is

indicated by a Java Method 'save()' or 'findById()' or any Java Method

that starts with 'find' of a Java Interface that extends 'CrudRepository'

Java Interface of package 'org.springframework.data.repository' in the

Source Code File of the microservice's project.

65 Source Code File Microservice Service Dependency A ' MongoDB' Infrastructure Microservice provider to a Microservice is

indicated by a Java Interface that extends 'CrudRepository' Java

Interface of package 'org.springframework.data.repository' in the

Source Code File of the microservice's project.

66 Source Code File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a Microservice is

indicated by a Java Class with '@Document' annotation in the Source

Code File of the microservice's project.

67 Source Code File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by a Java Class that implements

'ResourceServerTokenServices' Java Interface of package

'org.springframework.security.oauth2.provider.token' in the Source

Code File of the microservice's project.

68 Source Code File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by a Java Class that extends

'ResourceServerConfigurerAdapter' Java Class of package

'org.springframework.security.oauth2.provider.token' in the Source

Code File of the microservice's project.

69 Source Code File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the URL in

the first argument of a Java Method 'getForEntity()' of a Java Interface

'OAuth2RestOperations' of package

'org.springframework.security.oauth2.config.annotation.web.configurati

on' in the Source Code File of the microservice's project.

70 Source Code File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by a Java Method 'getForEntity()' of a Java Interface

'OAuth2RestOperations' of package

'org.springframework.security.oauth2.client' in the Source Code File of

the microservice's project.

335

71 Source Code File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by a Java Method with '@ConfigurationProperties' or

'@Value' annotation in the Source Code File of the microservice's

project.

72 Source Code File Microservice Service Dependency A Microservice provider name to a Microservice is indicated by the

value of 'name' parameter of '@FeignClient' Java Interface annotation

in the Source Code File of the microservice's project.

73 Source Code File Microservice Service Dependency A Microservice provider operation to a Microservice is indicated by a

Java Method with '@RequestMapping' annotation that belongs to a Java

Interface with '@FeignClient' annotation in the Source Code File of the

microservice's project.

74 Source Code File API Gateway - A 'Netflix Zuul' API Gateway is indicated by a Java Class with

'@EnableZuulProxy' annotation in the Source Code File of the

microservice's project.

75 Source Code File Configuration - A 'Spring Cloud Config' Configuration concept is indicated by a Java

Class with '@EnableConfigServer' annotation in the Source Code File

of the microservice's project.

76 Source Code File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix Eureka'

is indicated by a Java Class with '@EnableEurekaServer' annotation in

the Source Code File of the microservice's project.

77 Source Code File Registry and Discovery Service Dependency A Microservice provider to a Registry and Discovery is indicated by a

Java Class with '@EnableDiscoveryClient' annotation in the Source

Code File of the microservice's project.

78 Source Code File Security - A 'Spring Cloud OAuth2' Security is indicated by a Java Class with

'@EnableAuthorizationServer' annotation in the Source Code File of

the microservice's project.

79 Source Code File Security - A 'Spring Cloud OAuth2' Security is indicated by a Java Class that

extends a Java Class 'AuthorizationServerConfigurerAdapter' of

package

'org.springframework.security.oauth2.config.annotation.web.configurati

on' and overrides a Java Method 'configure()' in the Source Code File of

the microservice's project.

80 Source Code File Monitoring - A 'Netflix Hystrix Dashboard' Monitoring is indicated by a Java Class

with '@EnableHystrixDashboard' annotation in the Source Code File of

the microservice's project.

81 Source Code File Monitoring - A 'Netflix Turbine' Monitoring is indicated by a Java Class with

'@EnableTurbineStream' annotation in the Source Code File of the

microservice's project.

336

82 Source Code File Monitoring Service Dependency A 'Netflix Turbine' Monitoring provider to a 'Netflix Hystrix

Dashboard' Monitoring is indicated by a Java Class with

'@EnableTurbineStream' annotation in the Source Code File of the

microservice's project.

83 Source Code File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by a Java Class with

'@EnableCircuitBreaker' annotation in the Source Code File of the

microservice's project.

84 Source Code File Log Analysis Service Dependency A Microservice provider to a Log Analysis is indicated by a Java

Method 'info()' or 'debug()' or 'error()' of a Java Class 'Logger' of

package 'org.slf4j' or a Java Class 'Log' of package

'org.apache.commons.logging' in the Source Code File of the

microservice's project.

85 Source Code File Service Interface Endpoint A prefix to path of Endpoint concept is indicated by the value of

'@RequestMapping' Java Class annotation in the Source Code File of

the microservice's project.

86 Source Code File Service Interface Endpoint The path of Endpoint concept is indicated by the value of 'method'

parameter and 'value' or 'path' parameter in '@RequestMapping' Java

Method annotation that belongs to a Java Class with '@RestController'

annotation in the Source Code File of the microservice's project.

87 Source Code File Service Interface Service Operation A Service Operation concept is indicated by a Java Method with

'@RequestMapping' or '@ResponseStatus' annotation that belongs to a

Java Class with '@RestController' or '@ControllerAdvice' annotation

respectively in the Source Code File of the microservice's project.

88 Source Code File Service Interface Service Operation A Service Operation concept is indicated by a Java Method with

'@Scheduled' annotation in the Source Code File of the microservice's

project.

89 Source Code File Service Operation Data Store A Data Store to a Service Operation is indicated by a Java Method

'save()' or 'findById()' or any Java Method that starts with 'find' of a

Java Interface that extends 'CrudRepository' Java Interface of package

'org.springframework.data.repository' in the Source Code File of the

microservice's project.

90 Source Code File Service Operation Circuit Breaker A Circuit Breaker to a Service Operation is indicated by a Java Method

with '@RequestMapping' annotation that belongs to a Java Interface

with '@FeignClient' annotation in the Source Code File of the

microservice's project.

337

91 Source Code File Microservice Service Dependency A 'Consul' Configuration provider to a Microservice is indicated by a

Java Class with '@RefreshScope' annotation in the Source Code File of

the microservice's project.

92 Container Build File Microservice Architecture Microservice The name of Microservice concept is indicated by the JAR application

name argument of 'ADD' command in the Container Build File of the

microservice's project.

93 Container Build File Microservice Container The name of Container concept is indicated by the JAR application

name argument of 'ADD' command in the Container Build File of the

microservice's project.

94 Container Build File Microservice Service Interface The server path of Service Interface concept is indicated by the JAR

application name argument of 'ADD' command in the Container Build

File of the microservice's project.

95 Container Build File Infrastructure Microservice - A 'MongoDB Data Store' Infrastructure Microservice concept is

indicated by a 'FROM' command with argument value that starts with

'mongo:' in the Container Build File of the microservice's project.

96 Container Build File Log Analysis - A Log Analysis concept is indicated by a 'FROM' command with

argument value that starts with 'logstash:' in the Container Build File of

the microservice's project.

97 Container Orchestration File Microservice Architecture Microservice The name of Microservice concept is indicated by the key name of

service container definition in the Container Orchestration File of the

application's project.

98 Container Orchestration File Microservice Container The name of Container concept is indicated by the key name of service

container definition in the Container Orchestration File of the

application's project.

99 Container Orchestration File Microservice Service Interface The server path of Service Interface concept is indicated by the key

name of service container definition in the Container Orchestration File

of the application's project.

100 Container Orchestration File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the service

container name of 'depends_on' or 'links' key in the Container

Orchestration File of the application's project.

101 Container Orchestration File Infrastructure Microservice - An Infrastructure Microservice concept is indicated by a service

container definition that does not have 'build' key in the Container

Orchestration File of the application's project.

102 Container Orchestration File Infrastructure Microservice - A 'RabbitMQ' Infrastructure Microservice concept is indicated by an

'image:' key with value that starts wth 'rabbitmq:' in the Container

Orchestration File of the application's project.

338

103 Container Orchestration File Log Analysis - A Log Analysis concept is indicated by an 'image:' key with value that

starts wth 'elasticsearch:' or 'kibana:' in the Container Orchestration File

of the application's project.

104 Container Orchestration File Log Analysis Service Dependency A Microservice provider to a Log Analysis is indicated by the key name

of service container definition that has 'logging' or 'log_opt' key in the

Container Orchestration File of the application's project.

Appendix-A: 5- Refined mapping Rules (268 in total) extracted from case studies 1 to 8

ID CS

44

Artefact Type (PSM) PIM Concept (Source) PIM Concept (Destination) Mapping Rule (PSM -> PIM)

1 [1] GitHub Repository Microservice

Architecture

- The name of Microservice Architecture concept is indicated by the

name of the root GitHub Repository which contains all artifacts of

the application's project.

2 [1] Build File Microservice

Architecture

- The name of Microservice Architecture concept is indicated by the

value of <project><artifactId> key in the Build File of the

application's project.

3 [1] Build File Microservice

Architecture

- The name of Microservice Architecture concept is indicated by the

value of <project><parent><artifactId> key in the Build File of the

microservice's project.

4 [1] Build File Microservice

Architecture

Microservice The name of Microservice concept is indicated by the value of

<project><modules><module> key in the Build File of the

application's project.

5 [1] Build File Microservice

Architecture

Microservice The name of Microservice concept is indicated by the value of

<project><artifactId> key in the Build File of the microservice's

project.

6 [1] Build File Microservice Container The name of Container concept is indicated by the value of

<project><modules><module> key in the Build File of the

application's project.

44 Case study.

339

7 [1] Build File Microservice Container The name of Container concept is indicated by the value of

<project><artifactId> key in the Build File of the microservice's

project.

8 [1] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-zuul' in the Build File of the

microservice's project.

9 [1] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-eureka-server' in the Build File of the

microservice's project.

10 [1] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-eureka-client' in the Build File of the

microservice's project.

11 [1] Build File Microservice Service Interface The server path of Service Interface concept is indicated by the

value of <project><modules><module> key in the Build File of the

application's project.

12 [1] Build File Microservice Service Interface The server path of Service Interface concept is indicated by the

value of <project><artifactId> key in the Build File of the

microservice's project.

13 [1] Build File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a

Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-boot-starter-data-mongodb' in the Build File of the

microservice's project.

14 [1] Build File Microservice Service Dependency A 'Netflix Turbine' Monitoring provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-netflix-hystrix-dashboard' in the

Build File of the microservice's project.

15 [1] Build File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-config' in the Build File of the

microservice's project.

16 [1] Build File Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to a

Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

340

'spring-cloud-starter-netflix-eureka-client' in the Build File of the

microservice's project.

17 [1] Build File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a

Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-stream-rabbit' or 'spring-cloud-starter-bus-

amqp' in the Build File of the microservice's project.

18 [1] Build File API Gateway - An API Gateway concept with technology of 'Netflix Zuul' is

indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-netflix-zuul' in the Build File of

the microservice's project.

19 [1] Build File Configuration - A 'Spring Cloud Config' Configuration concept is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-config-server' in the Build File of the microservice's

project.

20 [1] Build File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix

Eureka' is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-eureka-server' in the Build File of the

microservice's project.

21 [1] Build File Registry and Discovery Service Dependency A Microservice provider to a 'Netflix Eureka' Registry and

Discovery is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-eureka-client' in the Build File of the

microservice's project.

22 [1] Build File Monitoring - A 'Netflix Hystrix Dashboard' Monitoring is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-hystrix-dashboard' in the Build File of

the microservice's project.

23 [1] Build File Monitoring - A 'Netflix Turbine' Monitoring is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-turbine-stream' in the Build File of the

microservice's project.

24 [1] Build File Monitoring Service Dependency A 'Netflix Turbine' Monitoring provider to a 'Netflix Hystrix

Dashboard' Monitoring is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-turbine-stream' in the Build File of the

microservice's project.

341

25 [1] Build File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-hystrix' or 'spring-cloud-netflix-hystrix-

stream' in the Build File of the microservice's project.

26 [1] Build File Tracing Service Dependency A Microservice provider to a 'Zipkin' Tracing is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-sleuth' in the Build File of the microservice's

project.

27 [1] Configurations File Microservice

Architecture

Microservice The name of Microservice concept is indicated by the value of the

property 'spring.application.name:' in the Configurations File of the

microservice's project.

28 [1] Configurations File Microservice Container The name of Container conceptis indicated by the value of the

property 'spring.application.name:' in the Configurations File of the

microservice's project.

29 [1] Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by

the property 'eureka.client.serviceUrl.defaultZone:' in the

Configurations File of the microservice's project.

30 [1] Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by

the property name that starts with 'zuul.routes.' and ends with

'.serviceId:' in the Configurations File of the microservice's project.

31 [1] Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by

the property 'ribbon.ReadTimeout:' or 'ribbon.ConnectTimeout:'

with nonzero values in the Configurations File of the microservice's

project.

32 [1] Configurations File Microservice Service Interface The server path of Service Interface concept is indicated by the

value of the property 'spring.application.name:' in the

Configurations File of the microservice's project.

33 [1] Configurations File Microservice Service Interface A prefix to server path of Service Interface concept is indicated by

the value of property 'server.servlet.contextPath:' in the

Configurations File of the microservice's project.

34 [1] Configurations File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a

Microservice is indicated by the value of property

'spring.data.mongodb.host:' in the Configurations File of the

microservice's project.

35 [1] Configurations File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by the hostname section of the url value of the property

342

'spring.cloud.config.uri:' or 'spring.cloud.config.failFast: true' in the

Configurations File of the microservice's project.

36 [1] Configurations File Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to a

Microservice is indicated by the hostname section of the url value of

the property 'eureka.client.serviceUrl.defaultZone:' in the

Configurations File of the microservice's project.

37 [1] Configurations File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by the hostname section of the url value of the property

'security.oauth2.resource.userInfoUri:' or

'security.oauth2.client.accessTokenUri:' in the Configurations File

of the microservice's project.

38 [1] Configurations File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a

Microservice is indicated by the value of the property

'spring.rabbitmq.host:' in the Configurations File of the

microservice's project.

39 [1] Configurations File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the value

of the property 'spring.mail.host:' in the Configurations File of the

microservice's project.

40 [1] Configurations File API Gateway Service Dependency A Microservice provider to a 'Netflix Zuul' API Gateway is

indicated by the hostname section of the url value of the property

that starts with 'zuul.routes.' and ends with '.url:' in the

Configurations File of the microservice's project.

41 [1] Configurations File API Gateway Service Dependency A Microservice provider to a 'Netflix Zuul' API Gateway is

indicated by the value of the property that starts with 'zuul.routes.'

and ends with '.serviceId:' in the Configurations File of the

microservice's project.

42 [1] Configurations File API Gateway - An API Gateway concept with technology of 'Netflix Zuul' is

indicated by the property name that starts with 'zuul.routes.' in the

Configurations File of the microservice's project.

43 [1] Configurations File Configuration - A 'Spring Cloud Config' Configuration concept is indicated by the

property 'spring.cloud.config.server.native.searchLocations:' and the

property 'profiles.active:' with value 'native' in the Configurations

File of the microservice's project.

44 [1] Configurations File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix

Eureka' is indicated by the two properties

'eureka.client.registerWithEureka: false' and

'eureka.client.fetchRegistry: false' in the Configurations File of the

microservice's project.

343

45 [1] Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by

the two properties 'eureka.client.registerWithEureka: false' and

'eureka.client.fetchRegistry: false' in the Configurations File of the

microservice's project.

46 [1] Configurations File Registry and Discovery Service Dependency A Microservice provider to a 'Netflix Eureka' Registry and

Discovery is indicated by the property

'eureka.client.serviceUrl.defaultZone:' in the Configurations File of

the microservice's project.

47 [1] Configurations File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by the non-zero property

'hystrix.command.default.execution.isolation.thread.timeoutInMillis

econds:' or the property 'feign.hystrix.enabled: true' in the

Configurations File of the microservice's project.

48 [1] Configurations File Log Analysis Service Dependency A Microservice provider to a Log Analysis is indicated by the

property name that starts with 'logging.level.' in the Configurations

File of the microservice's project.

49 [1] Configurations File Service Interface Endpoint An Endpoint to Service Interface is indicated by the value of the

property that starts with 'zuul.routes.' and ends with '.path:' in the

Configurations File of the microservice's project.

50 [1] Configurations File Service Operation Circuit Breaker A 'Netflix Hystrix' Circuit Breaker to Service Operation is indicated

by the non-zero property

'hystrix.command.default.execution.isolation.thread.timeoutInMillis

econds:' or the property 'feign.hystrix.enabled: true' in the

Configurations File of the microservice's project.

51 [1] Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by

the property 'eureka.server.waitTimeInMsWhenSyncEmpty:' in the

Configurations File of the microservice's project.

52 [1] Configurations File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix

Eureka' is indicated by the property

'eureka.server.waitTimeInMsWhenSyncEmpty:' in the

Configurations File of the microservice's project.

53 [1] Source Code File Microservice

Architecture

Microservice The name of Microservice concept is indicated by last section of

package name of a Java Class with '@SpringBootApplication'

annotation in the Source Code File of the microservice's project.

54 [1] Source Code File Microservice

Architecture

Microservice The name of Microservice concept is indicated by last section of

package name of a Java Class with Java Method with identifier of

'main' that invockes another Java Method with identifier of

344

'SpringApplication.run' in the Source Code File of the microservice's

project.

55 [1] Source Code File Microservice Container The name of Container conceptis indicated by last section of

package name of a Java Class with '@SpringBootApplication'

annotation in the Source Code File of the microservice's project.

56 [1] Source Code File Microservice Container The name of Container concept is indicated by last section of

package name of a Java Class with Java Method with identifier of

'main' that invockes another Java Method with identifier of

'SpringApplication.run' in the Source Code File of the microservice's

project.

57 [1] Source Code File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

Java Class with '@EnableZuulProxy' annotation in the Source Code

File of the microservice's project.

58 [1] Source Code File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

Java Class with '@EnableEurekaServer' annotation in the Source

Code File of the microservice's project.

59 [1] Source Code File Microservice Service Interface The server path of Service Interface concept is indicated by last

section of package name of a Java Class with

'@SpringBootApplication' annotation in the Source Code File of the

microservice's project.

60 [1] Source Code File Microservice Service Interface The server path of Service Interface concept is indicated by last

section of package name of a Java Class with Java Method with

identifier of 'main' that invockes another Java Method with identifier

of 'SpringApplication.run' in the Source Code File of the

microservice's project.

61 [1] Source Code File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by a Java Class with '@EnableResourceServer' or

'EnableOAuth2Client' annotation in the Source Code File of the

microservice's project.

62 [1] Source Code File Microservice Service Dependency A Registry and Discovery provider to a Microservice is indicated by

a Java Class with '@EnableDiscoveryClient' annotation in the

Source Code File of the microservice's project.

63 [1] Source Code File Microservice Service Dependency A 'Netflix Turbine' Monitoring provider to a Microservice is

indicated by a Java Class with '@EnableHystrixDashboard'

annotation in the Source Code File of the microservice's project.

64 [1] Source Code File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a

Microservice is indicated by a Java Method 'save()' or 'findById()' or

any Java Method that starts with 'find' of a Java Interface that

345

extends 'CrudRepository' Java Interface of package

'org.springframework.data.repository' in the Source Code File of the

microservice's project.

65 [1] Source Code File Microservice Service Dependency A ' MongoDB' Infrastructure Microservice provider to a

Microservice is indicated by a Java Interface that extends

'CrudRepository' Java Interface of package

'org.springframework.data.repository' in the Source Code File of the

microservice's project.

66 [1] Source Code File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a

Microservice is indicated by a Java Class with '@Document'

annotation in the Source Code File of the microservice's project.

67 [1] Source Code File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by a Java Class that implements

'ResourceServerTokenServices' Java Interface of package

'org.springframework.security.oauth2.provider.token' in the Source

Code File of the microservice's project.

68 [1] Source Code File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by a Java Class that extends

'ResourceServerConfigurerAdapter' Java Class of package

'org.springframework.security.oauth2.provider.token' in the Source

Code File of the microservice's project.

69 [1] Source Code File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the URL

in the first argument of a Java Method 'getForEntity()' of a Java

Interface 'OAuth2RestOperations' of package

'org.springframework.security.oauth2.config.annotation.web.configu

ration' in the Source Code File of the microservice's project.

70 [1] Source Code File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by a Java Method 'getForEntity()' of a Java Interface

'OAuth2RestOperations' of package

'org.springframework.security.oauth2.client' in the Source Code File

of the microservice's project.

71 [1] Source Code File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by a Java Method with '@ConfigurationProperties' or

'@Value' annotation in the Source Code File of the microservice's

project.

72 [1] Source Code File Microservice Service Dependency A Microservice provider name to a Microservice is indicated by the

value of 'name' parameter of '@FeignClient' Java Interface

annotation in the Source Code File of the microservice's project.

346

73 [1] Source Code File Microservice Service Dependency A Microservice provider operation to a Microservice is indicated by

a Java Method with '@RequestMapping' annotation that belongs to a

Java Interface with '@FeignClient' annotation in the Source Code

File of the microservice's project.

74 [1] Source Code File API Gateway - A 'Netflix Zuul' API Gateway is indicated by a Java Class with

'@EnableZuulProxy' annotation in the Source Code File of the

microservice's project.

75 [1] Source Code File Configuration - A 'Spring Cloud Config' Configuration concept is indicated by a

Java Class with '@EnableConfigServer' annotation in the Source

Code File of the microservice's project.

76 [1] Source Code File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix

Eureka' is indicated by a Java Class with '@EnableEurekaServer'

annotation in the Source Code File of the microservice's project.

77 [1] Source Code File Registry and Discovery Service Dependency A Microservice provider to a Registry and Discovery is indicated by

a Java Class with '@EnableDiscoveryClient' annotation in the

Source Code File of the microservice's project.

78 [1] Source Code File Security - A 'Spring Cloud OAuth2' Security is indicated by a Java Class with

'@EnableAuthorizationServer' annotation in the Source Code File of

the microservice's project.

79 [1] Source Code File Security - A 'Spring Cloud OAuth2' Security is indicated by a Java Class that

extends a Java Class 'AuthorizationServerConfigurerAdapter' of

package

'org.springframework.security.oauth2.config.annotation.web.configu

ration' and overrides a Java Method 'configure()' in the Source Code

File of the microservice's project.

80 [1] Source Code File Monitoring - A 'Netflix Hystrix Dashboard' Monitoring is indicated by a Java

Class with '@EnableHystrixDashboard' annotation in the Source

Code File of the microservice's project.

81 [1] Source Code File Monitoring - A 'Netflix Turbine' Monitoring is indicated by a Java Class with

'@EnableTurbineStream' annotation in the Source Code File of the

microservice's project.

82 [1] Source Code File Monitoring Service Dependency A 'Netflix Turbine' Monitoring provider to a 'Netflix Hystrix

Dashboard' Monitoring is indicated by a Java Class with

'@EnableTurbineStream' annotation in the Source Code File of the

microservice's project.

83 [1] Source Code File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by a Java Class with

347

'@EnableCircuitBreaker' annotation in the Source Code File of the

microservice's project.

84 [1] Source Code File Log Analysis Service Dependency A Microservice provider to a Log Analysis is indicated by a Java

Method 'info()' or 'debug()' or 'error()' of a Java Class 'Logger' of

package 'org.slf4j' or a Java Class 'Log' of package

'org.apache.commons.logging' in the Source Code File of the

microservice's project.

85 [1] Source Code File Service Interface Endpoint A prefix to path of Endpoint concept is indicated by the value of

'@RequestMapping' Java Class annotation in the Source Code File

of the microservice's project.

86 [1] Source Code File Service Interface Endpoint The path of Endpoint concept is indicated by the value of 'method'

parameter and 'value' or 'path' parameter in '@RequestMapping' Java

Method annotation that belongs to a Java Class with

'@RestController' annotation in the Source Code File of the

microservice's project.

87 [1] Source Code File Service Interface Service Operation A Service Operation concept is indicated by a Java Method with

'@RequestMapping' or '@ResponseStatus' annotation that belongs

to a Java Class with '@RestController' or '@ControllerAdvice'

annotation respectively in the Source Code File of the microservice's

project.

88 [1] Source Code File Service Interface Service Operation A Service Operation concept is indicated by a Java Method with

'@Scheduled' annotation in the Source Code File of the

microservice's project.

89 [1] Source Code File Service Operation Data Store A Data Store to a Service Operation is indicated by a Java Method

'save()' or 'findById()' or any Java Method that starts with 'find' of a

Java Interface that extends 'CrudRepository' Java Interface of

package 'org.springframework.data.repository' in the Source Code

File of the microservice's project.

90 [1] Source Code File Service Operation Circuit Breaker A Circuit Breaker to a Service Operation is indicated by a Java

Method with '@RequestMapping' annotation that belongs to a Java

Interface with '@FeignClient' annotation in the Source Code File of

the microservice's project.

91 [1] Source Code File Microservice Service Dependency A 'Consul' Configuration provider to a Microservice is indicated by

a Java Class with '@RefreshScope' annotation in the Source Code

File of the microservice's project.

92 [1] Container Build File Microservice

Architecture

Microservice The name of Microservice concept is indicated by the JAR

application name argument of 'ADD' command in the Container

Build File of the microservice's project.

348

93 [1] Container Build File Microservice Container The name of Container concept is indicated by the JAR application

name argument of 'ADD' command in the Container Build File of

the microservice's project.

94 [1] Container Build File Microservice Service Interface The server path of Service Interface concept is indicated by the JAR

application name argument of 'ADD' command in the Container

Build File of the microservice's project.

95 [1] Container Build File Infrastructure

Microservice

- A 'MongoDB Data Store' Infrastructure Microservice concept is

indicated by a 'FROM' command with argument value that starts

with 'mongo:' in the Container Build File of the microservice's

project.

96 [1] Container Build File Log Analysis - A Log Analysis concept is indicated by a 'FROM' command with

argument value that starts with 'logstash:' in the Container Build File

of the microservice's project.

97 [1] Container Orchestration

File

Microservice

Architecture

Microservice The name of Microservice concept is indicated by the key name of

service container definition in the Container Orchestration File of

the application's project.

98 [1] Container Orchestration

File

Microservice Container The name of Container concept is indicated by the key name of

service container definition in the Container Orchestration File of

the application's project.

99 [1] Container Orchestration

File

Microservice Service Interface The server path of Service Interface concept is indicated by the key

name of service container definition in the Container Orchestration

File of the application's project.

100 [1] Container Orchestration

File

Microservice Service Dependency A Microservice provider to a Microservice is indicated by the

service container name of 'depends_on' or 'links' key in the

Container Orchestration File of the application's project.

101 [1] Container Orchestration

File

Infrastructure

Microservice

- An Infrastructure Microservice concept is indicated by a service

container definition that does not have 'build' key in the Container

Orchestration File of the application's project.

102 [1] Container Orchestration

File

Infrastructure

Microservice

- A 'RabbitMQ' Infrastructure Microservice concept is indicated by an

'image:' key with value that starts wth 'rabbitmq:' in the Container

Orchestration File of the application's project.

103 [1] Container Orchestration

File

Log Analysis - A Log Analysis concept is indicated by an 'image:' key with value

that starts wth 'elasticsearch:' or 'kibana:' in the Container

Orchestration File of the application's project.

104 [1] Container Orchestration

File

Log Analysis Service Dependency A Microservice provider to a Log Analysis is indicated by the key

name of service container definition that has 'logging' or 'log_opt'

key in the Container Orchestration File of the application's project.

349

105 [2] Build File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a

Microservice is indicated by a 'compile' Gradle command with an

argument 'org.springframework.boot:spring-boot-starter-data-

mongodb' in the Build File of the microservice's project.

106 [2] Source Code File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a

Microservice is indicated by a Java Method 'save()' or 'findById()' or

any Java Method that starts with 'find' of a Java Interface that

extends 'MongoRepository' Java Interface of package

'org.springframework.data.mongodb.repository' in the Source Code

File of the microservice's project.

107 [2] Source Code File Service Operation Data Store A Data Store to a Service Operation is indicated by a Java Method

'save()' or 'findById()' or any Java Method that starts with 'find' of a

Java Interface that extends 'MongoRepository' Java Interface of

package 'org.springframework.data.mongodb.repository' in the

Source Code File of the microservice's project.

108 [2] Source Code File Microservice Service Dependency A 'MongoDB' Infrastructure Microservice provider to a

Microservice is indicated by a Java Interface that extends

'MongoRepository' Java Interface of package

'org.springframework.data.mongodb.repository' in the Source Code

File of the microservice's project.

109 [2] Container Orchestration

File

Infrastructure

Microservice

- A 'MongoDB Data Store' Infrastructure Microservice concept is

indicated by an 'image:' key with value that starts wth 'mongo' in the

Container Orchestration File of the application's project.

110 [2] Container Orchestration

File

Infrastructure

Microservice

- An 'HAProxy Load Balancer' Infrastructure Microservice concept is

indicated by an 'image:' key with value that starts wth

'tutum/haproxy' in the Container Orchestration File of the

application's project.

111 [2] Container Orchestration

File

Microservice Load Balancer An 'HAProxy' Load Balancer to a Microservice is indicated by an

'HAProxy Load Balancer' Infrastructure Microservice that has a

'links' or 'depends_on' key that points to it in the Container

Orchestration File of the application's project.

112 [3] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-eureka' in the Build File of the microservice's

project.

113 [3] Build File Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to a

Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

350

'spring-cloud-starter-eureka' in the Build File of the microservice's

project.

114 [3] Build File Registry and Discovery Service Dependency A Microservice provider to a 'Netflix Eureka' Registry and

Discovery is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-eureka' in the Build File of the microservice's

project.

115 [3] Build File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-cloud-config-client' in the Build File of the

microservice's project.

116 [3] Build File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-hystrix' in the Build File of the microservice's

project.

117 [3] Build File Microservice Service Dependency An 'PostgreSQL' Infrastructure Microservice provider to a

Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'postgresql' in the Build File of the microservice's project.

118 [3] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-eureka-server' in the Build File of the

microservice's project.

119 [3] Build File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix

Eureka' is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-eureka-server' in the Build File of the

microservice's project.

120 [3] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-zuul' in the Build File of the microservice's

project.

121 [3] Build File API Gateway - An API Gateway concept with technology of 'Netflix Zuul' is

indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-zuul' in the Build File of the

microservice's project.

351

122 [3] Build File Microservice Service Dependency A 'Kafka' Infrastructure Microservice provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-stream-kafka' in the Build File

of the microservice's project.

123 [3] Build File Microservice Service Dependency A 'Redis' Infrastructure Microservice provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-data-redis' or 'jedis' in the Build File of the

microservice's project.

124 [3] Build File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is is indicated by a

<project><dependencies><dependency><artifactId> key with value

'hystrix-javanica' in the Build File of the microservice's project.

125 [3] Configurations File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by the property 'spring.cloud.config.enabled: true' in the

Configurations File of the microservice's project.

126 [3] Configurations File Microservice Service Dependency A 'PostgreSQL' Infrastructure Microservice provider to a

Microservice is indicated by the property 'spring.datasource.url:' and

a value that starts with 'jdbc:postgresql://' in the Configurations File

of the microservice's project.

127 [3] Configurations File Microservice Service Dependency A 'PostgreSQL' Infrastructure Microservice provider to a

Microservice is indicated by the property

'spring.database.driverClassName:' and a value

'org.postgresql.Driver' in the Configurations File of the

microservice's project.

128 [3] Configurations File Configuration - A 'Spring Cloud Config' Configuration concept is indicated by the

property 'spring.cloud.config.server.git.uri:' and/or

'spring.cloud.config.server.git.searchPaths:' in the Configurations

File of the microservice's project.

129 [3] Configurations File Service Interface Endpoint A prefix to an Endpoint is indicated by the value of the property

'zuul.prefix:' in the Configurations File of the microservice's project.

130 [3] Configurations File Service Interface Endpoint An Endpoint to Service Interface is indicated by the value of the

property that starts with 'zuul.routes.' and ends with the microservice

name in the Configurations File of the microservice's project.

131 [3] Configurations File API Gateway Service Dependency A Microservice provider to a 'Netflix Zuul' API Gateway is

indicated by the property that starts with 'zuul.routes.' and ends with

the microservice name in the Configurations File of the

microservice's project.

352

132 [3] Configurations File Microservice Service Dependency A 'Redis' Infrastructure Microservice provider to a Microservice is

indicated by the value of the property 'redis.server' in the

Configurations File of the microservice's project.

133 [3] Configurations File Microservice Service Dependency A 'Kafka' Infrastructure Microservice provider to a Microservice is

indicated by the value of the property that starts with

'spring.cloud.stream.bindings.kafka.binder.brokers' in the

Configurations File of the microservice's project.

134 [3] Source Code File Microservice Service Dependency A Registry and Discovery provider to a Microservice is indicated by

a Java Class with '@EnableEurekaClient' annotation in the Source

Code File of the microservice's project.

135 [3] Source Code File Registry and Discovery Service Dependency A Microservice provider to a 'Netflix Eureka' Registry and

Discovery is indicated by a Java Class with '@EnableEurekaClient'

annotation in the Source Code File of the microservice's project.

136 [3] Source Code File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

Java Class with '@EnableEurekaClient' annotation in the Source

Code File of the microservice's project.

137 [3] Source Code File Microservice Service Dependency A 'PostgreSQL' Infrastructure Microservice provider to a

Microservice is indicated by a Java Class with '@Entity' annotation

in the Source Code File of the microservice's project.

138 [3] Source Code File Microservice Service Dependency A 'PostgreSQL' Infrastructure Microservice provider to a

Microservice is indicated by a Java Class with '@Table' annotation

in the Source Code File of the microservice's project.

139 [3] Source Code File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the URL

in the first argument of a Java Method 'exchange()' of a Java

Interface 'RestTemplate' of package

'org.springframework.web.client' in the Source Code File of the

microservice's project.

140 [3] Source Code File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

Java Method with '@LoadBalanced' annotation in the Source Code

File of the microservice's project.

141 [3] Source Code File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the URL

in the first argument of a Java Method 'exchange()' of a Java

Interface 'OAuth2RestTemplate' of package

'org.springframework.security.oauth2.client' in the Source Code File

of the microservice's project.

142 [3] Source Code File Microservice Service Dependency A 'Spring Cloud OAuth2' Security provider to a Microservice is

indicated by a Java Method 'exchange()' of a Java Interface

'OAuth2RestTemplate' of package

353

'org.springframework.security.oauth2.client' in the Source Code File

of the microservice's project.

143 [3] Source Code File Service Operation Message Bus A Message Bus to a Service Operation reader is indicated by a Java

Method with '@StreamListener' annotation that belongs to a Java

Class with '@EnableBinding' annotation in the Source Code File of

the microservice's project.

144 [3] Source Code File Service Operation Cash Store A 'Redis' Cash Store to a Service Operation reader is indicated by a

Java Method 'put()' of a Java Interface 'HashOperations' of package

'org.springframework.data.redis.core' in the Source Code File of the

microservice's project.

145 [3] Source Code File Service Operation Cash Store A 'Redis' Cash Store to a Service Operation reader is indicated by a

Java Method 'get()' of a Java Interface 'HashOperations' of package

'org.springframework.data.redis.core' in the Source Code File of the

microservice's project.

146 [3] Source Code File Service Operation Cash Store A 'Redis' Cash Store to a Service Operation writer is indicated by a

Java Method 'put()' or 'delete()' of a Java Interface 'HashOperations'

of package 'org.springframework.data.redis.core' in the Source Code

File of the microservice's project.

147 [3] Source Code File Service Operation Cash Store A 'Redis' Cash Store to a Service Operation writer is indicated by a

Java Method 'opsForHash()' of a Java Class 'RedisTemplate' of

package 'org.springframework.data.redis.core' in the Source Code

File of the microservice's project.

148 [3] Source Code File Microservice Service Dependency A Registry and Discovery provider to a Microservice is indicated by

a Java Method 'getServices()' or 'getInstances()' of a Java Interface

'DiscoveryClient' of package

'org.springframework.cloud.client.discovery' in the Source Code

File of the microservice's project.

149 [3] Source Code File Service Operation Circuit Breaker A 'Netflix Hystrix' Circuit Breaker to a Service Operation is

indicated by a Java Method with '@HystrixCommand' annotation in

the Source Code File of the microservice's project.

150 [3] Source Code File Service Operation Message Bus A Message Bus to a Service Operation writer is indicated by a Java

Method 'output()' of a Java Interface 'Source' of package

'org.springframework.cloud.stream.messaging' in the Source Code

File of the microservice's project.

151 [3] Source Code File Microservice Service Dependency A 'PostgreSQL' Infrastructure Microservice provider to a

Microservice is indicated by a Java Method 'save()' or 'findById()' or

any Java Method that starts with 'find' of a Java Interface that

extends 'CrudRepository' Java Interface of package

354

'org.springframework.data.repository' in the Source Code File of the

microservice's project.

152 [3] Source Code File Microservice Service Dependency A 'PostgreSQL' Infrastructure Microservice provider to a

Microservice is indicated by a Java Interface that extends

'CrudRepository' Java Interface of package

'org.springframework.data.repository' in the Source Code File of the

microservice's project.

153 [3] Container Orchestration

File

Infrastructure

Microservice

- A 'Kafka' Infrastructure Microservice concept is indicated by an

'image:' key with value that contains 'spotify/kafka' in the Container

Orchestration File of the application's project.

154 [4] Build File Microservice Service Dependency A 'Consul' Registry and Discovery provider to a Microservice is

indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-consul-discovery' in the Build

File of the microservice's project.

155 [4] Build File Registry and Discovery Service Dependency A Microservice provider to a 'Consul' Registry and Discovery is

indicated by a <project><dependencies><dependency><artifactId>

key with value 'spring-cloud-starter-consul-discovery' in the Build

File of the microservice's project.

156 [4] Build File Tracing Service Dependency A Microservice provider to a 'Zipkin' Tracing is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-zipkin' in the Build File of the microservice's

project.

157 [4] Build File Log Analysis Service Dependency A Microservice provider to a 'Logstash' Log Analysis is indicated by

a <project><dependencies><dependency><artifactId> key with

value 'logstash-logback-encoder' in the Build File of the

microservice's project.

158 [4] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

<project><dependencies><dependency><artifactId> key with value

'spring-cloud-starter-netflix-ribbon' in the Build File of the

microservice's project.

159 [4] Build File Monitoring Service Dependency A Microservice provider to a 'Prometheus' Monitoring is indicated

by a <project><dependencies><dependency><artifactId> key with

value 'micrometer-registry-prometheus' in the Build File of the

microservice's project.

160 [4] Configurations File Tracing Service Dependency A Microservice provider to a 'Zipkin' Tracing is indicated by non-

zero value of the property 'spring.sleuth.sampler.percentage' in the

Configurations File of the microservice's project.

355

161 [4] Configurations File Tracing Service Dependency A Microservice provider to a 'Zipkin' Tracing is indicated by the

property 'spring.zipkin.enabled: true' in the Configurations File of

the microservice's project.

162 [4] Configurations File Microservice Service Dependency A 'Consul' Registry and Discovery provider to a Microservice is

indicated by the property 'spring.cloud.consul.host' or starts with

'spring.cloud.consul.discovery' in the Configurations File of the

microservice's project.

163 [4] Configurations File Registry and Discovery Service Dependency A Microservice provider to a 'Consul' Registry and Discovery is

indicated by the property 'spring.cloud.consul.host' or starts with

'spring.cloud.consul.discovery' in the Configurations File of the

microservice's project.

164 [4] Configurations File Monitoring Service Dependency A Microservice provider to a 'Prometheus' Monitoring is indicated

by the property 'management.endpoint.prometheus.enabled: true' in

the Configurations File of the microservice's project.

165 [4] Configurations File Service Interface Endpoint The 'GET /prometheus' path of Endpoint concept is indicated by the

property 'management.endpoint.prometheus.enabled: true' in the

Configurations File of the microservice's project.

166 [4] Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by

the property 'spring.cloud.consul.ribbon.enabled: true' in the

Configurations File of the microservice's project.

167 [4] Source Code File Service Interface Endpoint The path of Endpoint concept is indicated by the value of 'method'

parameter and 'value' or 'path' parameter in '@RequestMapping' Java

Method annotation that belongs to a Java Class with '@Controller'

annotation in the Source Code File of the microservice's project.

168 [4] Source Code File Service Interface Service Operation A Service Operation concept is indicated by a Java Method with

'@RequestMapping' annotation that belongs to a Java Class with

'@Controller' annotation respectively in the Source Code File of the

microservice's project.

169 [4] Source Code File Service Operation Data Store A Data Store to a Service Operation is indicated by a Java Method

'save()' or 'findById()' or any Java Method that starts with 'find' of a

Java Interface that extends 'PagingAndSortingRepository' Java

Interface of package 'org.springframework.data.repository' in the

Source Code File of the microservice's project.

170 [4] Source Code File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

Java Class with '@RibbonClient' annotation in the Source Code File

of the microservice's project.

171 [4] Source Code File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the URL

in the first argument of a Java Method 'getForObject()' or

356

'getForEntity()' of a Java Interface 'RestTemplate' of package

'org.springframework.web.client' in the Source Code File of the

microservice's project.

172 [4] Source Code File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

Java Method 'choose()' of a Java Interface 'LoadBalancerClient' of

package 'org.springframework.cloud.client.loadbalancer' in the

Source Code File of the microservice's project.

173 [4] Source Code File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the value

of the first argument of a Java Method 'choose()' of a Java Interface

'LoadBalancerClient' of package

'org.springframework.cloud.client.loadbalancer' in the Source Code

File of the microservice's project.

174 [4] Source Code File Log Analysis Service Dependency A Microservice provider to a Log Analysis is indicated by a Java

Method 'trace()' of a Java Class 'Logger' of package 'org.slf4j' in the

Source Code File of the microservice's project.

175 [4] Container Build File API Gateway - A 'Apache HTTP' API Gateway concept is indicated by a 'RUN'

command with argument value that contains 'apache2', 'proxy_http'

and 'proxy_balancer' in the Container Build File of the

microservice's project.

176 [4] Container Build File Microservice Load Balancer A 'Apache HTTP' Load Balancer to a Microservice is indicated by a

'RUN' command with argument value that contains 'apache2' and

'proxy_balancer' in the Container Build File of the microservice's

project.

177 [4] Container Build File Log Analysis - A Log Analysis concept is indicated by a 'FROM' command with

argument value that starts with

'docker.elastic.co/elasticsearch/elasticsearch:' or

'docker.elastic.co/beats/filebeat:' in the Container Build File of the

microservice's project.

178 [4] Container Build File Monitoring - A 'Prometheus' Monitoring concept is indicated by a 'FROM'

command with argument value that starts with 'prom/prometheus:' in

the Container Build File of the microservice's project.

179 [4] Container Orchestration

File

Registry and Discovery - A 'Consul' Registry and Discovery concept is indicated by an

'image:' key with value that starts wth 'consul:' in the Container

Orchestration File of the application's project.

180 [4] Container Orchestration

File

Configuration - A 'Consul' Configuration concept is indicated by an 'image:' key

with value that starts wth 'consul:' in the Container Orchestration

File of the application's project.

357

181 [4] Container Orchestration

File

Tracing - A 'Zipkin' Tracing concept is indicated by an 'image:' key with value

that starts wth 'openzipkin/zipkin:' in the Container Orchestration

File of the application's project.

182 [4] Container Orchestration

File

Log Analysis - A 'Kibana' Log Analysis concept is indicated by an 'image:' key with

value that starts wth 'docker.elastic.co/kibana/kibana:' in the

Container Orchestration File of the application's project.

183 [5] Build File Microservice

Architecture

- The name of Microservice Architecture concept is indicated by the

value of 'rootProject.name' Gradle command in the Build File of the

application's project.

184 [5] Build File Microservice

Architecture

Microservice The name of Microservice concept is indicated by the value of

'include' Gradle command in the Build File of the application's

project.

185 [5] Build File Microservice Service Dependency A 'Consul' Registry and Discovery provider to a Microservice is

indicated by a 'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-consul-all' in the

Build File of the microservice's project.

186 [5] Build File Registry and Discovery Service Dependency A Microservice provider to a 'Consul' Registry and Discovery is

indicated by a 'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-consul-all' in the

Build File of the microservice's project.

187 [5] Build File Microservice Service Dependency A 'Consul' Configuration provider to a Microservice is indicated by

a 'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-consul-all' in the

Build File of the microservice's project.

188 [5] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-zuul' in the Build

File of the microservice's project.

189 [5] Build File API Gateway - An API Gateway concept with technology of 'Netflix Zuul' is

indicated by a 'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-zuul' in the Build

File of the microservice's project.

190 [5] Build File Tracing Service Dependency A Microservice provider to a 'Zipkin' Tracing is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-zipkin' in the Build

File of the microservice's project.

191 [5] Build File Monitoring - A 'Netflix Hystrix Dashboard' Monitoring is indicated by a 'compile'

Gradle command with an argument

358

'org.springframework.cloud:spring-cloud-starter-hystrix-dashboard'

in the Configurations File of the microservice's project.

192 [5] Build File Microservice Service Dependency A 'Netflix Hystrix Dashboard' Monitoring is indicated by a 'compile'

Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-hystrix-dashboard'

in the Build File of the microservice's project.

193 [5] Build File Monitoring - A 'Netflix Turbine' Monitoring is indicated by a 'compile' Gradle

command with an argument 'org.springframework.cloud:spring-

cloud-netflix-turbine' in the Build File of the microservice's project.

194 [5] Build File Monitoring Service Dependency A 'Netflix Turbine' Monitoring provider to a 'Netflix Hystrix

Dashboard' Monitoring is indicated by a 'compile' Gradle command

with an argument 'org.springframework.cloud:spring-cloud-netflix-

turbine' in the Build File of the microservice's project.

195 [5] Build File Monitoring - A 'Spring Boot Admin' Monitoring is indicated by a 'compile'

Gradle command with an argument 'de.codecentric:spring-boot-

admin-server' in the Build File of the microservice's project.

196 [5] Build File Monitoring Microservice A Microservice provider to a 'Spring Boot Admin' Monitoring is

indicated by a 'compile' Gradle command with an argument

'org.springframework.boot:spring-boot-starter-actuator' in the Build

File of the microservice's project.

197 [5] Build File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by a 'compile' Gradle command

with an argument 'org.springframework.cloud:spring-cloud-starter-

hystrix' in the Build File of the microservice's project.

198 [5] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-ribbon' in the Build

File of the microservice's project.

199 [5] Configurations File Tracing Service Dependency A Microservice provider to a 'Zipkin' Tracing is indicated by the

URL value of the property 'spring.zipkin.baseUrl:' in the

Configurations File of the microservice's project.

200 [5] Configurations File Monitoring - A 'Netflix Turbine' Monitoring is indicated by the property

'turbine.appConfig' in the Build File of the microservice's project.

201 [5] Configurations File Monitoring Service Dependency A 'Netflix Turbine' Monitoring provider to a 'Netflix Hystrix

Dashboard' Monitoring is indicated by the property

'turbine.appConfig' in the Build File of the microservice's project.

359

202 [5] Configurations File Monitoring Service Dependency A Microservice provider to 'Netflix Turbine' Monitoring provider is

indicated by the value of the property 'turbine.appConfig' in the

Configurations File of the microservice's project.

203 [5] Configurations File Monitoring - A 'Spring Boot Admin' Monitoring is indicated by a property that

starts with 'spring.boot.admin.discovery' in the Configurations File

of the microservice's project.

204 [5] Configurations File Microservice Service Dependency A 'Consul' Configuration provider to a Microservice is indicated by

the property 'spring.cloud.consul.config.enabled: true' in the

Configurations File of the microservice's project.

205 [5] Source Code File Monitoring - A 'Netflix Turbine' Monitoring is indicated by a Java Class with

'@EnableTurbine' annotation in the Source Code File of the

microservice's project.

206 [5] Source Code File Monitoring Service Dependency A 'Netflix Turbine' Monitoring provider to a 'Netflix Hystrix

Dashboard' Monitoring is indicated by a Java Class with

'@EnableTurbine' annotation in the Source Code File of the

microservice's project.

207 [5] Source Code File Monitoring - A 'Spring Boot Admin' Monitoring is indicated by a Java Class with

'@EnableAdminServer' annotation in the Source Code File of the

microservice's project.

208 [5] Source Code File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by a Java Class with

'@EnableHystrix' annotation in the Source Code File of the

microservice's project.

209 [6] Build File Monitoring - A 'Spring Boot Admin' Monitoring is indicated by a 'compile'

Gradle command with an argument 'de.codecentric:spring-boot-

admin-starter-server' in the Build File of the microservice's project.

210 [6] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-netflix-eureka-

client' in the Build File of the microservice's project.

211 [6] Build File Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to a

Microservice is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-starter-netflix-

eureka-client' in the Build File of the microservice's project.

212 [6] Build File Registry and Discovery Service Dependency A Microservice provider to a 'Netflix Eureka' Registry and

Discovery is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-starter-netflix-

eureka-client' in the Build File of the microservice's project.

360

213 [6] Build File Configuration - A 'Spring Cloud Config' Configuration concept is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-config-server' or

'org.springframework.cloud:spring-cloud-config-monitor' in the

Build File of the microservice's project.

214 [6] Build File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a

Microservice is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-starter-bus-

amqp' in the Build File of the microservice's project.

215 [6] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-netflix-eureka-

server' in the Build File of the microservice's project.

216 [6] Build File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix

Eureka' is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-starter-netflix-

eureka-server' in the Build File of the microservice's project.

217 [6] Build File Monitoring - A 'Netflix Hystrix Dashboard' Monitoring is indicated by a 'compile'

Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-netflix-hystrix-

dashboard' in the Configurations File of the microservice's project.

218 [6] Build File Microservice Service Dependency A 'Netflix Hystrix Dashboard' Monitoring is indicated by a 'compile'

Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-netflix-hystrix-

dashboard' in the Build File of the microservice's project.

219 [6] Build File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by a 'compile' Gradle command

with an argument 'org.springframework.cloud:spring-cloud-starter-

netflix-hystrix' in the Build File of the microservice's project.

220 [6] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-netflix-ribbon' in

the Build File of the microservice's project.

221 [6] Build File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by a 'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-config' in the Build

File of the microservice's project.

361

222 [6] Configurations File Service Interface Endpoint The 'POST /shutdown' path of Endpoint concept is indicated by the

property 'management.endpoint.shutdown.enabled: true' in the

Configurations File of the microservice's project.

223 [6] Configurations File Service Interface Endpoint The 'GET /health' path of Endpoint concept is indicated by the non-

never value of property 'management.endpoint.health.showDetails:'

in the Configurations File of the microservice's project.

224 [6] Configurations File Tracing Service Dependency A Microservice provider to a 'Zipkin' Tracing is indicated by the

property 'spring.zipkin.sender.type:' in the Configurations File of the

microservice's project.

225 [6] Configurations File Microservice Service Dependency A 'Spring Cloud Config' Configuration provider to a Microservice is

indicated by the property 'spring.cloud.config.discovery.enabled:

true' or the value of 'spring.cloud.config.discovery.serviceId:' in the

Configurations File of the microservice's project.

226 [7] Build File Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to a

Microservice is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-starter-eureka' in

the Build File of the microservice's project.

227 [7] Build File Registry and Discovery Service Dependency A Microservice provider to a 'Netflix Eureka' Registry and

Discovery is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-starter-eureka' in

the Build File of the microservice's project.

228 [7] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-eureka-server' in

the Build File of the microservice's project.

229 [7] Build File Registry and Discovery - A Registry and Discovery concept with technology of 'Netflix

Eureka' is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-starter-eureka-

server' in the Build File of the microservice's project.

230 [7] Build File API Gateway - A 'Netflix Sidecar' API Gateway is indicated by a 'compile' Gradle

command with an argument 'org.springframework.cloud:spring-

cloud-netflix-sidecar' in the Build File of the microservice's project.

231 [7] Build File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-netflix-sidecar' in the

Build File of the microservice's project.

232 [7] Build File Microservice Service Dependency A Microservice provider to a Registry and Discovery is indicated by

a 'compile' Gradle command with an argument

362

'org.springframework.cloud:spring-cloud-netflix-sidecar' in the

Build File of the microservice's project.

233 [7] Build File Registry and Discovery Service Dependency A Microservice provider to a Registry and Discovery is indicated by

a 'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-netflix-sidecar' in the

Build File of the microservice's project.

234 [7] Build File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by a 'compile' Gradle command

with an argument 'org.springframework.cloud:spring-cloud-netflix-

sidecar' in the Build File of the microservice's project.

235 [7] Configurations File Microservice Service Dependency A 'Netflix Eureka' Registry and Discovery provider to a

Microservice is indicated by the property

'eureka.instance.healthCheckUrlPath:' in the Configurations File of

the microservice's project.

236 [7] Configurations File Registry and Discovery Service Dependency A Microservice provider to a 'Netflix Eureka' Registry and

Discovery is indicated by the property

'eureka.instance.healthCheckUrlPath:' in the Configurations File of

the microservice's project.

237 [7] Configurations File Service Interface Endpoint The 'GET' path of Endpoint concept is indicated by the value of

property 'eureka.instance.healthCheckUrlPath:' in the

Configurations File of the microservice's project.

238 [7] Configurations File API Gateway - A 'Netflix Sidecar' API Gateway is indicated by the property

'sidecar.port:' and/or 'sidecar.healthUri:' in the Configurations File of

the microservice's project.

239 [7] Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by

the property 'sidecar.port:' and/or 'sidecar.healthUri:' in the

Configurations File of the microservice's project.

240 [7] Configurations File Microservice Service Dependency A Microservice provider to a Registry and Discovery is indicated

by the property 'sidecar.port:' and/or 'sidecar.healthUri:' in the

Configurations File of the microservice's project.

241 [7] Configurations File Registry and Discovery Service Dependency A Microservice provider to a Registry and Discovery is indicated by

the property 'sidecar.port:' and/or 'sidecar.healthUri:' in the

Configurations File of the microservice's project.

242 [7] Configurations File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by the property 'sidecar.port:'

and/or 'sidecar.healthUri:' in the Configurations File of the

microservice's project.

363

243 [7] Configurations File API Gateway Service Dependency A Microservice provider to a 'Netflix Sidecar' API Gateway is

indicated by the value of the property 'sidecar.port:' and/or

'sidecar.healthUri:' in the Configurations File of the microservice's

project.

244 [7] Configurations File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by

the property 'ribbon.eureka.enabled: true' in the Configurations File

of the microservice's project.

245 [7] Source Code File API Gateway - A 'Netflix Sidecar' API Gateway is indicated by a Java Class with

'@EnableSidecar' annotation in the Source Code File of the

microservice's project.

246 [7] Source Code File Microservice Load Balancer A 'Netflix Ribbon' Load Balancer to a Microservice is indicated by a

Java Class with '@EnableSidecar' annotation in the Source Code

File of the microservice's project.

247 [7] Source Code File Microservice Service Dependency A Microservice provider to a Registry and Discovery is indicated by

a Java Class with '@EnableSidecar' annotation in the Source Code

File of the microservice's project.

248 [7] Source Code File Registry and Discovery Service Dependency A Microservice provider to a Registry and Discovery is indicated by

a Java Class with '@EnableSidecar' annotation in the Source Code

File of the microservice's project.

249 [7] Source Code File Monitoring Service Dependency A Microservice provider to a 'Netflix Hystrix Dashboard' or 'Netflix

Turbine' Monitoring is indicated by a Java Class with

'@EnableSidecar' annotation in the Source Code File of the

microservice's project.

250 [8] Build File Log Analysis Service Dependency A Microservice provider to a 'Logstash' Log Analysis is indicated by

a 'compile' Gradle command with an argument

'net.logstash.logback:logstash-logback-encoder' in the Build File of

the microservice's project.

251 [8] Build File Tracing Service Dependency A Microservice provider to a 'Zipkin' Tracing is indicated by a

'compile' Gradle command with an argument

'org.springframework.cloud:spring-cloud-starter-sleuth' or

'org.springframework.cloud:spring-cloud-sleuth-stream' in the Build

File of the microservice's project.

252 [8] Build File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a

Microservice is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-sleuth-stream' in

the Build File of the microservice's project.

253 [8] Build File Monitoring - A 'Netflix Turbine' Monitoring is indicated by a 'compile' Gradle

command with an argument 'org.springframework.cloud:spring-

364

cloud-starter-turbine-amqp' in the Build File of the microservice's

project.

254 [8] Build File Monitoring Service Dependency A 'Netflix Turbine' Monitoring provider to a 'Netflix Hystrix

Dashboard' Monitoring is indicated by a 'compile' Gradle command

with an argument 'org.springframework.cloud:spring-cloud-starter-

turbine-amqp' in the Build File of the microservice's project.

255 [8] Build File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a

Microservice is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-starter-turbine-

amqp' in the Build File of the microservice's project.

256 [8] Build File Tracing - A 'Zipkin' Tracing is indicated by a 'compile' Gradle command with

an argument 'org.springframework.cloud:spring-cloud-sleuth-zipkin-

stream' in the Build File of the microservice's project.

257 [8] Build File Tracing - A 'Zipkin' Tracing is indicated by a 'runtime' Gradle command with

an argument 'io.zipkin.java:zipkin-autoconfigure-ui' in the Build

File of the microservice's project.

258 [8] Build File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a

Microservice is indicated by a 'compile' Gradle command with an

argument 'org.springframework.cloud:spring-cloud-stream-binder-

rabbit' in the Build File of the microservice's project.

259 [8] Configurations File Service Interface Endpoint The 'POST /shutdown' path of Endpoint concept is indicated by the

property 'endpoints.shutdown.enabled: true' in the Configurations

File of the microservice's project.

260 [8] Configurations File Service Interface Endpoint The 'POST /restart' path of Endpoint concept is indicated by the

property 'endpoints.restart.enabled: true' in the Configurations File

of the microservice's project.

261 [8] Configurations File Monitoring - A 'Netflix Turbine' Monitoring is indicated by the property

'turbine.amqp.port:' in the Configurations File of the microservice's

project.

262 [8] Configurations File Monitoring Service Dependency A 'Netflix Turbine' Monitoring provider to a 'Netflix Hystrix

Dashboard' Monitoring is indicated by the property

'turbine.amqp.port:' in the Configurations File of the microservice's

project.

263 [8] Configurations File Monitoring Service Dependency A Microservice provider to 'Netflix Turbine' Monitoring provider is

indicated by the property 'turbine.amqp.port:' in the Configurations

File of the microservice's project.

365

264 [8] Configurations File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a

Microservice is indicated by the property 'turbine.amqp.port:' in the

Configurations File of the microservice's project.

265 [8] Source Code File Tracing - A 'Zipkin' Tracing is indicated by a Java Class with

'@EnableZipkinStreamServer' annotation in the Source Code File of

the microservice's project.

266 [8] Source Code File Microservice Service Dependency A 'RabbitMQ' Infrastructure Microservice provider to a

Microservice is indicated by a Java Class with

'@EnableZipkinStreamServer' annotation in the Source Code File of

the microservice's project.

267 [8] Source Code File Microservice Service Dependency A Microservice provider to a Microservice is indicated by the URL

in the first argument of a Java Method 'getForEntity()' of a Java

Interface 'RestOperations' of package

'org.springframework.web.client' in the Source Code File of the

microservice's project.

268 [8] Container Orchestration

File

Log Analysis - A 'Kibana' Log Analysis concept is indicated by an 'image:' key with

value that starts wth 'docker.elastic.co/elasticsearch/elasticsearch:' or

'docker.elastic.co/logstash/logstash:' in the Container Orchestration

File of the application's project.

366

Appendix-B: 1- Graphical Notations of Architecture Diagram and their mappings

to PIM metaclasses

Microservice

Infrastructure Microservice

Functional Microservice

Service Interface

Service Dependency45

Service Group Dependency46

Infrastructure Server Component

Queue Listener
.

45 The arrow square head represents the consumer.
46 It represents the interaction between a group of microservices and one microservice.

367

Appendix-B: 2- Architecture diagram recovered of case study 1 (PiggyMetrics)

(1)

(2)

(3)

(5) (6)

(10) (12) (14)

(15)

(16)

368

369

Appendix-B: 3- Elaboration on manual recovery and visualization steps for

PiggyMetrics

Step-1 Artefact collection

The artefacts collected from the project are pulled form its public GitHub repository.

PiggyMetrics has two distributed GitHub repositories one for the main application47

and anotherr for ELK stack48.

Step-2 Sort All Mapping Rules by the following Artefact Type order:

- GitHub Repository

- Container Orchestration File

- Container Build File

- Build File

- Configurations File

- Source Code File

Step-3 Check All Mapping Rules of GitHub Repository

Usually it is one repository but more than one is also possible.

Step-4 Check All Mapping Rules of Build File of Application’s Project

Usually it is one file.

One POM.XML for Maven application.

One SETTINGS.GRADLE for Gradle application.

Step-5 Check All Mapping Rules of Container Orchestration File of

Application’s Project

Check all DOCKER COMPOSE files.

For Each Container in Docker Compose File:

Step-6 Check All Mapping Rules of Build File of Microservice’s Project

Usually it is one file.

One POM.XML for Maven application.

One BUILD.GRADLE for Gradle application.

47 https://github.com/sqshq/piggymetrics
48 https://github.com/sqshq/ELK-docker

370

Step-7 Check All Mapping Rules of Configurations File of Microservice’s

Project

Check all YAML and PROPERTIES files in the microservice’s project.

bootstrap.yml, bootstrap.properties, application.yml, application.properties

Check all YAML and PROPERTIES files in the configuration server’s project related

to the microservice.

Step-8 Check All Mapping Rules of Source Code File of Microservice’s

Project

Check all JAVA files in the microservice’s project.

Start with @SpringBootApplication class then @Controller class then a class with

@Scheduled method.

Step-9 Filter All Mapping Rules with 1 Value

Step-10 Sort All Mapping Rules by the following PIM Concept (Source)

order:

- Microservice Architecture

- Container

- Microservice

- Functional Microservice

- Infrastructure Microservice

- API Gateway

- Configuration

- Registry and Discovery

- Security

- Monitoring

- Tracing

- Log Analysis

- Service Interface

- Service Operation

Step-11 Sort All Mapping Rules by the following PIM Concept

(Destination) order:

- (Blank)

- Microservice

- Container

- Load Balancer

- Service Interface

- Endpoint

371

- Service Operation

- Data Store

- Cash Store

- Circuit Breaker

- Message Bus

- Service Dependency

Step-12 Draw Architecture Diagram: draw concepts and update them as

they appear in PIM Concept (Source) except for [Microservice]49 ->

Service Dependency

1. Recover Microservice Architecture:

If exists, take architecture name from build file of application’s project.

Else, take architecture name from GitHub repository.

Otherwise, take architecture name from build file of the first microservice’s

project.

2. Recover Microservice Architecture -> Microservice:

If exists, take microservice name from configurations’ file of microservice’s

project.

Else, take microservice name from build file of microservice’s project.

Otherwise, take microservice name from container orchestration file.

3. Recover Microservice -> Container:

If exists, take container name from container orchestration file.

Else, take container name from build file of microservice’s project.

Otherwise, take container name from configurations’ file of microservice’s

project.

4. Recover Microservice -> Service Interface:

If exists, take server path from configurations’ file of microservice’s project.

Else, take server path from build file of microservice’s project.

Otherwise, take server path from container orchestration file.

Finally, add path prefix.

5. Recover Service Interface -> Endpoint:

Finally, add path prefix to all recovered endpoints.

6. Recover Service Interface -> Service Operation:

Add prefixes at the end to all recovered endpoints.

7. Recover Service Operation -> Data Store:

49 Microservice, Functional Microservice, Infrastructure Microservice, API Gateway, Configuration,

Registry and Discovery, Security, Monitoring, Tracing, Log Analysis.

372

If possible, trace back the service operation that invoked functions mentioned

in the mapping rule.

8. Recover Service Operation -> Circuit Breaker:

If possible, trace back the service operation that invoked functions mentioned

in the mapping rule.

9. Recover Service Operation -> Message Bus:

If possible, trace back the service operation that invoked functions mentioned

in the mapping rule.

10. If exists, recover [Infrastructure Microservice]50:

Otherwise, set Microservice to Functional Microservice.

After all Microservice Concepts are Recovered:

Step-13 Refine Architecture Diagram: Recover [Microservice]51 -> Service

Dependency

1. Recover Microservice -> Service Dependency:

If provider name is not available, filter mapping rule list by [Infrastructure

Microservice]52 type of the provider type mentioned in the mapping rule.

If possible, trace back the service operation that fired the mapping rule of provider

operation.

2. Recover [Infrastructure Microservice]16-> Service Dependency:

Filter mapping rule list by the [Infrastructure Microservice]16 type of the currently

recovered Microservice.

If possible, trace back the service operation that fired the mapping rule of provider

operation.

50 API Gateway, Configuration, Registry and Discovery, Security, Monitoring, Tracing, Log Analysis.
51 Microservice, Functional Microservice, Infrastructure Microservice, API Gateway, Configuration,

Registry and Discovery, Security, Monitoring, Tracing, Log Analysis.

373

Appendix-B: 4- A PIM notation at microservice level

PIM Concept Microservice Level Diagram Box Draw Box Inside

None

None

[Functional Microservice]

[Infrastructure Microservice]

[Service Interface]

[Service Interface]

[Endpoint]

[Queue Listener]

[Endpoint]

[Queue Listener]

[Functional Microservice]

[Infrastructure Microservice]

{Microservice-Name}

{Functional Microservice}

{Microservice-Name}

{Infrastructure

Microservice}

{Service-URL}

{Service Interface}

{Request-URI}
{Endpoint}

{Environment}

{Queue-Name}

{Queue Listener}

{Environment}

{Message-Type}

{Service Message}

{Environment}

{Operation-Name}

{Operation-Description}

{Service Operation}

{Category}
{Infrastructure pattern

component}
{Environment}

374

[Functional Microservice]

[Infrastructure Microservice]

[Infrastructure Microservice]

{Category}

{Infrastructure client component}

{Environment}

{Category}

{Infrastructure server component}

{Environment}

