No evidence of microplastic consumption by the copepod, Temora longicornis (Müller, 1785) in Chiche...

Nauplius

Nauplius vol. 28

Original Article

No evidence of microplastic consumption by the copepod, Temora longicornis (Müller, 1785) in Chichester Harbour, United Kingdom

Article Indicators

Outram, Lily¹

() http://orcid.org/0000-0003-4759-5833 ()

Hurley, Jessica ¹ ²

(b) http://orcid.org/0000-0003-1818-1818 ()

Rott, Anja¹

(b) http://orcid.org/0000-0002-4436-7256 ()

Crooks, Neil¹

() http://orcid.org/0000-0003-3904-3879

Pernetta, Angelo P.¹

() http://orcid.org/0000-0003-4492-2798

Author affiliation

Permissions

Publication dates

August 10, 2020

, 2020

Article in PDF (http://www.scielo.br/scielo.php?script=sci_pdf&pid=S0104-64972020000100231&lng=en&tlng=en&nrm=iso)

Article in XML (/scieloOrg/php/articleXML.php?pid=S0104-64972020000100231&lang=en)

Automatic translation (/scieloOrg/php/translate.php?pid=S0104-64972020000100231&caller=www.scielo.br&lang=en&tlang=en&script=sci_arttext)

Send this article by e-mail (/applications/scielo-org/pages/services/sendMail.php?pid=S0104-64972020000100231&caller=www.scielo.br&lang=en)

Share this article

-

No evidence of microplastic consumption by the copepod, Temora longicornis (Müller, 1785) in Chiche...

Abstract

Increasing global concern with respect to the levels of bioavailable microplastic (<5 mm) contamination in marine environments has led to many studies examining the physiological impacts of microplastic consumption on a range of species. The copepod, *Temora longicornis* (Müller, 1785), is a common inhabitant of the upper epipelagic zone of gulf and estuarine waters of the North Atlantic which we hypothesised would be regularly exposed to microplastic contaminated marine environments. They are therefore at risk of consumption of microplastic pollutants, which could have wider trophic impacts. Microplastic was recorded in all water samples with an average concentration of 8.2 particles/m³. However, there was no significant difference in abundance or size of microplastics sampled from three localities within Chichester Harbour, UK. Individual digestion of ninety copepods found no evidence of consumption of any microplastic contaminants above our observable size range of 23 µm. Whilst microplastic pollution remains of wider ecological concern, our results suggest limited support for the potential for this copepod species to transfer these pollutants to higher trophic levels.

-

-

Keywords:

Bioaccumulation, microfibers, pollution, seawater, trophic transfer

Sections

INTRODUCTION MATERIAL AND METHODS RESULTS DISCUSSION ACKNOWLEDGEMENTS REFERENCES

Related links

ᡐ uBio

INTRODUCTION

The ubiquitous nature of plastic contamination in marine environments has resulted in growing global concern (^{Botterell et al., 2019}) due to long persistence times (^{Welden and Lusher, 2017}) and subsequent fragmentation of macroplastics (>5 mm in size) into microplastics. This has led to many studies of this anthropogenic threat documenting a range of adverse effects upon marine ecosystems (^{Setälä et al., 2014}). Microfibers are typically the most commonly identified microplastics within seawater (^{Beer et al., 2018}) and comprise common polymers such as polyester, polypropylene, fluoropolymers, acrylic, polyamide, and polyethylene assumed to derive predominantly from textiles (^{Courtene-Jones et al., 2017}). Recent estimates suggest more than 5 trillion pieces of plastic are present in marine surface waters (^{Eriksen et al., 2014}) and that 1.4 trillion microfibers may be present within the

ocean. (^{Mishra et al., 2019}). In addition to their inherent threat through consumption they may transfer. No evidence of microplastic consumption by the copepod, Temora longicornis (Müller, 1785) in Chiche... additives from polymers, such as bisphenol A and phthalates, into both the environment and into organisms upon digestion (^{Pittura et al., 2018}).

inguinomo apon argeotion (

Botterell et al., 2019

Bioavailability and effects of microplastics on marine zooplankton: A review

Environmental Pollution, 2019

Welden and Lusher, 2017

Impacts of changing ocean circulation on the distribution of marine microplastic litter Integrated Environmental Assessment and Management, 2017

Setälä et al., 2014

Ingestion and transfer of microplastics in the planktonic food web

Environmental Pollution, 2014

Beer et al., 2018

No increase in marine microplastic concentration over the last three decades - A case study from the Baltic Sea

Science of the Total Environment, 2018

Studies have demonstrated that microplastics have been ingested by a wide variety of marine organisms (reviewed in ^{de Sá et al., 2018}), including zooplankton (*e.g.*, ^{Cole et al., 2013}; ^{Setālā et al., 2014}). Bioaccumulation and retention of microplastics in laboratory trials has been shown to reduce nutritional state, increase mortality and decrease fecundity following experimental exposure (^{Welden and Cowie, 2016}). Contrastingly, field-based studies have suggested ingestion of microplastics in the natural environment, may be transient and have no long-term effect upon organisms (^{Hāmer et al., 2014}; ^{Bruck and Ford, 2018}). In the case of copepods, experimental exposure to microplastic beads has been shown to result in ingestion via indiscriminate feeding, with *Temora longicornis* (Müller, 1785) showing clumping of ingested microplastic beads in the posterior midgut, as well as adherence to external surfaces (^{Cole et al., 2013}).

de Sá et al., 2018

Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?

Science of the Total Environment, 2018

Cole et al., 2013

Microplastic Ingestion by Zooplankton

Environmental Science & Technology, 2013

Setälä et al., 2014

Ingestion and transfer of microplastics in the planktonic food web

Environmental Pollution, 2014

Despite the attention being received for microplastic pollution impacts on zooplankton by the scientific community (reviewed in ^{Botterell et al., 2019}), there are limited studies of ingestion of microplastics in natural plankton communities (but see ^{Sun et al., 2018}). In particular, copepods, noted

as being overwhelmingly abundant and having a pivotal position in marine food webs (^{Turner, 2004}) No evidence of microplastic consumption by the copepod, Temora longicornis (Müller, 1785) in Chiche... and highlighted for their susceptibility to microplastic ingestion due to their typical distribution near the surface, are considered an integral link between microplastic transfer and predator and prey interactions (^{Setălă et al., 2016}). Consequently, we conducted field surveys to: 1) determine microplastic concentrations within seawater in Chichester Harbour, UK, and 2) conduct focused sampling of a locally abundant copepod species (*T. longicornis*) to determine the individual uptake of microplastics via ingestion from the environment.

Botterell et al., 2019

Bioavailability and effects of microplastics on marine zooplankton: A review

Environmental Pollution, 2019

Sun et al., 2018

Retention and characteristics of microplastics in natural zooplankton taxa from the East China Sea Science of the Total Environment, 2018

Turner, 2004 The importance of small planktonic copepods and their roles in pelagic marine food webs Zoological Studies, 2004

Setälä et al., 2016

e at a second part of the second s

MATERIAL AND METHODS

Water and plankton samples were collected on the 26th of October 2018 from three localities within Chichester Harbour (Fig. 1) on the South East Coast of England (50°79'07"N 000°94'89"W). The harbor has a high level of anthropogenic stressors, lying in close proximity to a major road (A27) and being bordered by the city of Chichester to the East and the town of Emsworth to the West. A large amount of recreational activity takes place throughout the harbor, with a number of slipways, marinas and over 3700 boat moorings. Other water-based activities, including kayaking, windsurfing and recreational fishing take place widely across the harbor. In addition, the harbor has an active commercial oyster fishery and hosts a large bait digging community. Three trawls were undertaken at each of the sampling sites Dell Ouay (DO), Emsworth Channel (EC) and Thorney Channel (TC), which varied in distance from the harbor entrance (7.2 km, 4.5 km and 1.8 km respectively). GPS coordinates, pH, temperature, dissolved oxygen concentration and turbidity were recorded at the beginning and end of each trawl (Tab. 1). A 50 cm diameter plankton net with a mesh size of 20 µm (NHBS, UK) was utilized to collect samples in order to collect any microplastic particles that would have potentially been lost if a standard 250 µm plankton tow was employed. Time and speed of tows were determined during a pilot study carried out during August 2018. Horizontal tows were carried out at high tide and at slack water and were 10 minutes in duration at 1.5 knots with an average trawl length of 483.58 m. All tows were carried out in triplicate and given the time of year were appropriate for the purposes of this study. The total volume of water which passed through the net was calculated based on the following equation:

No evidence of microplastic consumption by the copepod, Temora longicornis (Müller, 1785) in Chiche... (1)

Where, V = volume (m³), r = radius of net opening (m) and L = distance net was towed (m). The plankton tows resulted in an average of 392.75 m³ of water being filtered through the net across all sites.

Figure 1.

Map of Chichester Harbour, East Sussex, U.K. showing the 3 sampling locations. Insets from left to right show locations sampled in Emsworth Channel, Thorney Channel and Dell Quay.

Table 1.

Water quality parameters collected prior to each trawl at each sampling location in Chichester Harbour showing Mean ± Standard Deviation.

	рН	Temp (°C)	DO (mg/L)	Conductivity (µS/cm)	Turbidity (NTU/FNU)
Dell Quay	7.87 ± 0.32	12.5 ± 0	10.7 ± 0.21	51.77 ± 0.49	5.00 ± 0.56
Thorney Channel	7.67 ± 0.54	13.67 ± 005	9.93 ± 0.05	54.33 ± 0.24	2.47 ± 0.40
Emsworth Channel	8.13 ± 0.09	13.4 ± 0.08	10.1 ± 0	54.57 ± 0.05	2.55 ± 1.19

Following the trawl, collected seawater samples were transferred into a 1 L Nalgene bottle and preserved with 4% formalin prior to further analysis. Quantification of microplastic abundance in the water was determined by taking 10 x 1 ml water samples from each of the three trawls at each sampling locality. Each 1 ml sample was pipetted on a glass agar plate and observed at 40 x magnification under light microscopy (Leitz Laborlux S). All potential microplastics were photographed, counted and verified using ^{Enders et al.'s (2015}) established criteria for visual characterization. Lengths of microplastics were measured from photographs using ImageJ (^{Schneider et al., 2012}). Estimates of microplastic concentrations within seawater (microplastics/m³) were calculated based on the total volume of seawater through the net each trawl and the total number of microplastics recorded in the samples. The surface water samples were dominated by microfibers and these were identified and documented based on color (Fig. 2).

No evidence of microplastic consumption by the copepod. Temora longicornis (Müller, 1785) in Chiche... Abundance, size and polymer composition of marine microplastics 219 µm in the Atlantic, Ocean and their modelled vertical distribution

Marine Pollution Bulletin, 2015

Schneider et al., 2012

NIH Image to ImageJ: 25 years of image analysis

Nature Methods, 2012

Figure 2.

The range of color and size of microfibers detected in surface water samples from the three sites within Chichester Harbour (scale bars = 100 μm).

Ten individual adult *T. longicornis* were isolated from each sample (Total n = 30 per site and 90 in total) using 150 mm glass Pasteur pipettes under a dissection microscope (Leica EZ4). Individual copepods were then imaged using a light microscope (Nikon Eclipse E200) with Moticam software (GX Capture©). Each individual was transferred to glass cavity slides (Agar Scientific), species identity confirmed, and visually assessed under the light microscope for potential attached microplastics. The body length, body width and first antenna length of each were measured to the nearest um using ImageI (Fig. 3). Antenna length was measured as it has been suggested that the antennae of *T. longicornis* act as mechanoreceptors (^{Gill, 1986}; ^{Yen et al., 1992}) and can facilitate determination of the concentration and availability of food items (^{Yule and Crisp, 1983}). Therefore, antenna length may correspond to the number or type of microplastic particles ingested. Copepods were digested individually using a protocol adapted from Enders et al. (2017) with a 1:1 ratio of 30% potassium hydroxide (KOH) and sodium hypochlorite (NaClO) (14% active chlorine). In brief, 60 µl of KOH:NaClO was added to an individual copepod in a well of a 96 well plate that had been cleaned with reverse osmosis (RO) water prior to use. The plates were covered using parafilm and kept at room temperature for 12 hours. The protocol of Enders et al. (2017) was modified in two ways. After initial digestion trials it was determined that 12 h was the optimal digestion period for T. longicornis due to the breakdown of the chitinous carapace. Both KOH (^{Rochman et al., 2015}) and NaCIO (^{Collard et al, 2015}) have been shown to be effective over a 12-hour digestion period. Following this step the digested solutions were pipetted into a sterile 1 ml Eppendorf and shaken for 5 minutes on a vortex (IKA 3) to further breakdown any chitinous material. The subsequent solution was then filtered using a vacuum pump (Thermoscientific Nalgene Rapid Flow) with cellulose-acetate membrane filter papers (Satorius Stedim, pore size = $0.2 \,\mu\text{m}$) and the filter papers were then analysed at 40x magnification under light microscopy to identify the presence of any microplastics, both fibers and particles.

No exidem cp of microplastic consumption by the copepod, Temora longicornis (Müller, 1785) in Chiche...

Mechanoreception in marine copepods: electrophysiological studies on the first antennae Journal of Plankton Research, 1992

Yule and Crisp, 1983

A study of feeding behaviour in Temora longicornis (Müller) (Crustacea: Copepoda) Journal of Experimental Marine Biology and Ecology, 1983

Enders et al. (2017

Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers ICES Journal of Marine Science, 2017

Rochman et al., 2015

Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption

Scientific Reports, 2015

Collard et al., 2015

Detection of anthropogenic particles in fish stomachs: an isolation method adapted to identification by Raman spectroscopy

Archives of Environmental Contamination and Toxicology, 2015

Figure 3.

Mean (? SE) body length, width and antennae length of Temora longicornis samples from three sampling localities in Chichester Harbour, UK (n = 30 per locality).

Contamination risks in such studies are high, therefore in addition to steps to reduce plastic in the environment, control procedural blanks were also used at each stage of the laboratory procedures to account for any airborne contamination (^{Prata, 2018}). Six 1 ml RO water samples were subject to the same conditions as seawater samples, and six blank wells with only the digestion solution were subject to the same procedures as the copepod digestions.

Prata, 2018 Airborne microplastics: consequences to human health?

Environmental Pollution, 2018

No evidence of microplastic consumption by the copepod, Temora longicornis (Müller, 1785) in Chiche... **RESULTS**

Microplastic particles were detected in all seawater samples examined from all three sites with an average concentration of 8.2 particles per m³ of sampled seawater (Tab. 2). Blue microplastics were the most abundant in all three sampling localities, but there was a significant difference in the abundance of colors between the three sampling sites (X² = 23.891, df =10, *p* = 0.008; Tab. 2). However, there was no difference in mean microplastic length between sampling localities (ANOVA, F = 0.92, df = 2, *p* = 0.912). The high presence of blue microplastic particles has been commonly documented (^{Zhao et al., 2016}; ^{Jamieson et al., 2019}; ^{Wu et al., 2019}) although in many instances blue "microplastics" were found to be natural fibres and not synthetic in nature (^{Zhao et al., 2016}; ^{Jamieson et al., 2019}).

Zhao et al., 2016

Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers

Science of the Total Environment, 2016

Jamieson et al., 2019

Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth

Royal Society Open Science, 2019

Wu et al., 2019

Occurrence and distribution of microplastics in the surface water and sediment of two typical estuaries in

Table 2.

Microplastic counts, sizes and concentrations recorded in each sampling location in Chichester Harbour

Microplastic counts by colour	Dell Quay	Emsworth Channel	Thorney Channel	Total
Black	75	68	34	177
Blue	108	79	72	259
Red	31	39	44	114
Yellow	6	10	3	19
Grey	22	16	7	45
Transparent	43	44	35	122
Total number of recorded microplastic particles	285	256	195	736
Mean ± SE microplastic size (mm)	0.250	0.241	0.238	0.243
	(± 0.017)	(± 0.225)	(± 0.017)	(± 0.109)

No	evidence of microplastic consumption by	t Fell opepo	c Ememorth longicon	rn ThQMIRY er, 1785)	in Chiche	
₽	licroplastic counts by colour	Quay	Channel	Channel	Total	
Μ	1ean concentration (particles/m ³)	9.5	8.5	6.5	8.2	

Comparisons of *T. longicornis* showed a significant difference between sampling localities in body length (ANOVA, F = 7.523, df = 2, p= 0.001), body width (ANOVA, F = 10.144, df = 2, p < 0.001), and antennae length (ANOVA, F = 10.144, df = 2, p = 0.036). Tukey's post-hoc analyses showed copepods sampled from Dell Quay to be significantly smaller in all measurements than those from both Fig. 3). This is likely due to Dell Quay being furthermost from Emsworth and Thorney channels (the harbor mouth, with less water exchange and increased boating activity, giving the channel higher turbidity than either Emsworth or Thorney Channels, resulting in a reduction of prey items. Decreased phytoplankton concentrations have been shown to reduce *T. longicornis* body size (Breteler and Gonzalez, 1988), therefore the reduced body size observed in this study may be a result of the increased turbidity impacting phytoplankton densities in Dell Quay. There was little variation between other recorded water quality parameters (Tab. 1). Following the digestion and filtration procedures, no microplastic fragments or fibres were detected in any of the T. longicornis samples from any of the sites (n = 90). In contrast, 15 microplastic fibres were recorded in the six contamination controls (mean = 2.5 fibres per replicate), suggesting a true absence of microplastics in the T. longicornis samples. FTIR analysis was not utilised for this study as no consumption of microplastics by T. longicornis was observed and no correlation between microplastic color and consumption could be made.

Breteler and Gonzalez, 1988

Influence of temperature and food concentration on body size, weight and lipid content of two Calanoid copepod species

Biology of Copepods. Developments in Hydrobiology, 1988

DISCUSSION

Coastal areas are hotspots of microplastic accumulation, with estuaries and rivers being significant input pathways for plastics into oceans (^{Lebreton et al., 2017}). Whilst our results confirmed the ubiquitous presence of microplastic contamination in the water sampled within Chichester Harbour at comparable levels to sites in the eastern Mediterranean (^{van der Hal et al., 2017}) and northern Adriatic Sea (^{Gajšt et al., 2016}), our results showed no evidence of microplastic consumption by *T. longicornis*. This lack of consumption may be a result of dietary selectivity by *T. longicornis*. Previous feeding studies having shown this species to alter behavioral responses when exposed to toxic dinoflagellates, whereby continued exposure to toxic *Alexandrium* spp. resulted in individual copepods showing high rates of regurgitation (^{Xu et al., 2017}). It may be that this species exhibits a similar response when exposed to microplastic particles during feeding. Other field-based studies have shown very low

levels of microplastic consumption by individual *Neocalanus cristatus* Krøyer, 1848 (0.026 No evidence of microplastic consumption by the copepod, Temora longicornis (Müller, 1785) in Chiche... particles/individual, ^{Destorges et al. 2015}), and Copepoda more broadly (0.33 particles/individual,

Kosore et al., 2018

Lebreton et al., 2017

River plastic emissions to the world's oceans

Nature Communications, 2017

van der Hal et al., 2017

Exceptionally high abundances of microplastics in the oligotrophic Israeli Mediterranean coastal waters Marine Pollution Bulletin, 2017

Gajšt et al., 2016

Sea surface microplastics in Slovenian part of the Northern Adriatic

Marine Pollution Bulletin, 2016

Xu et al., 2017

Distinctly different behavioral responses of a copepod, Temora longicornis, to different strains of toxic dinoflagellates, Alexandrium spp

Harmful Algae, 2017

Given the observed microplastic sizes in our study relative to the mean body lengths of *T. longicornis* sampled, our results suggest that the potential for trophic transfer of microplastic pollution is likely to be low for this particular species. It is possible that accumulation of microplastic in higher species, such as mesopelagic fish, may be more likely a result of direct consumption of microplastic pollutants that are mixed with zooplankton in the surface waters (^{Lusher et al., 2016}). Furthermore, nanosized plastics, beyond the limit of detection in this study, may be present and may be transferred to higher trophic levels. It is acknowledged that detecting particles below 100 µm, especially those found in the environment, is difficult to undertake (^{Huvet et al., 2016}) which may explain why, to date, we are not aware of any literature that has recorded nano-sized particles in wild copepods. However, given the relatively small sample size and single focal species employed in this study, further research is needed to determine whether incidences of microplastic consumption occur at significant levels in other zooplankton species, which may impact on higher trophic levels in estuarine environments.

Lusher et al., 2016

Microplastic interactions with North Atlantic mesopelagic fish

ICES Journal of Marine Science, 2016

Huvet et al., 2016

Reply to Lenz et al.: quantifying the smallest microplastics is the challenge for a comprehensive view of their environmental impacts

Proceedings of the National Academy of Science U.S.A, 2016

ACKNOWLEDGEMENTS

REFERENCES

Beer, S.; Garm, A.; Huwer, B.; Dierking, J. and Nielsen, T.G. 2018. No increase in marine microplastic concentration over the last three decades - A case study from the Baltic Sea. *Science of the Total Environment*, 621: 1272-1279. **Links**

Botterell, Z.L.; Beaumont, N.; Dorrington, T.; Steinke, M.; Thompson, R.C. and Lindeque, P.K. 2019. Bioavailability and effects of microplastics on marine zooplankton: A review. *Environmental Pollution*, 245: 98-110. **Links**

Breteler, W.C.M.K. and Gonzalez, S.R. 1988. Influence of temperature and food concentration on body size, weight and lipid content of two Calanoid copepod species. p. 201-210. In: G.A. Boxshall and H.K. Schminke (eds), Biology of Copepods. Developments in Hydrobiology, vol. 47. Dordrecht, Springer. Links

Bruck, S. and Ford, A.T. 2018. Chronic ingestion of polystyrene microparticles in low doses has no effect on food consumption and growth to the intertidal amphipod *Echinogammarus marinus*? *Environmental Pollution*, 233: 1125-1130. **Links**

Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J. and Galloway, T.S. 2013. Microplastic Ingestion by Zooplankton. *Environmental Science & Technology*, 47: 6646-6655.

Collard, F.; Gilbert, B.; Eppe, G.; Parmentier, E. and Das, K. 2015. Detection of anthropogenic particles in fish stomachs: an isolation method adapted to identification by Raman spectroscopy. *Archives of Environmental Contamination and Toxicology*, 69: 331-339. **Links**

Courtene-Jones, W.; Quinn, B.; Murphy, F.; Gary, S.F. and Narayanaswamy, B.E. 2017. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. *Analytical Methods*, 9: 1437-1445. **Links**

de Sá, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L. and Futter, M.N. 2018. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? *Science of the Total Environment*, 645:1029-1039. **Links**

Desforges, J.P.W.; Galbraith, M. and Ross, P.S. 2015. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. *Archives of Environmental Contamination and Toxicology*, 69: 320-330. Links

Enders, K.; Lenz, R.; Stedmon, C.A. and Nielsen, T.G. 2015. Abundance, size and polymer composition of marine microplastics ≥ 10 µm in the Atlantic Ocean and their modelled vertical distribution. *Marine Pollution Bulletin*, 100: 70-81. **Links**

Enders, K.; Lenz, R.; Beer, S. and Stedmon, C.A. 2017. Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers. *ICES Journal of Marine Science*, 74: 326-331. **Links** No evidence of microplastic consumption by the copepod. Temora longicornis (Muller, 1785) in Chiche... Reisser, J. 2014. Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. *PLoS ONE*, 9(12): e111913. **Links**

Gajšt, T.; Bizjak, T.; Palatinus, A.; Liubartseva, S. and Kržan, A. 2016. Sea surface microplastics in Slovenian part of the Northern Adriatic. *Marine Pollution Bulletin*, 113: 392-399. **Links**

Gill, C.W. 1986. Suspected mechano- and chemosensory structures of *Temora longicornis* (Copepoda: Calanoida). *Marine Biology*, 93: 449-457. **Links**

Hämer, J.; Gutow, L.; Köhler, A. and Saborowski, R. 2014. Fate of microplastics in the marine isopod *Idotea emarginata. Environmental Science & Technology*, 48: 13451-13458. **Links**

Huvet, A.; Paul-Pont, I.; Fabioux, C.; Lambert, C.; Suquet, M.; Thomas, Y.; Robbens, J.; Soudant, P. and Sussarellu, R. 2016. Reply to Lenz et al.: quantifying the smallest microplastics is the challenge for a comprehensive view of their environmental impacts. *Proceedings of the National Academy of Science U.S.A*, 113: E4123-E4124. **Links**

Jamieson, A.J.; Brooks, L.S.R.; Reid, W.D.K.; Piertney, S.B.; Narayanaswamy, B.E. and Linley, T.D. 2019. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. *Royal Society Open Science*, 6: 180667. **Links**

Kosore, C.; Ojwang, L.; Maghanga, J.; Kamau, J.; Kimeli, A.; Omukoto, J.; Ngisiag'e, N.; Mwaluma, J.; Ong'ada, H.; Magori, C. and Ndirui, E. 2018. Occurrence and ingestion of microplastics by zooplankton in Kenya's marine environment: First documented evidence. *African Journal of Marine Science*, 40: 225-234. **Links**

Lebreton, L.C.; Van der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A. and Reisser, J. 2017. River plastic emissions to the world's oceans. *Nature Communications*, 8: 15611. **Links**

Lusher, A.L.; O'Donnell, C.; Officer, R. and O'Connor, I. 2016. Microplastic interactions with North Atlantic mesopelagic fish. *ICES Journal of Marine Science*, 73: 1214-1225. **Links**

Mishra, S.; Rath, C.C. and Das, A.P. 2019. Marine microfiber pollution: A review on present status and future challenges. *Marine Pollution Bulletin*, 140: 188-197. **Links**

Pittura, L.; Avio, C.G.; Giuliani, M.E.; D'Errico, G.; Keiter, S.H.; Cormier, B.; Gorbi, S. and Regoli, F. 2018. Microplastics as vehicles of environmental PAHs to marine organisms: combined chemical and physical hazards to the Mediterranean mussels, *Mytilus galloprovincialis*. *Frontiers in Marine Science*, 5. DOI: 10.3389/fmars.2018.0010 **Links**

Prata, J.C. 2018. Airborne microplastics: consequences to human health? *Environmental Pollution*, 234: 115-126. **Links**

Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; Teh, F.C.; Werorilangi, S. and Teh, S.J. 2015. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. *Scientific Reports*, 5: 14340. **Links**

Schneider, C.A.; Rasband, W.S. and Eliceiri, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. *Nature Methods*, 9: 671-675. **Links**

Setälä, O.; Fleming-Lehtinen, V. and Lehtiniemi, M. 2014. Ingestion and transfer of microplastics in the No evidenanetohmicroplastic המחקר אוואדומיז אוואדין אוואדין אוואדין אוואדין אוואדין אוואדין אוואדין אוואדין אווא

Setälä, O.; Norkko, J. and Lehtiniemi, M. 2016. Feeding type affects microplastic ingestion in a coastal invertebrate community. *Marine Pollution Bulletin*, 102: 95-101. **Links**

Sun, X.; Liu, T.; Zhu, M.; Liang, J.; Zhao, Y.; and Zhang, B. 2018. Retention and characteristics of microplastics in natural zooplankton taxa from the East China Sea. *Science of the Total Environment*, 640-641: 232-242. **Links**

Turner, J.T. 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. *Zoological Studies*, 43: 255-266. **Links**

van der Hal, N.; Ariel, A. and Angel, D.L. 2017. Exceptionally high abundances of microplastics in the oligotrophic Israeli Mediterranean coastal waters. *Marine Pollution Bulletin*, 116: 151-155. **Links**

Welden, N.A.C. and Cowie, P.R. 2016. Long-term microplastic retention causes reduced body condition in the langoustine, *Nephrops norvegicus*. *Environmental Pollution*, 218: 895-900. **Links**

Welden, N.A.C. and Lusher, A.L. 2017. Impacts of changing ocean circulation on the distribution of marine microplastic litter. *Integrated Environmental Assessment and Management*, 13: 483-487. Links

Wu, N.; Zhang, Y.; Zhang, X.; Zhao, Z.; He, J.; Li, W.; Ma, Y. and Niu, Z. 2019. Occurrence and distribution of microplastics in the surface water and sediment of two typical estuaries in Bohai Bay, China. *Environmental Science: Processes & Impacts*, 21: 1143-1152. **Links**

Yen, J.; Lenz, P.H.; Gassie, D.V. and Hartline, D.K. 1992. Mechanoreception in marine copepods: electrophysiological studies on the first antennae. *Journal of Plankton Research*, 14: 495-512. **Links**

Yule, A.B. and Crisp, D.J. 1983. A study of feeding behaviour in *Temora longicornis* (Müller) (Crustacea: Copepoda). *Journal of Experimental Marine Biology and Ecology*, 71: 271-282. **Links**

Xu, J.; Hansen, P.J; Nielsen, L.T.; Krock, B.; Tillman, U. and Kiorboe, T. 2017. Distinctly different behavioral responses of a copepod, *Temora longicornis*, to different strains of toxic dinoflagellates, *Alexandrium* spp. *Harmful Algae*, 62: 1-9. **Links**

Zhao, S.; Zhu, L. and Li, D. 2016. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. *Science of the Total Environment*, 550: 1110-1115. **Links**

ZOOBANK:

http://zoobank.org/urn:lsid:zoobank.org:pub:7695C042-D0A7-4EEC-81F4-E55F4C285A75 (http://zoobank.org/urn:lsid:zoobank.org:pub:7695C042-D0A7-4EEC-81F4-E55F4C285A75)

Received: November 01, 2019; Accepted: May 28, 2020

This is an open-access article distributed under the terms of the Creative Commons Attribution License No evidence of microplastic consumption by the copepod, Temora longicornis (Muller, 1785) in Chiche... End of document

/